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ABSTRACT

Developing stable, high-yielding Egyptian 
cotton (Gossypium barbadense) cultivars that can 
adapt to changing weather patterns and rising 
temperatures is one of the main goals of cotton 
breeders. Nineteen genotypes of G. barbadense 
were evaluated for stable yield over five consecu-
tive Kharif seasons from 2019 to 2024. Genotype-
by-environment interactions contributed 96.2% 
of the variance, highlighting their importance. 
Genotypes G3 and G4 consistently performed 
well under all conditions, with high mean yields, 
according to the Additive Main Effects and 
Multiplicative Interaction model. As there were 
more interactions, the relative performance 
of genotypic values, the harmonic mean of the 
relative performance of genotypic values, and the 
harmonic mean of genotypic values were used to 
estimate the principal components of Best Linear 
Unbiased Prediction (BLUP)-based simultaneous 
selection. Genotypes G10 and G9 exhibited the 
highest anticipated means for number of bolls. 
Additionally, based on their stability indices, 
genotypes G10, G9, G2, and G18, were stable in 
number of bolls produced. Genotypes G9, G18, 
and G10 presented more bolls and greater stabil-
ity based on the weighted average absolute scores 
of BLUP. BLUP was more accurate in determin-
ing the stability of the genotypes. In this study, 
G2, G3, and G13 cotton genotypes were found to 
be stable across all the models.

Cotton (Gossypium spp.) is an immensely 
important commercial crop for India’s economy. 

In India, cotton plays a major role in sustaining 

the livelihood of an estimated six million cotton 
farmers and 40 to 50 million people engaged in 
related activities such as cotton processing and trade. 
Gossypium barbadense L., commonly known as 
Egyptian or Sea Island cotton, is distinguished for 
its superior fiber qualities such as length, strength, 
and fineness. G. barbadense is typically grown in 
regions with favorable climatic conditions, including 
warm temperatures and sufficient water supply, 
which contribute to its high productivity (Cothren, 
1999). Despite its advantages, the productivity of 
G. barbadense can be influenced by various factors, 
including genotype-by-environment interactions 
(GEI), which affect its stability and yield across 
different growing conditions (Smith and Cothren, 
1999). Local weather within a region varies greatly 
from year to year, making it difficult to predict 
weather patterns. Therefore, obtaining stable and 
high-yielding cultivars is the main goal of crop 
breeding. For Sea Island cotton areas across the 
world, where the crop is cultivated as a variety 
or used as a male parent for hybrid development, 
selection for G. barbadense’s high stability or 
adaptability is crucial. Furthermore, the success of 
any breeding program mainly relies on the extent of 
genetic diversity present in the population. Advances 
in breeding and agronomic practices have aimed to 
enhance cotton yield and fiber quality, with a focus 
on increasing boll number (Zhao et al., 2019).

Boll number is a primary determinant of cotton 
yield and directly impacts the crop’s overall eco-
nomic value (Smith and Cothren, 1999). A higher 
boll count generally corresponds to increased fiber 
production, which is vital for meeting global tex-
tile demands (Cothren, 1999). The stability of boll 
numbers across varying environmental conditions 
is equally important for achieving stable and high 
yields, but GEI often complicates the selection pro-
cess by causing variable performance across different 
conditions (Kang, 2002). This underscores the im-
portance of robust statistical methods for analyzing 
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GEI and identifying stable, high-yielding genotypes. 
Stable performance across different environments 
ensures consistent yield and quality, reducing the risk 
of poor harvests due to environmental fluctuations. 
Breeding programs aim to enhance this stability by 
selecting genotypes that perform reliably across 
diverse conditions, which is essential for achieving 
sustainable and predictable cotton production (Smith 
and Cothren, 1999). Among the statistical approaches 
used to analyze GEI, the Additive Main Effects and 
Multiplicative Interaction (AMMI) model and Best 
Linear Unbiased Prediction (BLUP) model have 
gained prominence. The AMMI model effectively 
combines analysis of variance (ANOVA) with prin-
cipal component analysis (PCA) to separate main 
effects from interaction effects, offering insights 
into both the stability and adaptability of genotypes 
(Gauch, 2013). On the other hand, the BLUP meth-
odology, grounded in mixed-model theory, provides 
accurate predictions by considering both fixed and 
random effects, making it a powerful tool in plant 
breeding for selecting genotypes with desirable traits 
across environments (Piepho et al., 2008).

AMMI is a fixed-effect model that cannot directly 
accommodate the structure of a linear mixed model 
(LMM), which incorporates both fixed and random 
effects. BLUP enables a mixed model method that 
first estimates the effects of the ANOVA model be-
fore assigning weights (repeatability) to these effects 
and reducing them to zero means. In recent years, 
the integration of these models in breeding programs 
has shown promise, enabling simultaneous selection 
for performance and stability (Crossa et al., 2021). 
The strength of both of these methodologies has been 
merged into a new quantitative genotypic stability 
measure termed WAASB (weighted average abso-
lute scores of BLUPs), which employs the singular 
value decomposition of BLUP matrix to examine the 
GEI effects created by an LMM. AMMI allocates 
most GEI patterns to the first interaction principal 
component axis (IPCA), while preserving the ma-
jority of random errors in the final IPCA. WAASB 
analyzes GEI in multi-environment trials (METs) by 
combining AMMI and BLUP characteristics, taking 
into account the predicted IPCA. This study aims to 
use a multi-model approach, employing both AMMI 
and BLUP-based simultaneous selection, to assess 
the stability and performance of G. barbadense 
genotypes for the number of bolls. The outcomes of 
this research will contribute valuable insights into 
the breeding of more productive and stable G. bar-

badense cultivars, ultimately supporting sustainable 
cotton production.

MATERIALS AND METHODS

Based on yield and fiber characteristics, 19 G. 
barbadense germplasms were chosen from the Indian 
Council of Agricultural Research and Central Insti-
tute for Cotton Research (CICR) gene banks (Table 
1). These lines were selected from 50 germplasm 
lines maintained at the institute for yield, disease, 
Table 1. G. barbadense genotypes evaluated during five grow-

ing seasons from 2019-2024

Genotype 
Code Genotype Genotype 

Code Genotype

G1 ICB 174 G11 ICB 34
G2 CCB 141 G12 ICB 207
G3 ICB 264 G13 ICB 176
G4 ICB 124 G14 ICB 46
G5 CCB 143 B G15 ICB 161
G6 ICB 284 G16 ICB 183
G7 CCB 25 G17 ICB 39
G8 CCB 29 G18 CCB 11 A
G9 ICB 28 G19 ICB 99
G10 ICB 258

and fiber traits. The 19 germplasm (18 germplasm 
lines + 1 variety [ICB 174 - Suvin]) lines showed a 
low incidence of pest and disease and improved fiber 
traits when compared to other lines maintained in 
the gene banks. The BLUP and AMMI studies were 
performed for the number of bolls per plant stability 
over the changing meteorological parameters from 
2019 to 2024.The trial site is characterized as red 
loam soil, 427 m above mean sea level, and located at 
latitude 11.0122° N and longitude 76.9354° E. Using 
a randomized full-block design, three replications 
were set up with five rows of each genotype planted 
in each of the five years. The CICR suggested spacing 
of 90 by 60 cm was followed (Sabesh, 2023). Filling 
in the gaps and thinning the plants after 15 d allowed 
one plant per hill, thereby maintaining 10 plants per 
row. In each replication, 20 plants were randomly 
selected and tagged and used for making observa-
tions throughout the season. The administration of 
the suggested fertilizer dose and plant protection 
measures were followed using proper crop manage-
ment methods (Sabesh, 2023). Once the bolls burst, 
the number of bolls on each tagged plant was counted 
before harvesting. Weather data, such as rainfall and 
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high and low temperatures, were obtained for all five 
crop-growing seasons.

Statistical Analysis. To evaluate differences 
between genotypes (G), seasons (years), and GEI, 
the number of bolls was subjected to ANOVA.

AMMI and BLUP. The Gauch et al. (1996) 
model was used to perform AMMI analysis using 
the number of bolls per plant data from the 19 ex-
perimental lines collected over five consecutive crop 
years. The average of the squared eigenvector values 
(EV), Annicchiarico’s D parameter (DA), the sum of 
the absolute values of the interaction principal com-
ponent (IPC) scores (SIPC), AMMI stability value 
(ASV), Zhang’s D parameter (DZ), AMMI-based 
stability parameter (ASTAB), the sum across envi-
ronments of the absolute values of GEI modeled by 
AMMI (AVAMGE), the stability measure based on 
the fitted AMMI model (FA), AMMI stability index 
(ASI), modified AMMI stability index (MASI), and 
modified AMMI stability value (MASV) were among 
the various AMMI stability indices (ASTABs) 
evaluated (Anuradha et al., 2022). Based on AMMI 
scores, including ASTAB, MASV, and MASI, the 
nonparametric and parametric simultaneous selec-
tion indices, as well as the simultaneous selection 
indices using the Culling strategy were calculated 
(Ajay et al., 2020; Rao and Prabhakaran, 2005). 
The estimation of the harmonic mean of genotypic 
values (HMGV) to infer both yield and stability, the 
relative performance of genotypic values (RPGV) to 
examine the mean yield and genotypic adaptation, 
and the harmonic mean of relative performance of 
genotypic values (HMRPGV) to evaluate yield, 
adaptability, and stability simultaneously were used 
to study BLUP using the formulas from the de Re-
sende studies (2004, 2016).

Software Used. Using the R packages agricolae 
(De Mendiburu, 2015) and ammistability (Ajay et 
al., 2018), ASTABs were calculated (R Core Team, 
2018). Using R’s lme4 package, BLUP-based stabil-
ity models such as HMGV, RPGV, and HMRPGV 
were estimated (Bates et al., 2015).

RESULTS AND DISCUSSION

There are predominantly two approaches taken 
to find stable, high-yielding genotypes: AMMI-based 
and BLUP-based. The selected genotypes underwent 
repeated testing at the same location to find a cultivar 
that would remain stable in the face of changing 
weather conditions. The seasons differed in the ex-

amined meteorological characteristics (Fig. 1). There 
was variation noted in the total amount of rainfall 
received during the crop season for all five growing 
seasons. The first crop season had the most rainfall, 
whereas the fourth season had the least. There was a 
noticeable difference in temperature across the five 
growing seasons. In 2020-2021 and 2023-2024, a 
temperature increase was observed during the boll 
development stage. The highest (65 bolls/plant) and 
the lowest (6 bolls/plant) seed cotton yields were 
recorded from Season 3 and Season 1, respectively. 
The cotton genotypes also differed in the number of 
bolls developed. The highest number of bolls was 
recorded from G10 and G9 with 45 and 37 bolls/
plant, respectively, whereas the lowest number of 
bolls was recorded from G13 (16 bolls/plant) and 
G19 (28 bolls/plant) (Table 2). 

Additive Main Effects and Multiplicative In-
teraction. This approach facilitates the identification 
of superior and stable genotypes excelling in specific 
environments and reveals genotypes with consistent 
performance across environments (Danakumara et 
al., 2023). AMMI analysis revealed variation ( p < 
0.001) among the studied genotypes, crop season, 
and GEIs (Table 3). The majority of the total varia-
tion was attributed to genotype, whereas environ-
ment and GEI contributed approximately 13.24 and 
6.55%, respectively. The first four principal com-
ponents (PCs) contributed to the GEI. The first PC 
contributed 57.2% to total GEI, whereas the second, 
third, and fourth PCs contributed 26, 16.1, and 0.7%, 
respectively. In the AMMI biplot, strong interactions 
were represented by long vectors in Seasons 1, 2, 3, 
and 5, whereas weaker interactions were shown by 
shorter vectors in Season 4. Season 4 showed PCA1 
scores closer to zero. This suggests a better perfor-
mance of all the genotypes in this growing season. 
Seasons 1, 2, 3, and 5 had vectors parallel to PC1 
(57.2%), indicating a higher contribution to overall 
variation. Seasons 2, 3, and 4 had a higher average 
number of bolls than Season 1 and Season 5. Crop 
seasons 5 and 3 were below-average environments 
(Fig. 2). G4, G11, G16, G15, G8, and G14 had fewer 
bolls per plant, aligning with zero scores on the first 
PCA1 axis. These genotypes were less affected by 
environmental variations. 

The results of AMMI analysis showed that 
G3 and G4 performed consistently regardless of 
the growing season. G10, G9, and G18 had a high 
number of bolls only in seasons 2, 3, and 4. Hence, 
these genotypes are environment-bound genotypes. 
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Table 2. Mean performance of the genotypes for number of bolls over the seasons

Genotype 2019-20 2020-21 2021-22 2022-23 2023-24 Average
G1 8 14 60 28 44 31
G2 25 33 40 32 29 32*
G3 22 38 32 30 20 28
G4 31 18 30 30 20 26
G5 16 26 17 19 30 22
G6 13 18 33 21 27 22
G7 14 24 33 25 15 22
G8 33 35 18 28 15 26
G9 53 35 39 44 15 37**

G10 33 52 65 48 28 45**

G11 15 35 26 27 25 26
G12 20 31 17 22 10 20
G13 16 15 18 19 12 16
G14 31 38 25 31 17 28
G15 15 46 21 24 20 25
G16 17 27 31 28 25 26
G17 24 29 23 27 20 24
G18 30 41 40 35 18 33*

G19 6 30 9 19 14 16
General Mean 27.69

CV% 32.15
SED 4.19

CD ( p = 05) genotypes 8.22
*Significant under p = .05 and **significant under p = .01.

Figure 1. Bar chart illustrating (A) temperature variations and (B) total precipitation for the five crop seasons under test 
(2019-2024).
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Estimation of AMMI-Based Stability Indices. 
Stability alone is not a desirable selection criterion 
for plant selection, hence, simultaneous selection of 
yield and stability in a single nonparametric index 
is necessary (Farshadfar et al., 2011; Mohammadi 
et al., 2007). 

The ASI, ASV, MASV, ASTAB, AVAMGE, DA, 
DZ, EV, FA, MASI, MASV, SIPC, and the absolute 
value of the relative contributions of IPCs to the 
interaction (ZA), were analyzed to compare whether 
they were equally efficient in assessing the stability 
of genotypes and are presented in Table 4. Based on 
the results of ASI and ASV, G13, G3, and G17 were 
stable and G1 was the least stable. The ASI and ASV 
parameters are helpful when the first two IPCAs ac-
count for a large portion of the variation; however, 
the overall variation described by these parameters 
is negligible when three or more IPCAs are relevant. 
Based on MASI values, G13, G3, and G17 were 
stable, whereas G1 was less stable. Based on the 
values of MASV, G2, G14, and G17 were stable, and 
G10 was less stable. MASI and MASV measures are 
equivalent to plots with all PCA axes for the ranking 
of genotypes. DA, DZ, ASTAB, and FA showed that 
G2, G3, and G17 were more stable and that G1 was 
less stable. Comparing all the stability indices, G2, 
G3, and G17 were the most stable genotypes.

Several stability parameters, including ASV, 
ASTAB, AVAMGE, DA, DZ, EV, and FA, revealed 
each parameter has the same potential for identifying 
stable genotypes (Anuradha et al., 2022). Comparing 
all the parameters, G2, G3, and G17 were found to 
be stable across seasons. The stability parameters 
almost displayed a similar trend in identifying stable 
genotypes. Similar results were reported in the study 
by Cheloei et al. (2020) in rice (Oryza sativa L.) us-
ing the same set of stability indices. 

GEI Biplot: Weighted Average Absolute 
Scores of BLUP (WAASBY) Index. A clear il-
lustration of the which–won–where pattern can be 
found in Fig. 3. In the first IPCA, G13 emerged as 
the dominant performance when considering num-
ber of bolls per plant. This performance highlights 
G13’s exceptional adaptability and stability across 
diverse conditions. By combining mean performance 
and stability, the WAASB-based simultaneous se-
lection index effectively finds the best genotypes. 
The WAASB model offers a thorough method for 
assessing genotype stability and yield by taking 
into account all IPCAs. The most stable genotypes, 

Figure 2. The AMMI biplot [cotton number of bolls vs. 
principal component 1 (PC1)] for number of bolls of 19 
G. barbadense genotypes in five test environments between 
2019 and 2024.

Table 3. AMMI analysis for number of bolls of 19 G. bar-
badense genotypes under five test environments

Source dfz MSSy
% contribution  

toward total 
variation

Environments 4 1145.3 13.24
Rep. (within 
Environment) 10 0.402 0.01

Genotype 18 735.659 38.28
GEIx 72 231.721 6.55
PCw1 21 454.335 57.2
PC2 19 228.379 26
PC3 17 158.220 16.1
PC4 15 7.596 0.7
Residuals 180 0.463
Total 356 144.040

zdf, degrees of freedom
yMSS, mean sum of squares
xGEI, genotype by environment interaction
wPC, principal component

The number of IPCAs has a major impact on the 
genotype ranking. The importance of GEI reveals 
the various responses of genotypes as well as their 
strengths and weaknesses in various environments. 
To find promising genotypes across multiple envi-
ronments, the AMMI model and the genotype main 
effect plus GEI (GGE) biplot graphical model are 
frequently employed in tandem. PCA served as the 
basis for the proposal of this graphical model.
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Table 4. Stability indices utilized for ranking genotypes under five test environments

Genotype ASI ASTAB AVAMGE DA DZ EV FA MASI MASV SIPC ZA WAASB
G1 3.199 31.544 87.286 42.086 0.754 0.142 1771.245 3.199 13.642 6.504 0.453 3.358
G2 0.485 1.046 13.977 6.550 0.253 0.016 42.905 0.485 1.961 1.533 0.071 0.520
G3 0.257 1.274 11.054 6.630 0.197 0.010 43.952 0.301 22.862 1.800 0.077 0.497
G4 0.506 7.322 24.695 15.636 0.497 0.062 244.496 0.585 43.106 4.273 0.139 0.822
G5 0.531 9.357 28.221 17.135 0.624 0.097 293.609 0.635 51.138 5.288 0.169 1.019
G6 1.181 5.179 33.976 16.196 0.368 0.034 262.304 1.188 20.016 3.468 0.187 1.342
G7 0.485 2.077 16.590 8.777 0.291 0.021 77.041 0.507 21.616 2.801 0.115 0.769
G8 1.303 6.142 34.083 17.782 0.388 0.038 316.194 1.310 20.688 3.760 0.207 1.488
G9 1.518 17.320 49.079 27.165 0.648 0.105 737.962 1.520 14.186 6.189 0.325 2.211
G10 0.576 14.507 39.130 21.566 0.681 0.116 465.084 0.806 82.727 5.656 0.219 1.364
G11 0.415 2.668 19.888 9.844 0.299 0.022 96.905 0.416 4.888 2.246 0.082 0.507
G12 0.860 2.555 22.606 11.499 0.270 0.018 132.225 0.860 5.434 2.423 0.134 0.971
G13 0.161 1.789 13.903 7.211 0.287 0.021 51.998 0.240 26.068 2.200 0.063 0.364
G14 0.995 3.179 26.635 13.115 0.276 0.019 172.001 0.995 4.161 2.316 0.141 1.045
G15 0.943 10.033 33.206 19.528 0.558 0.078 381.351 0.968 32.371 5.657 0.238 1.557
G16 0.501 1.732 14.563 7.343 0.382 0.036 53.924 0.503 6.998 2.389 0.092 0.638
G17 0.367 1.147 10.895 6.633 0.197 0.010 43.994 0.390 19.255 1.838 0.080 0.537
G18 0.445 3.552 19.256 11.042 0.344 0.030 121.929 0.508 35.976 3.334 0.132 0.852
G19 0.769 8.109 31.215 15.881 0.710 0.126 252.195 0.769 4.760 4.691 0.168 1.105
Mean 0.816 6.870 27.908 14.822 0.422 0.053 292.701 0.852 22.729 3.598 0.163 1.104

zAbbreviations: ASI, Additive Main Effects and Multiplicative Interaction (AMMI) stability index; ASTAB, AMMI-based 
stability parameter; AVAMGE, sum across environments of the absolute values of the genotype by environment interac-
tion modeled by AMMI; DA, Annicchiarico’s D parameter; DZ, Zhang’s D parameter; EV, average of the squared ei-
genvector values; FA, stability measure based on the fitted AMMI model; MASI, modified AMMI stability index; MASV, 
modified AMMI stability value; SIPC, sum of the absolute values of the interaction principal component (IPC) scores; 
ZA, absolute value of the relative contributions of IPCs to the interaction; WAASB, weighted average of the absolute 
scores of Best Linear Unbiased Predictions (BLUPs)

Figure 3. The weighted average of the absolute scores for the 
best linear unbiased predictions (BLUPs) of the genotype-
environment interaction (WAASB) estimation, including 
the interaction principal component axes (IPCAs).

including G13, G11, and G3 that showed the low-
est WAASB values, are highlighted by this method. 
The significance of several IPCAs for an appropriate 
assessment is shown by the use of color variations 
in WAASB figures that group genotypes based on 
similar stability performances.

The WAASBY index was developed based on the 
multi-trait stability index (MTSI) which combines 
stability and trait productivity, facilitating broader 
adaptations. This method analyzes the GEI effects of 
an LMM using the singular value decomposition of a 
BLUP matrix (Vineeth et al., 2022). The analysis in-
cluded other fiber traits to calculate the MTSI (Table 
5). The precise evaluation of genotypes based on per-
formance and stability using the WAASBY index of 
100/0 assigns full weight to stability, and 0/100 gives 
full weight to mean performance. In cluster 1, G7 and 
G13 exhibited poor productivity and instability and 
exhibited low rankings for all WAASB:Yield ratios. 
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Table 5. Plant and fiber characteristics used for calculating the Multi-Trait Stability Index (MTSI) for genotypes grown 
under multiple environments along with average boll counts

Genotype
Plant  
height 
(cm)

Number of 
monopodial 

branches

Number of 
sympodial 
branches

Single boll 
weight (g)

Elongation 
ratio

Fiber length
(mm) 

Fiber 
strength 
(g/tex)

Fiber 
fineness (µ) 

G1 146.57 0 18 5.1 31.43 33.89 35.29 4.78
G2 204.72 5 19 5.1 31.98 34.95 35.90 4.32
G3 165.00 4 23 3.7 30.08 31.73 31.39 4.61
G4 165.95 2 26 3.7 29.82 36.32 39.30 4.61
G5 212.04 4 29 5.4 32.17 39.06 41.12 4.14
G6 188.89 2 26 4.8 36.47 33.30 35.13 4.70
G7 176.14 1 27 4.5 31.29 37.39 40.57 4.11
G8 190.15 1 29 4.5 34.50 35.97 37.52 4.23
G9 147.66 2 26 5.1 31.57 29.02 32.32 4.79
G10 171.13 2 26 3.8 31.71 32.53 34.65 4.04
G11 202.03 1 28 3.7 33.94 32.78 33.17 4.58
G12 215.69 0 28 3.7 29.30 32.06 35.85 4.34
G13 156.63 4 21 4.2 37.18 35.58 40.76 3.92
G14 198.95 1 25 3.9 30.95 32.79 37.84 4.28
G15 144.39 2 14 5.0 31.42 34.16 33.21 4.63
G16 191.88 3 21 4.0 29.84 33.83 39.44 3.46
G17 202.59 3 22 3.9 37.45 27.75 27.80 5.74
G18 197.31 2 27 4.3 32.87 38.81 41.82 3.83
G19 141.68 0 20 4.4 35.27 29.11 32.35 4.35

Cluster 2, G4, G3, G2, G17, G16, G14, and G11 
showed good productivity and instability, with low 
WAASB:Yield ratios. Cluster 3, which comprised 
G9, G18 and G10, exhibited high productivity and 
broad adaptability, indicating greater stability with 
low WAASB scores. In cluster 4, G8, G6, G5, G19, 
G15, G12, and G1 showed stable but poor yielders 
with high WAASB:Yield ratios (Fig. 4).

Best Linear Unbiased Prediction (BLUP). 
The BLUP method uses a mixed-model approach to 
assess ANOVA model effects, assign weights (repeat-
ability), and reduce them to zero means. The parental 
lines selection can be enhanced by the estimation of 
breeding values using BLUP (Bauer et al., 2006). 
The predicted mean value of BLUP for the number 
of bolls per plant of the 19 G. barbadense genotypes 
is presented in Fig. 5. Out of the 19 genotypes, seven 
had higher than the predicted mean value for the 
number of bolls per plant. Among these, G10 and 
G9 had the highest predicted mean value. To find 
multi-environments (ME) and the best performing 
genotypes within each ME, the AMMI model and the 
GGE biplot graphical model are frequently employed 
in tandem. PCA served as the basis for the proposal 

of this graphical model. The graphical representation 
of GEI helps breeders evaluate genotype stability 
and the combination of genotype yield stability 
with environment without taking into account the 
limitations of genotypes in different environments. 
Consequently, using the BLUP approach in this situ-
ation could yield more reliable and superior results. 

The AMMI model does not make provision for 
a quantitative stability measurement, which is es-
sential to quantify and rank the genotypes (Ajay et 
al., 2020). To predict yield, it is necessary to choose 
between AMMI models and BLUP models. The 
BLUP has been used in the evaluation of various 
crops such as rice, corn, cotton, and sugarcane and 
useful results have been presented (Taleghani et 
al., 2023). Our results are consistent with Piepho’s 
(1994) findings, which stated that in the context of 
METs, taking into account intrinsic factors unique 
to each trial, BLUP has added advantage over the 
AMMI family in yield prediction (Shimray et al. 
2022; Spoorthi et al., 2021). 

Estimation of BLUP-based Stability Indices. 
In breeding programs, estimating the heritability of 
characteristics is crucial for determining and recom-
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mending genotypes (Olivoto et al., 2019). BLUP-
based simultaneous selection indices (SSIs) such as 
HMGV, RPGV, and HMRPGV were estimated for 
the number of bolls per plant and presented in Table 
6. The main advantage of biometric approaches, such 

as HMGV, RPGV, and HMRPGV, is to disclose the 
randomness of the genotypic effects and to allow the 
ranking of genotypes with their performance based 
on the genetic effects. The BLUP-based SSIs such 
as HMGV, RPGV, and HMRPGV estimates showed 
that G10, G2, G9, and G18 exhibited more bolls 
per plant, with all entries producing above average 
bolls per plant. The HMGV denotes the phenotypic 
stability of the principal interaction value (PIV), 
which adjusts the predicted genetic value to the in-
stability of the cultivated genotypes in the evaluated 
environments (Borges et al., 2010). The adaptability 
method of the genotypic values can capitalize the 
response of genotypes. The adaptation technique of 
genotypic values (RPGV) was developed to assess 
the distinct adaptability of each genotype and can 
capitalize on genotypic responses to improvements 
in the growing environment. The genetic values 
predicted by the BLUP technique serve as a basis 
for the HMRPGV. It provides the ranking of the best 
genotypes by combining the estimates of stability and 
adaptability. Although this biometric approach does 
not undervalue the impacts of the GEI, it does have 
the advantage of exposing the randomness of the 
genotypic effects, enabling the ranking of genotypes 
based on genetic effects. 

METs are essential for plant breeding efforts. 
Thus, predictive accuracy is critical for successful 
selection, cultivar recommendation, and mega-
environment. It concluded that BLUP was the most 
predictively accurate model. Our findings are con-
sistent with those of Piepho (1994), who concluded 
that the BLUP surpasses all members of the AMMI 
family in forecasting Faba bean (Vicia faba L.) yield 
in MET. Olivoto et al. (2019) reported that based on a 
cross-validation method with four true MET datasets, 
BLUP had higher predictive accuracy than any other 
member of the AMMI family.

CONCLUSIONS

Unveiling genotype adaptability and stability 
using METs of cotton genotypes provided crucial 
insights into their adaptability and stability under 
varying environmental conditions. To use the advan-
tages of both AMMI and BLUP, WAASB has been 
introduced, which is the integration of both meth-
ods. The methods RPGV, HMGV, and HMRPGV 
can be used as selection criteria for investigations 
into adaptability and/or genotypic stability, as well 
as addressing a common problem in networks of 

Figure 5. Mean values of best linear unbiased prediction for 
number of bolls per plant.

Figure 4. Heatmaps of the WAASBY indices that display 
genotype rankings based on stability and boll number trait 
weighted scores. The first component (left side of diagonal 
line) of the WAASB index to yield ratio (NB) pertains to 
environmental stability, whereas the second component 
(right side of diagonal line) relates to number of bolls. 
Thus, in the genotype ranking, a 0/100 ratio corresponds 
to stability, whereas the same ratio is also assigned to boll 
numbers. Moving one unit from left to right in this plot 
decreases the environmental stability component by 5% 
and increases the yield component, such that genotypes 
are ranked solely based on yield (0/100). The first group 
(green) identifies stable genotypes with optimal yield. The 
second group (red) identifies poor yielder and instability. 
The third group (blue) demonstrated high yielder but 
instability. The fourth group (black) showed poor yield 
values but with better stability.
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competition assays, the variety of variances among 
settings. A comparison of all the models revealed 
that the most stable genotypes among those assessed 
were G2, G3, and G13.
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