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ABSTRACT

One of the most important factors impacting 
the profitability of a cotton ginning operation is 
the number of bales produced per hour, as higher 
ginning rates typically reduce energy and labor 
costs on a per bale basis. Data from eight com-
mercial gins were used to evaluate the impact of 
incoming seed cotton attributes such as fiber qual-
ity measurements, moisture content, and variety 
on gin throughput. After normalizing the data by 
gin, time of year, and bale weight, models were 
developed to quantify the impact of fiber quality 
and seed cotton variety characteristics on ginning 
rate. Post-ginning lint quality attributes, such as 
extraneous matter, negatively influenced ginning 
rate. Higher micronaire values and reflectance 
corresponded to faster ginning rates, whereas 
increases in yellowness resulted in a decreased 
ginning rate. The interaction of reflectance and 
micronaire negatively affected ginning rate. Seed 
cotton variety characteristics included lint per-
centage and bract trichomes, which negatively 
influenced ginning rate, whereas fiber density 
positively influenced it. The study also indicated 
that ginning rate abruptly drops when seed cot-
ton moisture content reaches an upper threshold. 
Additionally, the initial and final weeks of ginning 
have a slower ginning rate than the middle part 
of the ginning season. A ginning rate calculator 

was developed using models to predict ginning 
rate and justify variable ginning rates based on 
incoming seed cotton variety characteristics and 
lint properties.

Agricultural and gin machinery are capable of 
capturing significant amounts of data during 

operation. The latest cotton harvester from John 
Deere can provide data such as module weight, 
moisture, and GPS coordinates for where a module 
was both wrapped and dropped (Hardin et al., 2022; 
Wanjura et al., 2020). Figure 1 shows data flow 
during cotton harvesting and ginning in the U.S. 
The blue boxes illustrate where cotton data flow 
has been automated for more than 25 years. The 
harvester’s data is associated with a radio frequency 
identification (RFID) tag for each seed cotton module 
produced (Hardin et al., 2022). RFID tags also can 
be associated with ownership information to track 
the cotton from the field to the gin. Before a bale of 
lint leaves the bale press in a cotton gin, a permanent 
bale identifier (PBI) is assigned to the bale, and a 
sample is taken. The lint sample taken from each 
bale with the PBI identifier is sent to the U.S. 
Department of Agriculture-Agricultural Marketing 
Service (USDA AMS) to measure the fiber quality 
properties.  With the RFID tag, it is easy to link the 
data associated with a module such as harvest date, 
seed cotton moisture content, and area of the field 
the cotton came from. Additional data collected at 
the gin during processing such as moisture content 
of the seed cotton or fiber during processing, energy 
use, and motor loads also can be associated with the 
module and bales as they are being processed.  Given 
the various analytical tools now available, the overall 
objective of this study was to determine if these data 
could be used to optimize a gin’s production rate such 
that the rate was as fast as possible without excessive 
fiber damage or risk of a work stoppage. 

Potential Factors Impacting Ginning and 
Spinning Systems. The performance of both ginning 
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and spinning systems is dependent on incoming seed 
cotton variety characteristics, lint properties, type of 
gin used, and environmental factors. Some of these 
quality attributes critical for both ginning and spin-
ning systems performance are trash content, fiber 
length, color, maturity, fiber strength, and contamina-
tion. According to Acharya et al. (2024), the ginning 
method used greatly impacts the ginning rate (bales 
per hour [bph]), cost, and quality of the lint. Even 
though maximizing the ginning rate and reducing the 
ginning cost is vital, it should not compromise the 
lint quality produced. Table 1 lists various factors 
that impact the ginning and spinning systems.  

Objectives of the Current Research. The U.S. 
cotton industry has a long history of benefiting from 
the fiber quality data the USDA-AMS classing office 
provides on every bale of cotton produced. Currently, 
agricultural and ginning machinery automatically 
collects a large amount of harvesting and ginning 
data and adding automated data logging of additional 
parameters such as ginning rate (bph) and energy use 
is possible with minimal costs and modification to 
the gin. With the growing data sources, the National 
Cotton Ginners Association Technology Committee 
launched an effort to evaluate opportunities for gin-
ners and producers to gain more value from the data 
currently collected.  These priorities were translated 
to a multi-year Cotton Incorporated-led cotton gin 
data project with contributions from multiple U.S. 
Department of Agriculture-Agricultural Research 
Service (USDA ARS) gin labs, SAS Institute, Na-
tional Cotton Ginners Associations, universities, 
and ginners to understand various factors impact-
ing the ginning rate (bph). The hypothesis of this 

study is that various factors such as seed cotton 
variety characteristics (e.g., lint percent [LP], bract 
trichomes [Btri], fiber density [Fden] and fibers per 
seed [FPS]), seed cotton moisture content, and lint 
quality properties such as fiber strength, length, and 
maturity, and moisture and trash content will impact 
ginning rate (bph). 

The present research analyzed saw-ginned 
Upland cotton data from commercial cotton gins in 
the U.S. The research focused on several aspects, 
including the number of bales processed by each gin, 
which depends on the specific variety of incoming 
seed cotton and lint properties. Additionally, the 
study examined other relevant factors, such as week 
of ginning and moisture content of incoming seed 
cotton impact on ginning rate. By considering these 
elements, the research aims to gain a better under-
standing of the commercial ginning process and its 
influencing factors. The specific objectives of this 
research are: (1) identify factors the gin can control 
that affect the ginning rate (bph) and stoppages or 
downtime; (2) analyze and model the ginning rate 
(bph) using gin process data collected from commer-
cial gins and understand the impact of gin-available 
data, seed cotton variety characteristics, lint qual-
ity, and other factors on the ginning rate; and (3) 
develop prediction models for ginning rate (bph) 
with respect to lint properties and incoming cotton 
variety characteristics.  

MATERIALS AND METHODS

In the project's first year, a pilot study was 
conducted to analyze data from two gins over five 

Figure 1. Data flow during cotton harvesting and ginning in the U.S. (Hardin IV et al., 2022).



97JOURNAL OF COTTON SCIENCE, Volume 29, Issue 2, 2025

seasons to see if predicting ginning rate (bph) and 
gin slowdowns was feasible. The data provided by 
the ginners for the present data analysis project are 
for saw-ginned Upland cotton. A total of 120,000 
bales were available for the analysis, and variety 
was known for 50,000 bales. Table 2 provides a sum-
mary of the data type collected from different gins. 
These data include the number of bales processed, 
seed cotton variety, and USDA-AMS classing of-

fice data. The data related to type and model of gin 
stands, number of gin stands used, and number of 
modules each gin stand has processed are not part 
of the data collected as the study was focused on 
factors influencing the relative ginning rate for a 
given gin, not to predict an absolute ginning rate 
based on equipment configurations. Cotton variety 
characteristics data were taken from the work done 
by the University of Arkansas (Bourland et al., 2022). 

Table 1: Factors impacting ginning or spinning systems

Factors Impact on the ginning or spinning rate Source
Lint quality

Fiber length Longer fibers generally lead to higher ginning or spinning 
rates because longer fibers have a higher surface area 
where they can be fed and taken up faster in the spinning 
system. 

Wilson (2011);  
Chattopadhyay et al. (2023);  
Song et al. (2017)

Fiber strength Stronger fibers can withstand damage during spinning, 
allowing faster processing. Lower leaf, reduced length, 
and strength increase neps formation resulting in poor 
mill performance.

Valco (n.d.);  
Hardin IV et al. (2018)

Fiber maturity Immature fiber (indicated by lower micronaire) is 
more sensitive to mechanical handling, being more 
prone to fiber breakage and nep formation. The higher 
immature fiber in the seed cotton can result in slowing 
the ginning rate, as the gins have to work harder to 
separate immature fiber from seed, which can result 
in fiber breakage, increase short fiber content, fiber 
entanglements (neps), resulting in more non-lint material 
in the final product. Higher immature fibers can also 
reduce ginning or spinning efficiencies as the settings 
on the machine have to be adjusted to handle immature 
fibers, such as lowering gin speed, feed rate, or modifying 
the airflow. 

Krifa (2006);  
Mangialardi et al. (1987); 
Hebert et al. (1986);  
Hardin IV et al. (2018); 
Kim et al. (2021);  
Ayele et al. (2017)

Seed cotton or lint 
moisture content 

Maintaining proper moisture level is crucial for efficient 
ginning or spinning. Dry seed cotton can increase fiber 
breakage and lower ginning rates, whereas excessive 
moisture can lead to clogging and reduced efficiency.

Funk and Hardin IV (2017);  
Boykin (2005)

Trash content High levels of impurities in seed cotton can reduce 
ginning yield. 

Kouakou et al. (2024)

Seed cotton variety Seed cotton grade and variety impacts ginning efficiency. 
For example, selecting cotton varieties with favorable 
characteristics such as lint percentage, fiber density, 
and bract trichomes can greatly enhance ginning 
performance.

Beheary et al. (2019)

Gin machine type
Ginning system Saw gins have a higher ginning rate compared to roller or 

reciprocating gins.
Acharya et al. (2024)

Precleaning and gin 
machine maintenance

The age of rollers or saws used in the ginning machine 
can significantly affect ginning efficiency. Regular 
maintenance of precleaning and ginning systems is 
essential for optimal performance.

Funk and Hardin IV (2019).

Feed rate A steady flow of seed cotton is ideal for optimal ginning. 
Feeding too much cotton at once can cause fiber 
entanglement and reduce the ginning rate.

Mangialardi et al. (1988);  
Hardin IV et al. (2018)

Other factors
Environmental factors Extreme temperatures and high humidity can affect the 

ginning process by causing slowdowns.
M.B. McKee Co. (2024)
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Table 2. Overview of data collected from commercial gins

Number  
of gins Data types used for analysis and modeling

8

Cotton variety 
Bale weightz (lbs; kg)
USDA Agricultural Marketing Service 
Classing Office data 
Ginning rate (bales per hour; bph)
Seed cotton and lint moisture content (%, 
w.b.)
Date and time bale was ginned

zAverage bale weight of ginning season

Based on first-year observations, in the second year, 
more data were analyzed by incorporating more 
gins to determine (1) if relationships found from the 
previous year's study were maintained with a more 
diverse set of cotton gins; (2) for gins with added 
data, determine what added measures brought the 
most value and should be considered by other cotton 
gins; (3) better understand the relationship between 
variety characteristics and gin performance; and (4) 
determine the feasibility of a model to predict gin-
ning rate that could both be used for process control 
and to help set prescriptive ginning charges. 

This project tested various analytical and model-
ing approaches to analyze the commercial gins data 
and understand the impact of factors such as quality, 
variety, and moisture on the ginning rate. Data ag-
gregated across seven U.S. Southeast, Midsouth, and 
Gulf Coast gins represented 12 crop years with more 
than 500,000 bales. Although eight gins shared the 
data, only data from seven gins were used because 
one of the gins did not have data on ginning rate 
(bph). The data collected from the eighth gin for lint 
quality were used in the analysis. Ginners provided 
the processing data in Excel sheet format to Cotton 
Incorporated, which was further anonymized and 
shared with SAS Institute and USDA-ARS scientists. 
These data were further used to develop models for 
bph given variety and lint properties, considering 
gin metadata such as gin ID and week of the year 
(ginweek). Some potential explanatory variables, 
such as seed cotton variety name, harvesting method, 
and time and location of the harvesting, were not 
consistently recorded among gins or across years 
within a gin. Table 3 lists typical seed cotton varieties 
processed by the eight commercial gins included in 
the gin datasets for the 2021 crop season. 

The commercial gin data collected were used to 
develop models to predict ginning rate (bph) given 

variety and fiber quality properties, considering gin 
metadata such as gin ID (gin number indicator) and 
week of the year. Based on the ginning data provided 
by the ginners, calculations were made for the time it 
took to process each bale (bph), defined as the time it 
took from seed cotton module to bale press, and for 
slowdowns, defined as bales with a processing rate 
between 2 and 60 min. Bales per hour were chosen 
to represent the ginning rate instead of seconds per 
bale because bph are conditionally approximately 
normally distributed. Slowdowns were considered 
in exploratory data analysis but were not modeled 
because they were rare events and there was insuf-
ficient data for a robust model. They were included 
in the bph model.

The exploratory data analysis and models devel-
oped for the detailed sensor and classing data sug-
gested a high proportion of variability as explained 
by the field indicator variable (which can account for 
variance due to cotton variety, agronomic practices, 
harvesting, and weather). To include the impact of the 
seed cotton variety in the model development, a set 
comprising a variety of characteristics was defined 
and merged into the records, creating a data subset 
where a variety of information was present. Table 4 
shows the various response variables tested for the 
data collected from the eight gins.

Modeling Methodology. The goal of modeling 
was not to determine which gins were inherently the 
fastest but to identify and understand in-season fac-
tors that contributed to ginning rate at a given gin. To 
use data from gins with different ginning capacities, 
all gin data were normalized to a z-score that was 
calculated using Equation 1 (Iverson, 2011). 

 z = (x-M)/SD (1)
where x is the ginning rate per bale; M is the 

mean of the ginning rate for the season, and SD is the 
standard deviation of the ginning rate for the season.

The analysis framework was (1) variable selec-
tion, (2) iterative model assessment and selection, 
and (3) parameter interpretation. The final output 
variable is the ginning rate (bph); this is calculated as 
a function of the time from cutting a seed cotton mod-
ule (debaling) to the final unit operation: compression 
of the fiber into a bale. The conditional distribution 
of bph was determined to be approximately normal. 

Variable selection for data analysis and model-
ing was expert- and data-driven. The various criteria 
used for the variable section include: (1) resistance 
to data leakage (e.g., length uniformity can be 



99JOURNAL OF COTTON SCIENCE, Volume 29, Issue 2, 2025

Table 3. Number of lint bales processed for the listed variety at the given gin in crop year 2021 (varieties with less than 500 
bales not shown)

Gin Identification
Variety 1 2 3 4 5 6 7 8 All Gins
A 9608 B3XF 571 571
CG 3527 B2XF 580 580
DP 1646 B2XF 1160 2794 24344 19465 48095 95858
DP 1725 B2XF 2801 2801
DP 1840 B3XF 444 2212 2656
DP 1845 B3XF 4429 4429
DP 1851 B3XF 568 568
DP 1948 B3XF 1671 1671
DP 2012 B3XF 478 1458 1133 10556 571 14196
DP 2020 B3XF 1176 4585 710 5760 12231
DP 2038 B3XF 1761 992 1170 4779 8702
DP 2115 B3XF 520 15 640 450 1625
DP 2127 B3XF 428 971 1579 2978
DP 2141NR B3XF 951 951
FM 1830 GLT 773 773
FM 1953 GLTP 4051 4051
FM 2398 GLTP 4730 4730
NG 4936 B3XF 241 7176 771 273 8461
NG 5711 B3XF 262 587 849
NG 5711 B3XF 1810 1810
PHY 312 WRF 688 688
PHY 332 W3FE 1360 45 1405
PHY 333 WRF 1187 1187
PHY 340 W3FE 1342 1342
PHY 350 W3FE 1293 216 215 1337 3061
PHY 360 W3FE 686 195 1084 1965
PHY 390 W3FE 3009 3009
PHY 400 W3FE 553 51994 390 1306 54243
PHY 430 W3FE 1072 1072
PHY 443 W3FE 324 129 167 620
ST 4990 B3XF 1277 1637 1446 4360
ST 5091 B3XF 1303 93 16 1412
Unknown 17929 20345 8951 91809 39800 14033 14565 19158 226590
Total 24352 36835 8951 91902 151512 60690 15299 81904 471445

heavily impacted by ginning rate, whereas length 
less so), (2) applicability to ginner and producer 
decision-making (e.g., the value chain can more 
easily influence variety characteristics than fields 
used for cotton production), and (3) quality of vari-
able characteristics for modeling (preferring highly 
continuous, information-rich variables in cases of 
collinearity, such as that exhibited by strength). In 

addition to calculating bph, minimal data engineer-
ing was applied. Because seed cotton variety names 
were available for approximately 50% of the total 
bales in the data set, separate models were created 
for bales that contained variety characteristics and 
those that did not. 

Seed cotton variety characteristic data were 
sourced from Bourland (pers. comm.) from field 
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trials in Kaiser, AR. To simplify variety information 
measured over multiple years, we derived a statisti-
cal mean of each phenotype for each variety. This 
mean was the best linear unbiased prediction (BLUP) 
derived from random effects models that treated each 
phenotype as a predictor and used variety name as 
the diagonal component on the variance components 
covariance matrix and year as the off-diagonal com-
ponent (Proc Mixed, SAS Institute, Cary, NC). This 
estimation method shrinks or brings the phenotype 
estimates closer to the grand mean, with the greatest 

degree of shrinkage imposed on the least replicated 
varieties. This random effect model was chosen to be 
suitable for the low-replication, unbalanced design 
of these phenotypic measurements and to set the 
stage to extrapolate the ginning rate (bph) across the 
population of varieties’ phenotypes. Table 5 gives 
the final variable selected for modeling the process. 

Model accuracy was assessed through the vali-
dation partition's root mean squared error (RMSE); 
low RMSE values show that the model makes more 
accurate predictions and fits the data well. Chai and 

Table 4. Various response variables tested in the analysis in year 2

Number of gins
8; only data shared by 7 gins were used to model the ginning rate (bph). The 8th gin 
did not have enough information on the ginning rate and was not considered for the 
modeling studies. 

Number of gin-years 12
Number of lint bales processed 581,000 (241,000 with cotton seed variety information)

Variables USDA-AMS Classing office data, seed cotton variety characteristics data, some 
sensor data (IGz, SJy), weather data

Objective Modeling and interpretability
zIG: Sensors that are part of the Uster Intelligin system include sensors for moisture monitoring and estimates of leaf and 
trash content (Zellweger Uster, Inc., Knoxville, TN).

ySJ: Sensors manufactured by the Samual Jackson company for moisture management (Samuel Jackson Inc., Lubbock, 
TX).

Table 5. Variables engineered for inclusion in models

Variable name Variable description
Bales per hour (Gbph) Target variable for gin rate

Leaf Pubescence (LPub) Variety characteristic: Measure of leaf hairiness and data in this study were based on a visual 
rating on a scale of 1 (smooth leaf) to 9 (pilose, very hairy) (Bourland et al., 2023)

Bract Trichomes (Btri)
Variety characteristic: Based on a bract from a 1st position white flower from 6 samples in 
four replicated plots that were examined for trichome density (number of trichomes/cm) 
(Bourland et al., 2023)

Lint Percent (LP)
Variety characteristic: Based on variety trial data where 40 bolls were ginned to determine 
the mass of lint and seed, and the lint percentage was calculated as the mass of lint divided by 
the mass of seed cotton times 100 (Bourland et al., 2023)

Fiber density (Fden)
The number of fibers per mm2, estimated by dividing fibers per seed-by-seed surface area. 
Seed surface area (SSA) was estimated by the regression equation suggested by Groves and 
Bourland (2010): SSA = 35.74 + 6.59 SI, where SI is equal to the seed index associated with 
the sample (Bourland et al., 2023)

Brand One or two letter code representing the brand marketing the variety (e.g. ST, DP)
Week (ginweek) Week of year seed cotton bale was ginned
GinID Gin number indicator

Micronaire (MIC)
Classing office: The measurement is based on the permeability of cotton by passing 
compressed air through compressed cotton specimens of fixed weight and fixed volume. The 
airflow permeability through the cotton sample is expressed as micronaire (Delhom et al., 
2020)

Extraneous Matter 
(EM)

Classing office: Extraneous matter is any substance in cotton other than fiber or leaf. 
Examples of extraneous matter are bark, grass, spindle twist, seedcoat fragments, dust, oil, 
and plastic

Reflectance (Rd) Classing office: Measures the brightness of the cotton
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Table 5. continued

encompass several key attributes: fiber density, lint 
percentage, leaf pubescence, and bract trichomes. 
For the varieties ginned, fiber density ranged from 
127 to 207 fibers per mm2; lint percentage varied 
between 34 and 49%; leaf pubescence was in the 
range of 1 to 7, indicating a transition from smooth 
to very hairy surfaces; and bract trichomes per cm 
ranged from 14 to 62.

Table 7 shows the USDA Classing Office fiber 
quality data as measured by High-Volume Instrumen-
tation, averaged across all varieties for the 2021 crop 
year. The color grade varied between white grades 
21 and 41. The leaf grade values ranged between 3 
to 4.1. The micronaire values were 4.23 to 4.60 for 
all the gins except Gin 6, where the micronaire was 
3.85, likely due to environmental conditions in the 
region of that gin in 2021. Except for Gin 6, the av-
erage micronaire values were in the base range (no 
discount or premium). The fiber strength was 29 to 
31.5 grams/tex, in the strong and very strong range. 
The loan values were highest for Gins 1, 2, and 5, 
whereas Gins 6 and 8 had the lowest. The upper half 
mean length was in the range of 29.21 to 30.73 mm 
(1.14-1.21 in). Seed cotton processed by Gin 3 and 8 
had the highest upper half mean length. Changes in 
the lint quality from the various locations can be due 
to environmental factors during the cotton growing 
and ginning season or unit operations, such as the 
number of precleaning and lint cleaning operations 
used during ginning. The data in Table 7 is repre-
sentative lint quality data from across the cotton belt 
and as presented by Cotton Incorporated for the fiber 
properties of the cotton grown in different regions in 
2023 and 2024 (Cotton Incorporated, 2025). 

Ginning Rate (BPH) Distributions and Deri-
vation of the Response Variable. Figure 2 compares 
the kernel distribution of the ginning rate for all 
gins in the study for the crop year 2021. The y-axis 
represents the percentage of bales ginned at that rate 
per hour. The distribution mode for Gin 8 indicates 

Draxler (2014) concluded that RMSE is more appro-
priate to represent model performance. In the present 
study the following criteria were used to understand 
the adequacy of the models developed: (1) lower 
RMSE, (2) showing a plausible sign (direction of 
effect) for each parameter, and (3) containing the 
maximum number of variables showing a suitable 
level of informational importance (e.g., statistical 
significance or variable importance). SAS® Viya® 
3.5 Statistical software, SAS, Cary, NC was used in 
the present analysis.

RESULTS

Descriptive Statistics. Table 6 shows the num-
ber of bales processed by each gin and the percentage 
of seed cotton modules receiving extraneous matter 
calls in 2021 based on the USDA classing office 
data. The average weight of the ginned seed cotton 
or lint bales was 470 to 498 lbs (213-226 kg). The 
lowest weight bales were observed for Gin 4 (213 kg) 
and the highest for Gin 8 (226 kg). Out of the total 
processed by the eight gins, 42% of the processed 
seed cotton modules had variety information avail-
able. The characteristics of seed cotton varieties 

Variable name Variable description

Yellowness (+ b)
Classing office: Indicates the intensity of yellow shades. The color grade of cotton is 
determined by the degree of reflectance (Rd) and yellowness (+ b) as established by official 
standards (Delhom et al., 2020)

Trash Classing office: Trash in cotton lint is the non-fiber particles that remain in cotton after the 
ginning process, such as leaf, seedcoat, bark, grass, and dust (Delhom et al., 2020)

Length
Classing office: The upper half mean length is measured by passing a small quantity of 
paralleled fibers known as a beard through an optical scanner within the HVI instrument 
system. Fiber length is reported as the average length of the longer half of the fibers (upper 
half mean length) (Delhom et al., 2020)

Table 6. Total bales processed, bales with extraneous matter 
(EM), and average bale weight for 8 gins for crop year 2021

Gin No. No. of bales 
processed

Bales with 
EM (%)

Average bale 
weight
lbs (kg)

1 24,352 0.11% 493 (223)
2 36,923 0.04% 497 (225)
3 8951 0.07% 489 (221)
4 91,910 5.63% 470 (213)
5 > 100,000 2.51% 487 (221)
6 61,199 1.51% 498 (226)
7 15,299 0.35% 497 (225)
8 82,229 2.04% 498 (226)
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its higher overall ginning rate, and wider distribu-
tion represents higher variance. Figure 3 compares 
the z-score ginning rate for each gin and shows that 
all the gins in the study had a slight left skew and 
were slightly kurtotic ginning rate distributions. 
The model accounted for the left skew by taking the 
best linear unbiased prediction (BLUP) of sources 
of bale rate variance and identifying extremely low 
residual (very slow) bales and removing them from 
the analysis. These bales only occurred on a few 
discrete days in gins and thus were considered prod-
ucts of mechanical malfunction or other operational 
interruptions and not valid samples. The kurtosis/
non-normality observed in the raw data was not 
observed in any model’s residual distribution.

Figure 4 shows the ginning rate (i.e., bph by gin-
year). In Fig. 4, Gin 1 had records that met our model-
ing requirements for the crop years 2018 to 2020. In 
contrast, the other gins were invited to participate in 
2020, so the data presented to those gins only pertain 
to the 2021 crop year. The current analysis focused 
on using z-distributions as the ginning rate (bph) re-
sponse variable. To further diminish randomness and 

enhance model precision, the bale rate used for the 
z-score was the BLUP of the raw bale rate computed 
from the week of ginning and bale weight (Fig. 4). 
This means a bale with two standard deviations (z) 
above the mean for Gin 1 or Gin 8 should represent 
the 97.9th percentile of bale rate at each gin, even 
though the Gin 8 bale was processed approximately 
four times faster than Gin 1. Furthermore, because 
the time of year of ginning and bale rate explain the 
variance but are not of particular interest, each bale’s 
z-score was calculated from a BLUP of bale weight 
and week within the gin. 

A directed acyclic graph was constructed (Fig. 
5) to represent variable hierarchies with respect to 
analysis intent. The gin rate, the dark green box, is 
the response variable. The lint moisture content was 
not part of Fig. 5 as the lint moisture content data 
collected were not consistent for the different gins; 
instead, we used reflectance (Rd) and yellowness 
(+b) as surrogates for lint moisture content as ini-

Table 7. Mean (± standard error) HVI lint properties for 8 gins providing data for this study for 2021 crop yearz

Gin No. Mic Str (g/tex) Rd +b CG % TA LG UHML 
(mm) UI (%) LV  

(cents/lb)y

1 4.47±0.28 30.7±1.1 76.9±1.7 7.9±0.6 31-2 0.35±0.12 3.0±0.6 29.21±1.27 81.1±1.0 3
2 4.39±0.35 29.6±1.1 79.1±1.7 7.5±0.6 31-1 0.36±0.13 3.0±0.7 28.96±1.27 81.2±0.9 3.4
3 4.60±0.27 30.7±1.1 76.6±2.5 7.7±0.6 31-2 0.45±0.13 3.5±0.6 30.23±1.27 82±0.8 2.9
4 4.23±0.27 29.3±1.5 77.4±2.8 7.4±0.7 41-1 0.37±0.14 3.1±0.7 29.21±1.27 81±1.2 2.3
5 4.36±0.31 31.1±1.4 78.5±2.1 8.5±0.6 21-2 0.37±0.15 3.1±0.7 29.72±1.27 81.5±0.7 4.1
6 3.85±0.34 30.1±1.2 78.1±2.4 7.1±0.6 41-1 0.45±0.13 3.7±0.7 29.72±1.27 80.9±0.9 1.6
7 4.52±0.27 30.8±1.4 77.3±2.0 7.5±0.6 41-1 0.45±0.17 3.3±0.7 29.21±1.27 82.1±1.2 2.7
8 4.47±0.31 31.5±0.9 76.9±2.0 7.7±0.5 31-2 0.61±0.18 4.1±0.7 30.73±1.27 82.4±0.9 2.0

ZAbbreviations: Mic, Micronaire; Str, Strength; Rd, Reflectance; + b, yellowness; CG, Color grade; % TA, percent trash 
area; LG, Leaf grade; UHML, Upper half mean length; UI, Uniformity index; LV, Loan value 

yLoan value above the base value of the cotton

Figure 2. Bales per hour histograms by gin for crop year 2021 
(ginning rate normalized to a 500 lb or 226 kg lint bale).

Figure 3. Bale per hour (bph) or ginning rates z-score for 
gins in the study for the crop year 2021.
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tial analysis showed a correlation. Light blue boxes 
represent random effects, BLUP values, that affect 
gin rate but are not the subject of the study. Dark 
blue boxes represent potential fixed effects, model 
explanatory variable types considered in the main 
analysis. Cotton growing conditions and weather, 
while important in affecting ginning rate, were not 
used in the model development directly due to a 
lack of generalizability and incoming data precision, 
respectively. The ginning rate z-score (bph) was the 
response for variety and fiber quality fixed effects. 
Subsequently, the residual of this fixed effect model 
was used as the response variable for a model of the 
partial variety of data available.

Following the roadmap in Fig. 5, a selection of 
individual variables was made for modeling the gin-
ning rate. Figure 6 shows the parameters considered 
and those used to model the ginning rate (bph). Gin-
specific factors were considered, including time of 
year, represented by the week of ginning, ginning rate 
(bph), and slowdowns. Week (ginweek), bale weight 
(GbaleWT), and gin (GinID) were factored in by cre-

ating a BLUP of gin rate, centered and standardized 
(z-score) (z-gbph). Grower data (grower, farm, and 
field IDs) and weather variables were excluded in 
favor of including more proximate surrogates in the 
gin rate. Variables capturing a variety of attributes, 
Rd and +b (surrogates for moisture), and quality 
parameters such as micronaire, reflectance, and trash 
with extraneous material were hypothesized to im-
pact the ginning rate (bph). 

Data Modeling. Ginning rates based on the 
BLUP model were calculated based on week, year, 
bale weight, gin, and the bale rate z-scores (z-gbph). 
Figure 7 is a scatter distribution representing the 
BLUP model output prediction and residual. The 
results show a good fit, where the maximum of the 
predicted values was around the center, with most 
bales within 10 bph of their prediction. In general, 
most modern gins can process as many as 60 bph 
(National Cotton Council of America, 2025), but this 
depends on a number of factors such as variety, har-
vesting method, lint properties, and type of ginning 
method used; currently, some gins in the U.S. process 

Figure 4. Observed ginning rate (bales per hour [GBPH]) by gin-year. Boxes represent 25th and 75th percentiles centered 
on median, and whiskers the values outside of the interquartile range.

Figure 5. Directed acyclic graph indicating hypothesized relationships, presented in a hierarchy.
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approximately 75 bph. The model also showed ac-
ceptable normality and homoscedasticity, albeit with 
a tendency for the slowest bales (lowest residuals) 
to be underpredicted at faster gins. This prediction 
model can be further improved by including other 
variables, such as seed cotton moisture, as one of 
the parameters to improve prediction efficiency. All 
predicted values were next-centered and standard-
ized (i.e., z-scores created) for use as the target in 
Model 2. 

Lint Quality Effects on Ginning Rate. A para-
metric model was developed for the z-score of the 
ginning rate incorporating quality parameters such 
as micronaire, Rd, +b, trash, and extraneous matter 
(EM) as fixed effects (Table 8). The model parameter 
estimates are indicated in Table 8. All variables were 
highly statistically significant ( p < 0.0001) (Table 
8). The standard error values were consistently lower 
for all lint attributes, with the exception of micro-
naire, which indicates a higher level of precision in 

Figure 6. Major variables selected for parameter model development.

Figure 7. Predicted ginning rate and residual values by gin number-year from Model 1, a random effects model intended to 
normalize bale rate (predicted, “Pred,” bales per hour) across gins, years, bale weights and times of year within the gin. 
High transparency was applied to the data to minimize the obfuscation among the hundreds of thousands of data points. 
The residuals, observed bale rates minus model-predicted bale rates, were suitably distributed to maintain an assumption 
of independence among gin-years.
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the estimation of those coefficients. Conversely, the 
elevated coefficient value for micronaire suggests a 
more substantial relationship with the ginning rate 
(Table 8). The sole main-level negative parameter 
estimates (i.e., associated with slower ginning) was 
the presence of EM. Micronaire had a positive pa-
rameter estimate (equivalent to every incremental 
increase in micronaire associated with bale rate three 
standard deviations faster). This is unsurprising given 
that low micronaire is typically associated with a 
slower ginning rate, mainly due to a higher number 
of immature fibers in the seed cotton. Notably, most 
(25th percentile) micronaire values in this data set 
were comfortably high at greater than 4.1; in general, 
if the seed cotton has higher amounts of immature 
fibers (which results in low micronaire values), the 
ginning rate can be decreased due to increased fiber 

entanglement and fiber breakage during the ginning 
process, leading to slower processing speeds and also 
the gin might have to work harder to separate the im-
mature fibers, thereby reducing the overall efficiency 
and output rate. Our interactions with the ginners in 
the U.S. have corroborated this observation that low 
micronaire reduces the ginning rate.

The parameters Rd, +b, and trash were also posi-
tively associated with the ginning rate. In the present 
study Rd and +b were hypothesized as surrogates for 
seed moisture content, as it highly influences both 
these quality parameters and can influence the gin-
ning rate; for example, higher seed cotton moisture 
increases +b and reduces Rd, and although high 
moisture is often associated with slower ginning, the 
limited moisture data from Gin 1 and Gin 8 suggested 
the seed cotton processed was at approximately 6% 

Table 8. Parameter estimates for lint quality effect on bale rate z-score

Parameter DF Estimate Standard error 95% confidence limits Chi-square Pr>ChiSq
Intercept 1 -13.96 0.4828 -14.908 -13.015 836.06 <0.0001
EM Presentz 1 -0.15 0.0110 -0.1744 -0.1311 191.88 <0.0001
EM Not Presenty 0 0 - - - - -
Micronaire 1 3.27 0.1096 3.0574 3.4871 891.25 <0.0001
Rd 1 0.18 0.0062 0.1722 0.1967 876.38 <0.0001
+ b 1 0.048 0.0021 0.0440 0.0522 528.41 <0.0001
Trash 1 0.032 0.0010 0.0296 0.0338 873.74 <0.0001
Rd×Mic 1 -0.044 0.0014 -0.0472 -0.0417 984.29 <0.0001
Dispersion 1 0.99 0.0022 0.9847 0.9934 - -

zExtraneous matter (EM) Present: assigned a value of 1 if the bale received any EM designation
yEM Not Present: assigned a value of 1 if no EM call was received

Table 9. Parameter estimates for seed cotton variety attributes effect on bale rate z-score

Parameter DF Estimate Standard error 95% confidence limits Chi-square Pr>ChiSq
Intercept 1 -13.102 0.1543 -13.405 -12.800 7204.02 <0.0001
Group_Variety A 1 -3.9936 0.1065 -4.2024 -3.7849 1405.88 <0.0001
Group_Variety AM 1 -1.7659 0.2889 -2.3322 -1.1995 37.35 <0.0001
Group_Variety CG 1 -1.2578 0.1324 -1.5174 -0.9983 90.25 <0.0001
Group_Variety_DG 1 -1.6032 0.0404 -1.6824 -1.5240 1574.06 <0.0001
Group_Variety DP 1 -1.3726 0.0278 -1.4271 -1.3181 2434.15 <0.0001
Group_Variety FM 1 -1.1954 0.0658 -1.3246 -1.0663 329.13 <0.0001
Group_Variety NG 1 -0.2431 0.0333 -0.3084 -0.1777 53.18 <0.0001
Group_Variety PH 1 -1.9330 0.0277 -1.9874 -1.8787 4861.33 <0.0001
Group_Variety ST 0 0 - - - -
LP 1 0.49271 0.00364 0.4855 0.4998 18305.73 <0.0001
Fden 1 -0.0470 0.00058 -0.0481 -0.0458 6501.77 <0.0001
Btri 1 0.01551 0.00125 0.0130 0.01797 152.07 <0.0001
Dispersion 1 4.12439 0.01348 4.0980 4.15092 - -
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wet basis (w.b.) moisture content. Thus, within seed 
cotton samples considered to be approximately 6 % 
(w.b.), a higher degree of moisture or weathering 
can support more efficient ginning. Higher trash 
can be a consequence rather than a cause of faster 
time to bale. Higher throughput rates in cotton gin 
machinery, especially lint cleaners, generally reduce 
cleaning efficiency (Mangialardi et al., 1994). The 
interaction term of Rd and micronaire (Rd ×Mic) 
shown in Table 8 was associated negatively with the 
ginning rate, perhaps representing an interaction of 
boll maturity with the gin rate, that is, immature bolls 
with bright, wet, and immature cotton might have 
reduced the ginning rate. The results of Model 2 were 
acceptably homoscedastic and normally distributed 
(including by gin), suggesting these parameters have 
widespread applicability across gins and regions of 
the U.S. cotton belt. The dispersion parameter of the 
model is below 1 within the upper 95% confidence 
limits, indicating that the model incorporating these 
quality elements predicts the bale rate across gins 
significantly better than random. However, because 
the dispersion parameter is numerically close to 1, 
the bale rate is unexplained primarily with respect 
to the model. Thus, an effort was made to see if 
unexplained variance could be explained using seed 
cotton variety information.

Variety Effects on Ginning Rate. The residuals 
(unexplained variance) from the model that account-
ed for gin identity, week of the year, bale weight, and 
classing characteristics were used as the target for a 
subsequent model incorporating seed cotton variety 
information. This tiered model approach was used 
because seed cotton variety information is present 
only for a fraction of the bales. Instead of modeling 
seed cotton variety directly, we used variables that 
describe seed cotton variety characteristics so the 
model could potentially be extrapolated to others, 
including future varieties. 

Figure 8 represents the z-score of bales across 
all and a select seed cotton variety, respectively. Out 
of the total data analyzed, 73 seed cotton varieties 
had sufficient replication. Anecdotal evidence from 
ginners suggested ST4990 B3XF was slower (Fig. 8). 
These results corroborated that ST4990 B3XF was 
slower, and a directed acyclic graph was constructed 
(Fig. 9 a, b) that associated the categorical unique-
ness of this variety with lower Fden and LP. This 
variety’s slightly lower bract trichomes and much 
lower leaf pubescence would be predicted to offset 
the impact of sparser fiber densities. The ability to 

predict seed cotton variety impacts based on seed cot-
ton characteristics is encouraging, as it points to the 
ability to build a model that is not based on variety 
names and should be able to predict the impact of 
new varieties based on their characteristics, provid-
ing useful guidance to breeding programs. Although 
conditionally normal (conditioned on continuous 
variety components LP, Fden, and Btri, but not seed 
cotton variety name), residuals appeared visually 
structured by brand (Fig. 10). Therefore, it was 
decided to include the brand in seed cotton variety 
models, hypothesizing the varieties have enough 
population substructure within breeding programs 
to maintain ginnability characteristics specific to the 
brand beyond LP, Fden, and Btri. 

Table 9 shows the parameters for the third level 
of the model (Model 3) developed that account for 
variety (LP, Fden, Btri, and brand). Because residu-
als were used in this model, a negative parameter 
estimate indicates faster ginning than expected, given 
the above quality parameters. The model originally 
developed exclusively using LP, Fden, and Btri 
showed an unexplained residual structure that could 
be correlated to the first two letters of each seed cot-
ton variety’s name, thus the addition of “brand”. The 
parameter estimates of the brand category are based 
on GLM (general linear model)-encoding, which 
references the alphanumeric last value, ST. Each 
brand was significantly faster (residuals more nega-
tive) than ST. High LP, often associated with smaller 
seed varieties, was negatively associated with gin 
rate, as was higher Btri, which could cause excess 
trash following cotton defoliation. Higher Fden was 
associated with faster ginning. It is important to note 
that these results reflect high variety-level estimate 
uncertainty and should not be used as the basis of 
seed cotton variety or brand selection decisions. 
Instead, these results could be used to target higher 
fiber density and lower bract trichomes, at least for a 
gin-friendly breeding program. Figure 11 shows the 
computer-based ginning rate calculator developed 
based on the lint quality and seed cotton variety 
characteristics for the convenience of the ginners. 
This calculator uses data on Rd, +b, and trash based 
on Model 2 and LP, Fden, Btri, and brand based on 
Model 3 to predict the ginning rate. This calculator 
can help the ginner predict the ginning rate based on 
seed cotton variety and lint quality attributes. 

Other Findings (Gin Week, Seed Cotton 
Moisture, Rd, and +b Effect on Ginning Rate). 
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Figure 8. Model output showing the impact of variety on the ginning rate that has been normalized to a z-score (z-gbph) 
on the x-axis with variety name on the y-axis. Gray whiskers show values outside the interquartile range of z-values for a 
given variety, and blue indicates the 25th and 75th percentiles centered on median. Higher values indicate more bales per 
hour; ST4990 B3XF is the second-slowest ginning variety in this study on a median basis.

Figure 9. (a) Seed cotton variety characteristics that distinguish ST4990 B3XF: Fden is fiber density, Btri is bract tricoms, 
Lpub is leaf pubescence, FPS is fibers per seed, and LP is lint percentage. (b) Average values of Fden, FPS, and LP for 
all varieties in the study compared to the variety ST4990 B3XF; the sparse fiber density of this variety could explain the 
low ginning rate of this variety. Lower Lpub and Btri values of this variety (not shown) are expected to net improve this 
variety’s performance.
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The combined data set showed that the week of the 
ginning season (ginweek) was an important factor 
in predicting the ginning rate, with the first weeks 
of ginning being significantly slower across gins. 
It is hypothesized that this could be due to several 
factors, including the gin crew gaining experience as 
the season progresses, changes in weather conditions, 
or crop conditions. Figure 12 shows how the week 
of ginning impacts the ginning rate, where it is clear 
from the figure that in the initial weeks of ginning, 
the ginning rate is lower due to the gin crew getting 
together or gelling, in ginner parlance. Also, Fig. 12 
indicates that the ginning rate decreases at the end 
of the ginning season, possibly due to mechanical 
or pneumatic issues in the gin.

The moisture of the seed cotton modules that was 
seen in the present study was in the range of 5 to 9% 
(w.b.); however, this data was only available for two 
gins. For Gin 8, a partial dependence plot showed that 
at moisture greater than 8.5% there is a steep drop in 
the ginning rate (Figs. 13 and 14). Figures 13a and 
b show the seed cotton moisture distribution based 
on the data available at Gins 1 and 8, and Fig. 13b 
illustrates the heat map based on the raw data rela-
tionship between moisture and ginning rate z-scores. 
It is clear from the figures that a wide distribution 
can be seen in moisture. A partial dependence plot 

Figure 10. Residuals of normalized ginning rate derived from a model that factored in gin, time, cotton quality, and vari-
ety components. The residual is the observed minus model-predicted value of the normalized ginning rate, with lower-
than-zero values representing over predictions and higher-than-zero values representing underpredictions. Residuals 
appear visually correlated to brand identity (first two letters of each variety name). The box represents the 25th and 75th 
percentile of residuals, centered on the median, and whiskers the range of values outside the interquartile range.

Figure 11. A computer-based ginning rate calculator based 
on lint properties and seed cotton variety attributes.

Figure 12. Impact of the ginning week on the ginning rate: 
Predicted bale rate z-score by week given gin, year, and 
bale weights. For context, Julian week 43 is approximately 
the third week of October (VPD = vapor pressure deficit).
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Figure 13. (a) Moisture effects: Distribution of seed cotton moisture for Gins 1 and 8. (b) Heat map illustrating raw data 
relationship between moisture and ginning rate z-scores.

Figure 14. Moisture effects on the ginning rate. (a) Post-modeling partial dependence plot for moisture effect on the ginning 
rate z-score from Gin 8. (b) Spline plot demonstrating relationship between Rd, +b, and moisture (low Rd and high +b as-
sociated with higher moisture seed cotton). Due to data availability, Rd and +b were used as moisture surrogates in Model 
2. Note: Incoming moisture reported is based on a wet basis.
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(Fig. 14a) shows moisture in the range of 5 to 6.5 
% (w.b.), resulting in a stable ginning rate, whereas 
if the incoming moisture is higher than 6.5%, there 
is a drop in the ginning rate. Additionally, with the 
uncertainty of the calibration of the moisture sensors 
at both gins, the absolute moisture values reported 
here should not be assumed to be accurate and further 
research should be done to validate this observation. 
Ultimately, because seed cotton moisture data were 
available only from two gins that appeared poorly 
calibrated to one another, surrogate variables of Rd 
and +b were considered to represent moisture in an 
interaction. Figure 14b demonstrates a generalized 
additive model spline contour plot illustrating the 
relationship between Rd, +b, and moisture at the 
two gins. 

DISCUSSION

The data that is currently captured by most 
ginners is not complete enough to develop models 
for the ginning process to predict gin profitability. 
Instrumenting a commercial gin and collecting the 
right information from a modeling point of view is 
critical to inform the ginners on process efficiencies 
with respect to seed cotton varieties, lint properties, 
especially moisture content, and gin unit operation 
parameters such as motor power and temperature, 
and fuel usage. 

The gins in the U.S. have different moisture 
sensors (microwave, Samuel Jackson, Intelligin, and 
others) to measure seed cotton and lint moistures and 
each sensor has its own calibration methodology, and 
accuracy range. Developing a standardized moisture 
sensor and calibration technique with the desired 
accuracy that the gins in the U.S. can use can help 
get uniform moisture data to understand the impact 
of seed cotton moisture on the ginning rate and can 
help develop a robust generic ginning rate model 
(bph) with respect to incoming seed cotton module 
moisture. 

For example, it has been identified that biobased 
material processing rates and product quality are 
primarily influenced by moisture. The moisture in 
the seed cotton can strongly impact precleaning and 
ginning unit operations in cotton ginning. Gin drying 
systems remove excess moisture only from the lint 
fraction, but not the seed fraction, of seed cotton. 
Seed cotton moisture content is a function of ambient 
relative humidity and is influenced also by ambient 
temperature as well as moisture changes in the seed 

cotton modules during storage. The changes in seed 
cotton moisture can result in color degradation and 
mold if stored for extended periods and higher than 
recommended moisture contents. The color changes 
in seed cotton modules can depend on various fac-
tors, such as the distribution of various components 
of seed cotton; for example, if seed cotton has a 
higher moisture content during harvest, the post-
storage quality will be more impacted negatively 
compared to the dry harvest. It has been hypothesized 
that if seed moisture is high at harvest, but lint and 
trash are low in moisture, moisture in the seed can 
move into lint and trash, causing degradation of lint 
color parameters. 

Ginning studies have indicated that raising 
dryer temperature can influence cleaning efficiency 
(Boykin, 2005) because the amount of trash removed 
by cylinder cleaners and stick machines strongly 
depends on seed cotton moisture content. We also 
believe that incoming seed cotton moisture (which 
includes moisture of seed, trash, and lint) strongly 
influences ginning rate (the key predictor of gin 
profitability). Therefore, we believe that changes in 
cotton seed moisture can impact ginning rate, en-
ergy consumption, lint quality, and gin profitability. 
Based on these factors, there is a need to develop 
a fundamental model or model based on the first 
principles valid across gins for relating seed cotton 
moisture to the ginning rate. Further, this model 
should be expanded to include lint quality and seed 
cotton variety characteristics (LP, Fden, and Btri) to 
improve model robustness and predict the ginning 
rate accurately. 

Based on analysis of commercial gin data, it has 
become apparent that the various original equipment 
manufacturers (OEM) and sensor platforms are not 
aligned in a manner that allows for easily combining 
these various data streams into a continuous dataset 
for data science analysis using machine learning 
or artificial intelligence (AI), methodology. For 
example, one OEM sensor is tied to bales but does 
not take its index update from the bale tag reader. 
Instead, it reads the limit switch on the bale-press 
system, and this can and does frequently get out of 
alignment with actual bale tags. This results in un-
reliable mechanisms to tie data to the cotton bale, 
a critical link as the cotton bale is classed by the 
USDA-AMS classing office, providing fiber prop-
erties that are critical modeling inputs. Aligning the 
sensor data to each bale ID number via a bale tag 
reader and an accurate and aligned timestamp can 
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help to collect more reliable data. Some gins are 
implementing a programming solution for the OEM 
sensor to address this challenge. Another source of 
error occurs when changing from daylight savings 
time, as some OEM clocks will make this change, but 
many microcontroller-based systems will not. Each 
sensor’s time variations, drift, and fluctuations create 
a fractured dataset, making it difficult to align with 
sufficient accuracy for high-quality modeling. As 
such, we would encourage OEMs to use coordinated 
universal time (UTC) to a universal standard that 
all computer systems and programming languages 
support. Further, with modern systems invariably 
tied to the internet, it is possible to go one step and 
use UTC and Network Time Protocol (NTP) to keep 
their system clocks aligned. Even microcontrollers 
now have public domain libraries that make this 
straightforward. The sooner the gin industry can get 
this standardized, the easier it will be to develop a 
robust AI model that the ginning industry can use 
in the U.S.

CONCLUSIONS

Understanding factors such as lint quality at-
tributes, seed cotton variety characteristics, lint 
moisture content, and ginning week's impact on the 
ginning rate is critical for ginners and farmers. Based 
on this study, the following conclusions were drawn: 
(1) the lint quality attributes of cotton processed by 
eight different gins indicated that the upper half mean 
length was in the range of 1.14 to 1.21 in (28.96-
30.73 mm), uniformity index was approximately 
80.9 to 82.4%, color grades were 21 to 41, strength 
was between 29.3 and 31.5 g/tex, and micronaire was 
between 3.85 and 4.47; (2) the seed cotton variety 
analysis indicated that out of 73 varieties in the data 
set for eight gins that had sufficient replication to 
classify, 40 varieties ginned slower than the study 
means, and 11 had faster ginning rates. Therefore, 
variety can have a significant impact on ginning 
rates; (3) the modeling approach, where the data 
were normalized by gin, week of the year, and bale 
weight, and the ginning rate was based on ginning 
week, indicated that the ginning rate is lower in the 
first three weeks and at the end of the ginning season 
compared to the middle of the ginning season (weeks 
4-8); and (4) the parametric models developed for lint 
quality (micronaire, Rd, +b, and trash) and the variety 
(LP, Fden, Btri, and Brand) can predict gin rate (bph) 
to a low level of precision. These observations from 

real-world data can be used to breed cotton varieties 
with the desired attributes and lint quality properties 
to improve the ginning rates.

DISCLAIMER

The findings and conclusions in this publication 
are those of the author(s) and should not be construed 
to represent any official USDA or U.S. government 
determination or policy. Mention of trade names or 
commercial products in this publication is solely for 
the purpose of providing specific information and 
does not imply recommendation or endorsement by 
the USDA. USDA is an equal opportunity provider 
and employer.

ACKNOWLEDGMENTS

The authors wish to acknowledge Cotton Incor-
porated, National Cotton Council of America, and 
USDA-ARS, for supporting this work.

REFERENCES

Acharya, R.N., S.C. Sapkota, P. Bhandari, C. Armijo, and D. 
Whitelock. 2024. Relative cost of ginning cotton using 
saw, conventional roller, and high-speed roller gins in 
the United States. Agribusiness. Early View [online]. 
Available at https://doi.org/10.1002/agr.21946 (verified 
31 May 2025).

Ayele, A., E. Hequet, and B. Kelly. 2017. The impact of 
fiber maturity on estimating the number of cotton 
(Gossypium hirsutum L.) fibers per seed surface area. 
Ind. Crop. Prod. 102:16–22. https://doi.org/10.1016/j.
indcrop.2017.03.004

Beheary, M.G.I., I.A.E. Ibrahim, A.A.A. El-Banna, M.I. El-
Bagoury, and E.I.A. Namaa. 2019. Effect of cotton vari-
ety and seed cotton grade on ginning efficiency and fiber 
properties. J. Adv. Agric. Res. 24(4):476–485. https://doi.
org/10.21608/jalexu.2019.163483

Bourland, F., A. Beach, B. Milano, C. Kennedy, L. Martin, 
and B. Robertson. 2022. Arkansas cotton variety test 
2021. Ark. Agric. Exp. Sta. Res. Ser. 683.

Bourland, F., J. Gann, B. Milano, B. Guest, L. Martin, and J. 
McAlee. 2023. Arkansas cotton variety tests 2023. Ark. 
Agric. Exp. Sta. Res. Ser. 700.

Boykin, J.C. 2005. The effects of dryer temperature and mois-
ture addition on ginning energy and cotton properties. J. 
Cotton Sci. 9(3):155–165. 



112TUMULURU ET AL.: GINNING RATE PREDICTION MODEL FOR COMMERCIAL GINS

Chai, T., and R.R. Draxler. 2014. Root mean square error 
(RMSE) or mean absolute error (MAE)? – Arguments 
against avoiding RMSE in the literature. Geosci. Model 
Dev. 7(3):1247–1250. https://doi.org/10.5194/gmd-7-
1247-2014

Chattopadhyay, R., S.K. Sinha, and M.L. Regar. 2023. 
Introduction: textile manufacturing process. pp. 1-12 In 
R. Chattopadhyay, S.K. Sinha, and M.L. Regar (eds.), 
Textile Calculation: Fibre to Finished Garment. Wood-
head Publishing, Elsevier, Cambridge, U.K.

Cotton Incorporated. 2025. US cotton fiber chart [online]. 
Available at https://www.cottoninc.com/cotton-produc-
tion/quality/us-cotton-fiber-chart/properties-of-the-grow-
ing-regions/ (verified 31 May 2025).

Delhom, C.D., J. Knowlton, V.B. Martin, and C. Blake. 2020. 
The classification cotton. J. Cotton Sci. 24(4):189–196. 
https://doi.org/10.56454/EEEG9440

Funk, P.A., and R.G. Hardin IV. 2017. Energy utilization and 
conservation in cotton gins. J. Cotton Sci. 21(2):156–
166. https://doi.org/10.56454/TBLF7573

Funk, P.A., and R.G. Hardin IV. 2019. A comprehensive 
gin maintenance program. J. Cotton Sci. 23(1):78–89. 
https://doi.org/10.56454/XQUI5895

Groves, F.E., and F.M. Bourland. 2010. Estimating seed sur-
face area of cottonseed. J. Cotton Sci. 14:74–81. 

Hardin IV, R.G., E.M. Barnes, T.D. Valco, V.B. Martin, and 
D.M. Clapp. 2018. Effects of gin machinery on cot-
ton quality. J. Cotton Sci. 22(1):36–46. https://doi.
org/10.56454/AXIJ5624

Hardin IV, R.G., E.M. Barnes, C.D. Delhom, J.D. Wan-
jura, and J.K. Ward. 2022. Internet of things: Cot-
ton harvesting and processing. Comput. Electron. 
Agric. 202:107294. https://doi.org/10.1016/j.com-
pag.2022.107294

Hebert, J.J., G. Mangialardi, and H.H. Ramey Jr. 1986. Neps 
in cotton processing. Text. Res. J. 56(2):108–111.

Iverson, G.L. 2011. Z Scores. pp. 2739–2740 In J.S. Kreutzer, 
J. DeLuca, and B. Caplan (eds.), Encyclopedia of Clini-
cal Neuropsychology. Springer, New York, NY. 

Kim, H.J., C.D. Delhom, Y. Liu, D.C. Jones, and B. Xu. 
2021. Characterizations of a distributional parameter that 
evaluates contents of immature fibers within and among 
cotton samples. Cellulose. 28:9023–9038. 

Kouakou, B.J., K.C. Kobenan, T.V. Ouattara, K.E. N’Goran, 
N.F. Amangoua, M. Kouakou, and N’G.M. Kouame. 
2024. Influence of the impurity level of seed cotton on 
the ginning yield and the technological characteristics 
of the fiber in Côte d’Ivoire. Nat. Resour. 15:273–281. 
https://doi.org/10.4236/nr.2024.1511017

Krifa, M. 2006. Fiber length distribution in cotton processing: 
dominant features and interaction effects. Text. Res. J. 
76:426–435.

Mangialardi Jr., G.J., R.V. Baker, D.W. Van Doorn, B.M. Nor-
man, and R.M. Sutton. 1994. Lint Cleaning. pp. 102–118 
In W.S. Anthony and W.D. Mayfield (eds.), Cotton Gin-
ners Handbook No. 503. USDA Agricultural Research 
Service, Washington, DC.

Mangialardi Jr., G.J., J.D. Bargeron III, and S.T. Rayburn Jr. 
1988. Gin-stand feed rate effects on cotton quality. Trans. 
ASAE. 31(6):1844–1850.

Mangialardi Jr., G.J., W.F. Lalor, D.M. Bassett, and R.J. Mira-
valle. 1987. Influence of growth period on neps in cotton. 
Text. Res. J. 57(7): 421–427.

M.B. McKee Company, Inc. 2024. The impact of weather on 
cotton gin efficiency: strategies for adaptation [online]. 
Available at https://mbmckee.com/2024/07/the-impact-
of-weather-on-cotton-gin-efficiency-strategies-for-adap-
tation/ (verified 31 May 2025).

National Cotton Council of America. 2025. Cotton: From 
Field to Fabric (https://www.cotton.org/pubs/cotton-
counts/fieldtofabric/index.cfm) (verified 6 June 2025). 

Song, G., S. Sumit Mandal, and R.M. Rossi. 2017. 7. Effects 
of various factors on performance of thermal protective 
clothing. pp. 163–182 In Thermal Protective Clothing for 
Firefighters. Woodhead Publishing, Elsevier, Cambridge, 
U.K.

Valco, T.D. No Date. Fiber quality aspects of cotton ginning 
[online]. Available at https://cotton.tamu.edu/wp-content/
uploads/sites/27/legacy-files/Harvest/Ginning%20Qual-
ity%20Aspects.pdf (verified 31 May 2025).

Wanjura, J.D., G.A. Holt, M.G. Pelletier, and E.M. Barnes. 
2020. Advances in managing cotton modules using RFID 
technology–system development update. pp. 588–609 In 
Proc. Beltwide Cotton Conf., Austin, TX. 8-10 Jan. 2020. 
Natl. Cotton Counc. Am. Memphis, TN. 

Wilson, J. 2011. Fibres, yarns and fabrics: fundamental princi-
ples for the textile designer. pp. 3–30 In A. Briggs-Goode 
and K. Townsend (eds.), Textile Design: Principles, 
Advances, and Applications. Woodhead Publishing, Else-
vier, Cambridge, U.K.


