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ABSTRACT

Thermal sensors mounted on unmanned 
aerial vehicles (UAVs) have been used for crop 
evaluation. The assembly of multiple UAV im-
ages into a composite orthomosaic image that 
represents an agricultural field is common. The 
creation of these composite orthomosaic images 
is predicated on the assumption that the variable 
of interest, for example, plant height, does not 
change in the interval between the first image 
and the last image. Canopy temperature is con-
tinuously variable. Thus, in a composite thermal 
image, the temperature differences between any 
two points can include both the temperature 
differences of the two locations, as well as the 
temperature change occurring during the time 
the images were captured. A modeling approach 
was used to investigate these temporal thermal 
artifacts in cotton (Gossypium hirsutum L.). The 
objectives were to analyze the average amount 
of thermal variation that can occur across a 
field, identify times of maximum variation, and 
examine the magnitude of these thermal artifacts 
across the temporal scale of a typical drone mis-
sion. As the time between the first image and last 
image increased from 15 minutes to an hour, the 
temporal thermal distortion increased from 0.7 
to 1.4 °C for a high-water treatment and from 0.9 
to 2.8 °C for a low-water treatment. The simu-
lated flights from 1030 to 1230 h had the largest 
variation and the 1230 to 1430 h and 1430 to 1630 
h flights had less thermal variation. Depending 
on the application, the thermal distortion could 
range from negligible to potentially significant.

Plant canopy temperature (Tc) is often used as 
an indicator of plant water status and metabolic 

optimality (Mahan et al., 2005, 2010; Wanjura and 
Mahan, 1994; Wanjura et al., 1995, 2002, 2006). In 
production settings where Tc is used for irrigation 
control, temperature is most often measured by fixed-
position infrared thermometers (Mahan et al., 2005, 
2010; Wanjura et al., 1995). Recently, thermal cameras 
mounted on unmanned aerial vehicles (UAVs), have 
been used to evaluate larger portions of a field as 
they have a larger field of view (FOV) compared to 
fixed-position sensors (Berni et al., 2009a, 2009b; 
Gonzalez-Dugo et al., 2013; Vadivambal et al., 2011; 
Zarco-Tejada et al., 2012). Further, the use of UAVs 
in agriculture has increased during the past few 
years with various devices deployed in agricultural 
settings to collect crop data on a larger spatial scale 
than is practical with in-field fixed-position sensors 
(Andrade-Sanchez et al., 2014; Pabuayon-Irish et al., 
2019; Pratap et al., 2015). The FOV of UAV-mounted 
sensors can approach production field scales (Chang 
et al., 2020; Jung et al., 2018).

Photogrammetric approaches have proven useful, 
and a variety of cameras and sensors can be used to 
acquire information about crops in fields (Colomina 
and Molina, 2014; Raeva et al., 2018; Weiss et al., 
2020; Zhang and Kovacs, 2012). Photogrammetric 
approaches are often based on assembling a series of 
images collected over a desired ground area into a sin-
gle, orthomosaic image that allows for spatial analysis 
of objects in the image (Chu et al., 2018; Zhang and 
Kovacs, 2012). Typical uses include phenology, crop 
biomass, and harvest index (Gil-Docampo et al., 2020; 
Walter et al., 2018); crop ground cover (Gerbermann et 
al., 1976; Roth and Streit, 2018); crop canopy height 
(Matese et al., 2017; Murakami et al., 2012); and leaf 
color (Bacsa et al., 2019; Dandois et al., 2017).

A key assumption in measuring crop status (e.g., 
height, leaf area) with agronomic photogrammetry is 
that the measured variable does not change during the 
time required for its measurement. This assumption 
is undoubtedly valid for individual images, which are 
acquired in a fraction of a second. Large areas require 
the capture of multiple images over time. These images 
are often combined to produce a composite orthomo-
saic image where the variable is assumed to vary only 
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with location. However, the time required to collect the 
individual images can extend from minutes to hours; 
thus crop variables that change significantly during this 
time period represent a potential source of measurement 
error. Such errors will be present in an orthomosaic 
image that commingles variability in both time and 
location. An example of this is the measurement of Tc, 
which changes continuously over the course of the day 
(Wanjura and Mahan, 1994; Wanjura et al., 2002, 2006).

In-field Tc measurement via fixed-position sensors 
is often carried out in relatively short time intervals 
resulting in near continuous profiles of diurnal plant 
water status over seasonal periods (Mahan et al., 2010; 
Wanjura et al., 2006). However, a major limitation is 
that the spatial resolution is relatively small; the FOV 
for fixed-position sensors is often less than 1 m2. The 
ability to attach a thermal sensor to a UAV provides 
the opportunity to obtain thermal orthomosaic images 
of relatively large collections of plants within a field. 
Conversely, the primary limiting factor of photogram-
metric approaches to the measurement of Tc is that, 
unlike plant height or leaf area, Tc is not constant over a 
daily time period, thus the temporal resolution of aerial 
Tc must be relatively low. Canopy temperature changes 
diurnally in response to changing environmental (e.g., 
air temperature, water availability, and solar radiation) 
and plant physiological conditions (e.g., transpiration) 
and thus the change of Tc over the course of a daily UAV 
mission can result in thermal artifacts when acquired 
with UAV-based thermal sensors.

A typical agricultural UAV mission often in-
volves the collection of multiple images with each 
image having its own location (latitude and longi-
tude) and timestamp. The location associated with an 
image is known and used to create the orthomosaic 
images that generate unintended spatial variation in 
the measured variable. The timestamp of each image, 
although known explicitly, is not used in the creation 
of the orthomosaic image. Thus, the orthomosaic 
image developed using multiple thermal images can 
contain thermal artifacts that result from the diurnal 
pattern of Tc among the individual images collected 
during the measurement period. Therefore, the ob-
jective of this study was to investigate the sources 
and quantify the magnitude of time-related thermal 
artifacts that are possible in orthomosaic thermal 
images obtained from a typical UAV thermal mission.

MATERIALS AND METHODS

Overview of Approach. The goal of this study 
was to evaluate the changes in Tc occurring between 
the first and last thermal images captured during a 

UAV thermal mission in an agricultural setting. The 
experiments were conducted at the U.S. Department 
of Agriculture–Agricultural Research Service, Crop-
ping Systems Research Laboratory in Lubbock, TX 
(33.59° N, 101.89° W and average elevation of 960 
m above sea level).

This study explored the potential for distor-
tion of measured Tc that results from the period 
between measurements that is inherent in at least 
some UAV-thermal methods. The approach was to 
collect a dataset of Tc from a field study and then 
temporally distort the data to introduce variation in 
timestamps to represent the temporal variation that 
would be present in UAV thermal measurements. 
Because temporal distortion is the only variable 
generated in the analysis, the time series Tc data 
required could be collected with any sensor plat-
form as long as the timestamp of the measurement is 
known. We chose to use fixed-infrared-thermometer 
(IRT) sensors in the plots to collect Tc data in part 
because they allowed us to collect Tc data 24 h d-1 
during the study period in an automated manner. 
The method was applied to Tc collected in three 
irrigation treatments.

For the purpose of this study the term sensor im-
age refers to a single image captured by the sensor, 
and the term orthomosaic image refers to a collection 
of single images.

Canopy Temperature Measurements. Cotton 
(Gossypium hirsutum L.) (FiberMax 989, BASF Cor-
poration, Florham Park, NJ) was planted on 7 June 
2020 at a seeding rate of 12 seeds m-1 and 1-m row 
spacing. Seventy-five mm of irrigation was applied 
to the field via sub-surface drip 1 wk prior to planting 
and the field received a total of 66 mm of rain between 
planting and harvest. Three irrigation treatments were 
established: 1) low = no in-season irrigation, rainfall 
only; 2) medium = 109-mm in-season irrigation; 3) 
high = 284-mm in-season irrigation. The total for each 
treatment including pre-plant irrigation, in-season 
rainfall, and in-season irrigation was 150, 275, and 
425 mm for the low, medium, and high irrigation 
treatments, respectively. Measured cotton lint yields 
in the treatments were 719, 1,230, and 2,456 kg ha-1.

A single IRT (GoField™, GoannaAg, Goondi-
windi, QLD, Australia) was installed in each water 
level 5 wk after emergence. Sensors were positioned 
25 cm above the canopy at an angle of approximately 
45°. Sensors were repositioned weekly as canopy 
height increased. Temperature values were compared 
with blackbody targets twice during the season. The 
IRT in each plot monitored the cotton Tc in an area 
of approximately 400 cm2.
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This arrangement of IRTs resulted in three da-
tasets of near-continuous Tc (15-min averages of 
three measurements at 5-min intervals) for a period 
of 60 d. Measured Tc used in our analysis were lim-
ited to a 60-d period from 25 July 2020 (50 d after 
planting [DAP]) to 15 September 2020 (110 DAP). 
The analysis was limited to the daily period when 
a UAV would normally be flown to collect Tc data. 
Canopy temperature data were filtered to include 
only the period of the day when short-wave irradi-
ance was greater than 200 W m-2, as measured with 
a pyranometer at a screen-height of 2 m on a weather 
station 50 m from the experimental field. This filter-
ing resulted in a Tc data set from three sensors with a 
total of 3,864 individual data points on 15-min time 
intervals from 50 to 110 DAP.

Temporal Thermal Distortion During a 60-min 
Simulated UAV-Based Flight Mission. Each Tc 
value in the time series of stationary infrared sensor 
measurements represents a single thermal sensor im-
age acquired with a UAV. This represents a time series 
of images that would be acquired by a stationary UAV 
hovering over a fixed position in a field. The assump-
tion is that the fixed-position sensor would capture the 
change in Tc over time with no spatial Tc variation. 
This “base” time series collected on a 15-min inter-
val was used to represent the Tc from a single UAV 
thermal image at the beginning of a multiple image 
UAV mission used to create an orthomosaic image.

Time series of simulated UAV images, from first 
to last, representing a UAV thermal mission were 
created to emulate the time stamp differences associ-
ated with individual images in UAV missions of 15-, 
30-, 45-, and 60-min flight durations. The duration 
of the flight, 15, 30, 45, or 60 min, indicated the 
difference in the timestamp between the first image 
and last image in a UAV mission. The delayed time 
series are thus referred to as ∆ 15 min, ∆ 30 min, ∆ 
45 min, and ∆ 60 min.

To investigate the suitability of a solar noon 
(1345-1353 h from June to August for the experi-

ment site) flight window for thermal flights, pre- and 
post-solar noon flight windows were included in the 
analysis. Flight windows for analysis were pre-solar 
(1030-1230 h), solar (1230-1430 h), and post-solar 
(1430-1630 h) noon. In subsequent usage the three 
flight windows (2-h duration) will be referred to in 
relation to the starting time: 1030, 1230, and 1430 h.

Calculation of Temporal Thermal Distor-
tion for 15, 30, 45, and 60 min. To simulate the 
change in temperature between images in a UAV 
mission, changes in Tc were calculated. Two cal-
culations were made to create a new time series of 
the changes in Tc over time (∆T). The first calcu-
lation was to account for the change in Tc over a 
particular time period (∆T). The ∆T was calculated 
by subtracting the temperature at time 00:00:00 
from the temperature from the last image in the 
time period. For example, the 1030 h Tc value was 
subtracted from the 1045 h Tc value to give a ∆T 
for 1045 h. This was repeated with the 1030 h Tc 
using the 1045, 1100, and 1115 h temperature points. 
Given that temperature increases in the morning and 
decreases in the afternoon, the second calculation 
was to obtain the absolute value of the change in 
Tc (∆T). The use of the absolute value of the ∆Ts 
created a new dataset of ∆Ts where the change in 
temperature was always positive and thus could be 
compared to each other.

Summary of Averages of ∆Ts for Each Flight 
Window. To determine the average change in 
temperature over 15-, 30-, 45-, and 60-min UAV 
missions, across the 60-d evaluation period, the 
resulting ∆Ts were binned into the following time 
windows: 1030-1230, 1230-1430, and 1430-1630 
h. As an example, for the 1030 h flight window the 
1030, 1045, 1100, 1115, 1130, 1145, 1200, 1215, 
and 1230 h ∆Ts were selected and the averages and 
standard deviations were calculated for 15-, 30-, 45-, 
and 60-min periods across low, medium, and high 
irrigation treatments. The results of the calculations 
are given in Table 1.

Table 1. Matrix of time-related canopy temperature artifacts, expressed as temporal thermal distortion in °C, for the three 
irrigation treatments, flight durations (min), and three flight windows (1030–1230, 1230–1430, and 1430–1630 h) over 60 d

Irrigation Treatment
Low Medium High

Flight Duration (min)
15 30 45 60 15 30 45 60 15 30 45 60

Flight Window Temporal Thermal Distortion (°C)
1030 h 0.9 1.6 2.2 2.8 0.6 1.0 1.4 1.8 0.7 0.9 1.6 1.4
1230 h 0.7 1.0 1.2 1.5 0.6 0.8 0.9 1.3 0.6 0.7 0.8 0.9
1430 h 0.7 1.0 1.3 1.6 0.6 0.8 0.9 1.1 0.5 0.6 0.8 0.9
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Modeling of Temperature Changes Across 
Flight Windows for Irrigation Treatments. We 
modeled the artifact on a 1-min time interval. The 
15-min Tc values were averaged across 56 d and 
the absolute differences were used to interpolate Tc 
estimates on a 1-min interval by linear regression. 
The interpolation resulted in R2 values ranging from 
0.978 to 0.999 that were sufficient for the modeling 
effort (Figure 1).

RESULTS AND DISCUSSION

Research on temporal changes of Tc in relation 
to the duration of drone flights and subsequent com-
position of orthomosaic images is scarce (Kassim et 
al., 2022; Mesas-Carrascosa et al., 2018; Perich et 
al., 2020). Specifically, we were unable to find any 
publications on how to correct thermal images com-
posed from Tc that does not remain constant and is 
measured with drones. Thus, our results are the first 
to document how this change in Tc can result in error.

Seasonal Canopy Temperature Patterns. The 
daily patterns of temperature vary both diurnally and 

seasonally in a broad and predictable manner. Fig. 
2a shows the seasonal average Tc as a function of 
the three irrigation treatments for the period from 
1000-1800 h over the 60-d study period. Canopy 
temperature from the three irrigation treatments 
shows an increase in Tc with declining water status 
(e.g., at 1400 h a temperature of ~28 °C for the high, 

~32 °C for the medium, and ~35 °C for the low ir-
rigation treatments). The three boxes superimposed 
on the figure represent the 1030, 1230, and 1430 h 
flight windows.

The rate of change of Tc, in relation to the 
flight duration, determines the magnitude of the 
time-related Tc artifacts. Figure 2b shows the rate 
of change of Tc as the derivative of the absolute 
values of the diurnal Tc values for the three irriga-
tion treatments. These results demonstrate how Tc 
stability varies over the course of a day and how the 
water status of the crop alters that stability. The rate 
of change of Tc varies continuously over the day in 
each of the irrigation treatments. In general, the Tc 
in the high irrigation treatment was more stable, that 
is, derivative values are lower, than in the medium 

Figure 1. Average changes in temperature on 15-min intervals over the 1-h intervals for the 1030, 1230, and 1430 h simulated 
flight times. The equations were used to interpolate 1-min data used in Figs. 3 and 4
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or the low irrigation treatments. These results (Fig. 
2a and 2b) demonstrate that both time of day and 
crop water status determine the magnitude of the 
thermal artifacts in UAV-based Tc measurements 
that involve multiple images. The influence of 
time of day and crop water status on the temporal 
thermal variation was modeled and analyzed using 
simulations of UAV missions. Crop water status is 
addressed by analysis of Tc data for three irrigation 
treatments. Time of day effects on Tc artifacts were 
assessed in terms of flight windows representing 
flight periods during a day.

Figure 2. (A) Distribution of average canopy temperatures 
between 1000 and 1800 h for the 60-d study period for 
all treatments. (B) Derivative of absolute values for the 
diurnal canopy temperature data for all treatments. The 
grey, orange, and blue lines represent high, medium, and 
low irrigation treatments, respectively. The three boxes 
superimposed on the figures represent the 1030, 1230, and 
1430 h flight windows.

Figure 3. Modeled heat map representing temperature 
distortion (°C) for each minute of a 60-min UAV flight. 
Thermal distortion is shown by minute in relation to flight 
window (1030, 1230, and 1430 h), flight duration (0 to 60 
min), and irrigation treatment (low, medium, and high).

Time-Related Canopy Temperature Arti-
facts. Table 1 shows the time-related Tc artifacts 
in relation to flight window, water status (irriga-
tion treatment), and flight duration for the 60-d 
study interval (50-110 DAP). Canopy temperature 
artifacts refer to thermal distortion as given in 
Table 1. The Tc artifacts vary with flight duration, 
water level, and flight window in an interactive 
manner. For example, in the 1030 h flight window, 
the time-related Tc artifact increases from 0.9 to 
2.8 °C with increasing flight duration. In general, 
time-related Tc artifacts decrease with increasing 
irrigation. For example, 2.8 °C at low irrigation 
to 1.4 °C for a high irrigation with a 60-min flight 

duration. The 1030 h flight window had the highest 
artifact values with 1230 and 1430 h having lower 
Tc artifacts of 0.1 °C in most cases. The time-
related Tc artifacts are lowest for 15-min flight 
durations across all flight windows and irrigation 
treatments (0.5-0.9 °C).

Visualizations of Temporal Thermal Distor-
tion. To visualize the thermal distortion in a more 
continuous manner, the measured Tc at 15-min 
intervals was interpolated to 1-min values (see 
Materials and Methods: Modeling of Temperature 
Changes Across Flight Windows for Irrigation 
Treatments). Figure 3 shows the magnitude of 
thermal distortion (°C) induced by sequential 
1-min intervals between Tc measurements with 
fixed IRTs in cotton over the 60-d study period. 
Thermal distortion is shown for each of the three 
daily flight windows (1030, 1230, and 1430 h) 
across three irrigation treatments. Across all three 
flight windows, the thermal distortion decreases 
with increasing irrigation treatment. The thermal 
distortion is highest in the early flight window and 
is similar in the middle and late flight windows.
Time 
(min.)

10:30 12:30 14:30
Low Medium High Low Medium high Low Medium High

1 0.4 0.3 0.5 0.5 0.4 0.4 0.4 0.4 0.4
2 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.4 0.4
3 0.5 0.4 0.5 0.6 0.5 0.5 0.5 0.4 0.4
4 0.5 0.4 0.5 0.6 0.5 0.5 0.5 0.5 0.4
5 0.6 0.4 0.5 0.6 0.5 0.5 0.5 0.5 0.4
6 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5
7 0.7 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.5
8 0.7 0.5 0.6 0.6 0.5 0.5 0.6 0.5 0.5
9 0.7 0.5 0.6 0.6 0.5 0.5 0.6 0.5 0.5

10 0.8 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.5
11 0.8 0.6 0.6 0.7 0.6 0.6 0.6 0.5 0.5
12 0.9 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.5
13 0.9 0.6 0.7 0.7 0.6 0.6 0.7 0.6 0.5
14 0.9 0.7 0.7 0.7 0.6 0.6 0.7 0.6 0.5
15 1.0 0.7 0.7 0.7 0.6 0.6 0.7 0.6 0.5
16 1.0 0.7 0.7 0.8 0.6 0.6 0.7 0.6 0.5
17 1.1 0.7 0.7 0.8 0.7 0.6 0.7 0.6 0.6
18 1.1 0.8 0.7 0.8 0.7 0.6 0.8 0.6 0.6
19 1.1 0.8 0.8 0.8 0.7 0.7 0.8 0.6 0.6
20 1.2 0.8 0.8 0.8 0.7 0.7 0.8 0.6 0.6
21 1.2 0.8 0.8 0.8 0.7 0.7 0.8 0.7 0.6
22 1.3 0.8 0.8 0.9 0.7 0.7 0.8 0.7 0.6
23 1.3 0.9 0.8 0.9 0.7 0.7 0.8 0.7 0.6
24 1.3 0.9 0.8 0.9 0.8 0.7 0.9 0.7 0.6
25 1.4 0.9 0.8 0.9 0.8 0.7 0.9 0.7 0.6
26 1.4 0.9 0.9 0.9 0.8 0.7 0.9 0.7 0.6
27 1.5 1.0 0.9 0.9 0.8 0.7 0.9 0.7 0.6
28 1.5 1.0 0.9 1.0 0.8 0.8 0.9 0.7 0.6
29 1.5 1.0 0.9 1.0 0.8 0.8 1.0 0.8 0.7
30 1.6 1.0 0.9 1.0 0.8 0.8 1.0 0.8 0.7
31 1.6 1.1 0.9 1.0 0.9 0.8 1.0 0.8 0.7
32 1.7 1.1 1.0 1.0 0.9 0.8 1.0 0.8 0.7
33 1.7 1.1 1.0 1.0 0.9 0.8 1.0 0.8 0.7
34 1.7 1.1 1.0 1.1 0.9 0.8 1.1 0.8 0.7
35 1.8 1.2 1.0 1.1 0.9 0.8 1.1 0.8 0.7
36 1.8 1.2 1.0 1.1 0.9 0.8 1.1 0.8 0.7
37 1.9 1.2 1.0 1.1 0.9 0.9 1.1 0.8 0.7
38 1.9 1.2 1.0 1.1 1.0 0.9 1.1 0.9 0.7
39 1.9 1.3 1.1 1.1 1.0 0.9 1.2 0.9 0.7
40 2.0 1.3 1.1 1.1 1.0 0.9 1.2 0.9 0.8
41 2.0 1.3 1.1 1.2 1.0 0.9 1.2 0.9 0.8
42 2.1 1.3 1.1 1.2 1.0 0.9 1.2 0.9 0.8
43 2.1 1.4 1.1 1.2 1.0 0.9 1.2 0.9 0.8
44 2.1 1.4 1.1 1.2 1.0 0.9 1.2 0.9 0.8
45 2.2 1.4 1.2 1.2 1.1 1.0 1.3 0.9 0.8
46 2.2 1.4 1.2 1.2 1.1 1.0 1.3 1.0 0.8
47 2.3 1.5 1.2 1.3 1.1 1.0 1.3 1.0 0.8
48 2.3 1.5 1.2 1.3 1.1 1.0 1.3 1.0 0.8
49 2.3 1.5 1.2 1.3 1.1 1.0 1.3 1.0 0.8
50 2.4 1.5 1.2 1.3 1.1 1.0 1.4 1.0 0.8
51 2.4 1.6 1.3 1.3 1.1 1.0 1.4 1.0 0.9
52 2.5 1.6 1.3 1.3 1.2 1.0 1.4 1.0 0.9
53 2.5 1.6 1.3 1.4 1.2 1.0 1.4 1.0 0.9
54 2.5 1.6 1.3 1.4 1.2 1.1 1.4 1.0 0.9
55 2.6 1.7 1.3 1.4 1.2 1.1 1.5 1.1 0.9
56 2.6 1.7 1.3 1.4 1.2 1.1 1.5 1.1 0.9
57 2.7 1.7 1.3 1.4 1.2 1.1 1.5 1.1 0.9
58 2.7 1.7 1.4 1.4 1.2 1.1 1.5 1.1 0.9
59 2.7 1.7 1.4 1.5 1.3 1.1 1.5 1.1 0.9
60 2.8 1.8 1.4 1.5 1.3 1.1 1.6 1.1 0.9
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The temporal thermal distortion shows a complex 
interaction between the flight window and water status of 
the crop, which comprise two important aspects of UAV 
thermal missions. As previously noted, a key assumption 
in agronomic photogrammetry is that the variable of 
interest does not change during the period of measure-
ment. Under this constraint in an orthomosaic image 
the spatial relationships remain intact; however, in the 
instance of Tc measurements, the temporal relations are 
not necessarily related to the spatial component. Figure 
4 is the thermal distortion from Fig. 3 arranged into a 
simulated orthomosaic heat map that would be produced 
during a 60-min UAV thermal mission according to a 
boustrophedonic (lawnmower) flight pattern.

A “lawnmower” flight pattern is shown with ar-
rows indicating the flight path of the UAV (sequence 
of images over time). From one image to the next, Tc 
changes and that change is shown as the Tc difference 
from one image to the next. If the Tc did not change 
over the duration of the flight, all the Tc values would 
be equal, and the panel would be a single color. The 
time required to collect all the images determines 
the Tc differences among the collection of cells and 
the pattern of the flight determines the distribution 
of the Tc distortion across the composite image. 
In the lawnmower pattern, cells (images) that are 
spatially adjacent might not be temporally adjacent 
in the composite representation. For example, im-

Figure 4. The time-related canopy temperature artifacts in a simulated orthomosaic heat map showing the data from Fig. 
2 in the format of a heat map that would be produced during a UAV thermal mission according to a boustrophedonic 
(lawnmower) pattern. Each block represents the temperature distortion (°C) for each minute of a 60-min UAV flight. 
Thermal distortion is shown by minute in relation to flight window (1030, 1230, and 1430 h), flight duration (0 to 60 min), 
and irrigation treatment (low, medium, and high).

0.4 1.6 1.6 2.8 0.3 1.0 1.1 1.8 0.5 0.9 0.9 1.4
0.5 1.5 1.7 2.7 0.4 1.0 1.1 1.7 0.5 0.9 1.0 1.4
0.5 1.5 1.7 2.7 0.4 1.0 1.1 1.7 0.5 0.9 1.0 1.4
0.5 1.5 1.7 2.7 0.4 1.0 1.1 1.7 0.5 0.9 1.0 1.3
0.6 1.4 1.8 2.6 0.4 0.9 1.2 1.7 0.5 0.9 1.0 1.3
0.6 1.4 1.8 2.6 0.5 0.9 1.2 1.7 0.5 0.8 1.0 1.3
0.7 1.3 1.9 2.5 0.5 0.9 1.2 1.6 0.6 0.8 1.0 1.3
0.7 1.3 1.9 2.5 0.5 0.9 1.2 1.6 0.6 0.8 1.0 1.3
0.7 1.3 1.9 2.5 0.5 0.8 1.3 1.6 0.6 0.8 1.1 1.3
0.8 1.2 2.0 2.4 0.6 0.8 1.3 1.6 0.6 0.8 1.1 1.3
0.8 1.2 2.0 2.4 0.6 0.8 1.3 1.5 0.6 0.8 1.1 1.2
0.9 1.1 2.1 2.3 0.6 0.8 1.3 1.5 0.6 0.8 1.1 1.2
0.9 1.1 2.1 2.3 0.6 0.8 1.4 1.5 0.7 0.7 1.1 1.2
0.9 1.1 2.1 2.3 0.7 0.7 1.4 1.5 0.7 0.7 1.1 1.2
1.0 1.0 2.2 2.2 0.7 0.7 1.4 1.4 0.7 0.7 1.2 1.2

0.5 1.0 1.0 1.5 0.4 0.8 0.9 1.3 0.4 0.8 0.8 1.1
0.5 1.0 1.0 1.5 0.4 0.8 0.9 1.3 0.5 0.8 0.8 1.1
0.6 1.0 1.0 1.4 0.5 0.8 0.9 1.2 0.5 0.8 0.8 1.1
0.6 0.9 1.1 1.4 0.5 0.8 0.9 1.2 0.5 0.7 0.8 1.1
0.6 0.9 1.1 1.4 0.5 0.8 0.9 1.2 0.5 0.7 0.8 1.1
0.6 0.9 1.1 1.4 0.5 0.8 0.9 1.2 0.5 0.7 0.8 1.1
0.6 0.9 1.1 1.4 0.5 0.8 0.9 1.2 0.5 0.7 0.9 1.1
0.6 0.9 1.1 1.4 0.5 0.7 1.0 1.2 0.5 0.7 0.9 1.0
0.6 0.9 1.1 1.3 0.5 0.7 1.0 1.2 0.5 0.7 0.9 1.0
0.7 0.8 1.1 1.3 0.6 0.7 1.0 1.1 0.6 0.7 0.9 1.0
0.7 0.8 1.2 1.3 0.6 0.7 1.0 1.1 0.6 0.7 0.9 1.0
0.7 0.8 1.2 1.3 0.6 0.7 1.0 1.1 0.6 0.7 0.9 1.0
0.7 0.8 1.2 1.3 0.6 0.7 1.0 1.1 0.6 0.6 0.9 1.0
0.7 0.8 1.2 1.3 0.6 0.7 1.0 1.1 0.6 0.6 0.9 1.0
0.7 0.8 1.2 1.2 0.6 0.6 1.1 1.1 0.6 0.6 1.0 1.0

0.4 1.0 1.0 1.6 0.4 0.8 0.8 1.1 0.4 0.7 0.7 0.9
0.4 1.0 1.0 1.5 0.4 0.8 0.8 1.1 0.4 0.7 0.7 0.9
0.5 0.9 1.0 1.5 0.4 0.7 0.8 1.1 0.4 0.6 0.7 0.9
0.5 0.9 1.1 1.5 0.5 0.7 0.8 1.1 0.4 0.6 0.7 0.9
0.5 0.9 1.1 1.5 0.5 0.7 0.8 1.1 0.4 0.6 0.7 0.9
0.5 0.9 1.1 1.5 0.5 0.7 0.8 1.1 0.5 0.6 0.7 0.9
0.5 0.9 1.1 1.4 0.5 0.7 0.8 1.0 0.5 0.6 0.7 0.9
0.6 0.8 1.1 1.4 0.5 0.7 0.9 1.0 0.5 0.6 0.7 0.9
0.6 0.8 1.2 1.4 0.5 0.7 0.9 1.0 0.5 0.6 0.7 0.9
0.6 0.8 1.2 1.4 0.5 0.7 0.9 1.0 0.5 0.6 0.8 0.9
0.6 0.8 1.2 1.4 0.5 0.6 0.9 1.0 0.5 0.6 0.8 0.8
0.6 0.8 1.2 1.3 0.6 0.6 0.9 1.0 0.5 0.6 0.8 0.8
0.7 0.8 1.2 1.3 0.6 0.6 0.9 1.0 0.5 0.6 0.8 0.8
0.7 0.7 1.2 1.3 0.6 0.6 0.9 1.0 0.5 0.6 0.8 0.8
0.7 0.7 1.3 1.3 0.6 0.6 0.9 1.0 0.5 0.5 0.8 0.8

14:30
Low

14:30
Medium

14:30
High

12:30
Low

12:30
Medium

12:30
High

10:30 10:30 10:30
Low Medium High

00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60 00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60 00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60

00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60 00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60 00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60

00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60 00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60 00:01

00:15

00:30

00:16

00:31

00:45 00:46

00:60



146JOURNAL OF COTTON SCIENCE, Volume 27, Issue 4, 2023

age #15 and image #16 are spatially adjacent, their 
timestamps differ by only 1 min. and the thermal 
distortion between the pair is 0 °C; whereas image 
#1 and image #30 are spatially adjacent, the image 
timestamps differ by 30 min and the thermal distor-
tion between the pair differs by 1.2 °C. Thus, in the 
composite image, thermal distortion does not map 
to spatial position.

Broadly, the 1030 h flight window has the great-
est thermal distortion across all irrigation levels 
compared to the 1230 and 1430 h flight windows. 
Across all flight windows, increasing irrigation lev-
els stabilizes the Tc across a 60-min flight duration. 
Knowledge of the spatial thermal distortion in the 
composite image might prove helpful in comparisons 
of Tc within a composite thermal image.

SUMMARY

The magnitude of the time-related Tc artifacts 
is a function of the change in Tc over the measure-
ment period (flight duration). The stability of Tc is 
a result of several interacting variables, mainly time 
of day and crop water status for arid regions but can 
also be affected by changes in solar radiation due 
to cloud cover and intermittent clouds in temperate 
and tropical regions (Mahan et al., 2010; Wanjura 
et al., 2006). Although there will be time-related Tc 
artifacts present in crop thermal images from UAV 
platforms under most flight conditions, the magni-
tude of the effect is difficult to estimate or measure 
(Chang et al., 2020; Mesas-Carrascosa et al., 2018). 
The magnitude of time-related Tc artifacts within a 
composited thermal orthomosaic image should be 
considered with respect to the thermal resolution 
required for the analysis. The detection of a 0.5 °C 
difference in an image would probably be more af-
fected by flight-induced variation than the detection 
of a 5 °C difference (Mesas-Carrascosa et al., 2018). 
The measured time-related Tc artifacts vary from 
negligible (< 0.5 °C) to potentially significant (> 2.5 

°C) (Wanjura et al., 2002, 2006).
Given the sources of thermal variability, the miti-

gation of time-related Tc artifacts in UAV thermal 
missions can be accomplished to some extent. The 
specifics will vary regionally, and these results are 
limited in some extent to the environment. Within 
the thermal environment of this study several adjust-
ments would help reduce time-related Tc artifacts: 
1) reduction of flight duration (less thermal change 
between first and last image in a collection); 2) flying 

after solar noon; and 3) avoiding and/or being aware 
of plant water deficits. The authors propose that this 
method can be used to extract the magnitude of time-
related Tc artifacts and potential mitigation in other 
climatic regions. Given an orthomosaic heat-map 
image as a desired product, care should be taken to 
assure that these artifacts are considered.

The sources of time-related Tc artifacts analyzed 
in this study include flight duration, daily flight 
windows, and crop water status. The result of this 
analysis provided estimates of the magnitude of the 
time-related Tc artifacts that could be expected from 
the crop Tc measurements collected with a thermal 
sensor mounted on a UAV. The time-related Tc 
artifacts that are modeled in this study represent a 
physical reality. The temperature artifacts that might 
be experienced during any particular day could 
be highly variable given that day’s temperature 
(Wanjura and Mahan, 1994; Wanjura et al., 2002, 
2006). In humid regions, Tc can change rapidly due 
to changes in solar radiation caused by cloud cover. 
Intermittent cloud cover during a thermal UAV flight 
would only cause further exaggeration of the thermal 
artifact. For a given crop target, imaged in a speci-
fied flight window, with a specified flight duration, 
the time-related Tc artifacts within an orthomosaic 
image could be worse than predicted by this analysis 
but likely not better.

Based on this the analysis several points could 
be useful for improving the utility of UAV-based 
thermal imaging in crops.
1)  Thermal UAV missions should be kept as short 

as possible. This will limit the area that can be 
imaged but perhaps improve image quality.

2)  A post-solar noon flight window will generally 
reduce time-related Tc artifacts.

3)  Variations in crop water status were the single 
largest source of time-related Tc artifacts and 
should be known if possible.

4)  An orthomosaic thermal image can have inher-
ent time-related Tc artifacts of the displayed 
temperature.

DISCLAIMER

Mention of trade names or commercial prod-
ucts in this publication is solely for the purpose of 
providing specific information and does not imply 
recommendation or endorsement by the U.S. Depart-
ment of Agriculture. USDA is an equal opportunity 
provider and employer.
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