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ABSTRACT

The widespread adoption of smartphones and 
unmanned aerial vehicles (UAVs) has the potential 
to ease collection of in-season cotton nitrogen (N) 
status. Subsequently, in-season cotton N status could 
be used to drive management decisions. The utility 
and limitations of these new platforms must be as-
sessed and compared to current in-season measure-
ments. The objectives of this study were to evaluate 
the ability of early- and late-season ground-based 
measurements to provide insight into cotton N status 
and to evaluate the ability of aerial-based measure-
ments to correlate to ground-based measurements. 
Although measurements failed to correlate strongly 
across seasons to leaf N, moderate relationships 
(R2 = 0.453) between chlorophyll meter readings 
and the dark green color index (DGCI) measured 
from a smartphone were observed in late-season 
measurements. Poor relationships were found be-
tween early-season UAV-acquired vegetation indices 
(VIs) and leaf N. Analysis of a subset of the data 
indicated relationships between chlorophyll meter 
readings and chlorophyll concentrations predicted 
by DGCI were strong for ground-based measure-
ments and moderate for UAV-based measurements. 
(R2 = 0.711 and R2 = 0.511, respectively). Although 
additional site-years including aerial-based data are 
needed, this study demonstrates the usefulness of 
UAV-based reflectance data and VIs in predicting 
in-season cotton N status. Furthermore, it appears 
handheld DGCI measurements have the potential to 
replace chlorophyll meter readings for late in-season 
measurements of cotton N status.

Nitrogen (N) fertilization is a key but critical 
component of sustainable cotton (Gossypium 

hirsutum L.) production. Deficiencies of N in cotton 
can lead to yield reductions and can harm overall 
productivity and profitability (Gerik et al., 1998; Read 
et al., 2006). Excessive N applications can lead to 
unwanted vegetative growth, increasing the need for 
plant growth regulator and insecticide applications, 
as well as increasing the difficulty of defoliation prior 
to harvest (Boman and Westerman, 1994; Harris 
and Smith, 1980). Unused N has an economic cost, 
as it provides no return on the input cost, and an 
environmental cost, as it has the potential to move 
offsite where it can contribute to environmental N 
pollution such as eutrophication (Carpenter et al., 
1998). Nitrogen management in cotton has been heavily 
researched since the Haber-Bosch process was invented 
in the early 20th century. Current land grant university 
recommendations throughout the U.S. include optimal 
N rates as well as application timing, fertilizer source, 
and placement (Duncan and Raper, 2018; Lemon et 
al., 2009). Mid-season assessment of crop N status is 
an important method of determining whether the crop 
requirement has been met and the correct N rate to 
be applied when the application can affect final yield 
(Gerik et al., 1998; Raper et al., 2013). Petiole or leaf 
analysis methods are typically used to determine crop 
N status, but these methods can be laborious, costly, and 
challenging to use in evaluation of spatial variability 
due to limits of scale (Buscaglia and Varco, 2002). 
One popular methods of crop N assessment is the soil 
plant analysis development (SPAD) meter (SPAD 502, 
Minolta Co., Osaka, Japan), used as an indicator of 
chlorophyll concentration (Read et al., 2003) which 
decreases with N deficiency (Gerik et al., 1998). This 
method gives rapid results but is an in-situ method that 
is time-consuming and expensive.

Remote sensing of in-season crop N status is 
a promising method that can be performed quickly 
and relatively inexpensively. For decades, research 
has been conducted using handheld, tractor, airplane, 
and satellite mounted sensors (Barnes et al., 2000; 
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Gitelson et al., 1996; Raper et al., 2013; Rouse et al., 
1973). More recently, there has been increased inter-
est in the use of unmanned aerial vehicles (UAVs) to 
collect spectral information to determine crop N status 
(Ballester et al., 2017). Fertilizer application algo-
rithms have been developed based on commercially 
available ground-based sensors (Arnall et al., 2008; 
Khalilian et al., 2017), but there is little information 
regarding the suitability of these algorithms to UAV-
collected information. Tremblay et al. (2009) noted 
the non-transferability of application algorithms from 
one ground-based sensor to another, which could be 
extended intuitively to sensors on different platforms.

Many commercially available ground-based sen-
sors use the normalized difference vegetation index 
(NDVI) as an indicator of crop N status. Although 
NDVI correlates strongly to N status in corn (Zea mays 
L.) and wheat (Triticum aestivum L.) (Ma et al., 1996; 
Stone et al., 1996; Zubillaga and Urricariet, 2005), stud-
ies examining the relationship between cotton N status 
and NDVI have revealed much weaker correlations 
(Bronson et al., 2005; Raper et al., 2013). In contrast, 
stronger relationships between cotton N status and 
red-edge-based vegetation indices have been reported 
(VIs) (Raper and Varco, 2015; Read et al., 2002). More 
recently, Ballester et al. (2017) found that the simpli-
fied canopy chlorophyll content index (SCCCI), also 
based on reflectance in the red-edge region, was the 
most effective VI evaluated for predicting cotton N 
status when using a UAV. The dark green color index 
(DGCI) was developed for use in turfgrass (Karcher 
and Richardson, 2003) then extended to applications 
in corn (Rorie et al., 2011a, b) and cotton (Raper et 
al., 2012). This index uses hue, saturation, and bright-
ness values from a digital image of a crop leaf against 
a color standard. Rorie et al. (2011a, b) found strong 
relationships between SPAD, DGCI, and corn leaf N. 
A few studies have indicated that DGCI also correlates 
well to cotton N status and chlorophyll concentrations 
(Raper et al., 2012; Wang et al., 2012). These studies 
each concluded that DGCI has the potential to provide 
an accurate assessment of N status in the crops evalu-
ated by use of an inexpensive digital camera.

These findings necessitate further investigation 
into the usefulness of and similarities between reflec-
tance data and VIs developed from sensors mounted 
on ground and UAV platforms in estimating cotton N 
status. The objectives of this study were to evaluate 
the ability of early- and late-season ground-based 
measurements to provide insight into cotton N status 
and to evaluate the ability of aerial-based measure-
ments to correlate to ground-based measurements.

MATERIALS AND METHODS

Trials evaluating cotton response to fertilizer N 
rate and fertilizer N timing were established during 
the 2016, 2017, and 2018 growing seasons at the Uni-
versity of Tennessee Research and Education Centers 
located in Milan (35°56’04.7”N, 88°43’40.2”W), 
Jackson (35°37’23.3”N, 88°50’47.5”W), and Grand 
Junction (35°06’53.1”N, 89°12’56.6”W), TN (Fig. 
1). Soil types at Grand Junction, Jackson, and Milan 
locations are Loring silt loam, Memphis silt loam, and 
Collins silt loam, respectively. The cotton cultivar 
DeltaPine 1522 B2XF (Bayer CropScience, St. Louis, 
MO) was planted in every site-year.

Table 1. Treatments consisted of varied rates and timings 
of N; application A was made after emergence but prior 
to early square.  Application B was made during the first 
week of flower

Treatment
#

Application A
kg ha-1

Application B
kg ha-1

1 0 0
2 45 0
3 90 0
4 135 0
5 22.5 22.5
6 45 45
7 67.5 67.5
8 0 90

Figure 1. Cotton nitrogen (N) trial orthomosaics from (left to 
right): Milan 2016, Jackson 2017, and Ames 2017.

Treatments consisted of four total N rates applied 
at different timings (Table 1). All other agronomic man-
agement decisions were made in accordance with Univ. 
of Tennessee Extension Recommendations (Raper, 
2016). All N was broadcast as ammonium nitrate (34-
0-0) with a handheld fertilizer spreader. Application A 
was applied after cotton had emerged but prior to reach-
ing the early square stage. Application B was applied 
during the first week of flower. Treatment application 
timings were selected based on management practices 
common to the region. Each treatment was replicated 
four times and arranged in a randomized complete 
block design. Each plot was six rows wide and 9 m in 
length. Row spacing at the Milan location was 1.01 m. 
Row spacing at Grand Junction and Jackson was 0.965 
m. Planting, harvest, N application, and data collection 
dates are included in Table 2.
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Ground-based Measurements. Plant measure-
ments were collected at the first week of flower 
because this timing is generally assumed to be the 
latest timing in which an application of N could be 
applied and still impact seed cotton yield (Gerik et al., 
1998; Raper, 2016). Furthermore, previous research 
has indicated the low N demand of the plant during 
the early growing season often prevents an accurate 
determination of N status before first flower (Gerik 
et al., 1998; Read et al., 2003). Additionally, to de-
termine the N response at dates when N demand of 
each plant was substantial, a second ground-based 
data collection was conducted in 2016 at Grand Junc-
tion and Milan and in 2018 at the Jackson location.

Plant height, NDVI collected by a GreenSeeker 
handheld unit (Trimble Inc., Sunnyvale, CA), SPAD 
meter readings collected by a handheld SPAD 502 plus 
chlorophyll meter, DGCI readings from the FieldScout 
GreenIndex+ Nitrogen mobile application (Spectrum 
Technologies Inc., Aurora, IL), and leaf N content were 
collected at each data collection date. Plant height was 
manually collected from six plants within each plot. 
GreenSeeker NDVI was measured by walking the unit 
at 5 km hr-1 0.75 m above row three and then row four 
of each plot. Five fully expanded, mainstem leaves 
located five nodes below the apical meristem were then 
removed from each plot. Three SPAD measurements 
were immediately collected from each leaf and the leaf 
was then placed on the FieldScout GreenIndex+ color 
board. An Apple iPhone 6 (Apple Inc, Cupertino, CA) 
running the FieldScout Application (Spectrum Tech-
nologies Inc., Aurora, IL) was then used to collect an 
image of the leaf and determine DGCI. At every data 
collection, collected mainstem leaves were placed on 
ice for transport until they could be placed within driers. 
After drying, samples were ground to pass a 20-mesh 
sieve and leaf N concentration was determined by dry 
combustion (ELEMENTAR Rapid N, ELEMENTAR 
Analysensysteme, Hanau, Germany).

Plots were harvested with either an automated 
weigh system outfitted on a Case 1822 or 2155 picker 
(CNH Industrial America, LLC, Racine, WI) or with 
a plot bagging system outfitted on a John Deere 
9900 picker (Deere & Company, Moline, IL). Seed 
cotton yield was collected from the center two rows 
of each six-row plot.

Aerial Measurements. Aerial measurements 
were taken at a subset of the site-years. At early-
season collection dates in 2016 in Milan (7 July) 
and in 2017 in Grand Junction (11 July) and Jackson 
(17 July), a custom quadcopter UAV equipped with 
a MicaSense RedEdge (MicaSense Inc., Seattle, 
WA) camera, which collects spectral reflectance 
data one image per second in five narrow bands 
(Table 3), was flown over the trial. Autonomous 
flight plans were programmed in Mission Plan-
ner software (ArduPilot, Indianapolis, IN), with 
80% overlap and sidelap at 120 m altitude. In 
accordance with MicaSense protocol, images of 
a manufacturer-provided calibration panel were 
collected by the camera immediately prior to and 
after each flight. Calibration images, along with 
individual flight images, were uploaded into the 
cloud-based MicaSense Atlas (MicaSense Inc. 
Seattle, WA) service to create orthomosaics of the 
fields. Each resulting orthomosaic was downloaded 
in 16-bit GeoTIFF file format.

Table 2. Planting, harvest, application, and data collection dates for each site-year

Location Year Application A Application B Data Collection 1 Data Collection 2 Planting Harvest

Grand  
Junction

2016 25-May 8-Jul 8-Jul 9-Aug 6-May 17-Oct

2017 16-Jun 11-Jul 11-Jul n/a 2-May 29-Sep

2018 15-Jun 11-Jul 11-Jul n/a 4-May 8-Nov

Milan 2016 6-Jun 7-Jul 7-Jul 8-Aug 24-May 28-Oct

Jackson
2017 16-Jun 20-Jul 20-Jul n/a 16-May 26-Sep

2018 15-Jun 10-Jul 10-Jul 27-Aug 3-May 19-Oct

Table 3. MicaSense RedEdge camera specifications for band 
name, center wavelength (nm), and bandwidth (nm)

Band Center Wavelength  
(nm)

Bandwidth (nm)
at full width at half  
maximum (FWHM)

Blue 475 20
Green 560 20
Red 668 10

Red Edge 717 10
Near Infrared 840 40
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the association between in-season measurements and 
plant parameters. Yield data were subjected to analysis 
of variance in SAS (v9.5, SAS Institute, Cary, NC) to test 
for significance and means were separated using Fisher’s 
protected least significant difference test at p ≤ 0.05.

RESULTS

Ground-based Measurements. Observed cot-
ton response to fertilizer N rate was weak at the 
early-season sampling dates (Fig. 2). Coefficients 
of determination for leaf N response to fertilizer N 
rate were greater than 0.9 at early sampling dates in 
half of the site-years, but less than 0.3 in half of the 
site-years. Relationships of NDVI, DGCI, SPAD, 
and height to N rate were poor with coefficients of 
determination never exceeding 0.4 (Fig. 2).

Image Analysis. Image analysis of the orthomosa-
ics was completed in ArcMap 10.5 (ESRI, Redlands, 
CA). Soil and shadowed areas were removed from the 
imagery using an unsupervised image classification 
technique that classified each pixel into vegetation, soil, 
or shadow. Pixels classified as soil or shadow were 
removed to minimize the influence of non-vegetative 
or non-illuminated areas on data intended to make 
crop management decisions. Plots were delineated in 
the images and the average and standard deviation of 
each in-season and yield measurement were assigned 
to their respective plots for further analysis.

The VIs in Table 4 were calculated using the 
plot-scale reflectance data collected by the UAV. 
Each VI was selected to capture commonly reported 
indices and indices that previously have been shown 
to correlate strongly to cotton N status (Ballester et 
al., 2017; Raper and Varco, 2015; Wang et al., 2012).

To evaluate correlation of UAV-calculated DGCI 
to cotton N status, hue, saturation, and brightness, 
values were calculated for each plot from UAV RGB 
reflectance using the equations provided by Karcher 
and Richardson (2003) and Rorie et al. (2011b). The 
DGCI was then calculated using the equation de-
scribed in Table 4. A color board was fabricated using 
a piece of plywood with 1-m diameter disks painted 
to color-match the Munsell standards used by Karcher 
and Richardson (2003). The color board was placed 
in the alleys of the plot studies where it could be seen 
by the UAV-mounted sensor. The DGCI value of each 
color board was determined during each UAV flight 
and used in the calibration method described by Rorie 
et al. (2011a) to correct trial DGCI values.

Statistical analyses were conducted using JMP v14 
(SAS Institute, Cary, NC). Seed cotton yield was con-
sidered to be a function of site-year, replication nested 
within site-year, fertilizer N rate, and fertilizer N timing. 
Pearson correlation coefficients were used to evaluate 

Figure 2. Early-season (prior to 15 July) response of height, 
soil plant analysis meter (SPAD), dark green color index 
(DGCI), normalized difference vegetation index (NDVI) and 
leaf nitrogen (N) to applied fertilizer N rate averaged across 
site-year. Because measurements occurred prior to the sec-
ond application timing, only data from the plots receiving 
all N fertilizer at the early application timing were included.

Table 4. Selected vegetation indices (VIs) and corresponding references calculated within this study

Vegetation Index Equation Reference

Normalized Difference  
Vegetation Index (NDVI)

R R
R R

NIR R

NIR R,

840 668

840 668

Rouse et al.,  
1973

Green Normalized  
Difference Vegetation  

Index (GNDVI)

R R
R R

NIR G

NIR G

840 560

840 560

Gitelson et al.,  
1996

Normalized Difference  
Red Edge (NDRE)

R R
R  

NIR RE

NIR RE ,

840 717

840 717

Gitelson and Merzlyak, 
1994

Simplified Canopy  
Chlorophyll Content  

Index (SCCCI)

NDRE
NDVI

Barnes et al., 2000; 
Raper and Varco, 2015

Dark Green Color Index  
(DGCI)

Hue Saturation Brightness60
60

1 1

3

Karcher and 
Richardson, 2003
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By the late-season sampling dates, cotton re-
sponse to fertilizer N rate was stronger within some 
site-years (Fig. 3). A moderate response (R2 > 0.4) 
was observed for all measured response parameters in 
the late sampling date from the 2016 Milan (MREC) 
site-year. SPAD, NDVI, and leaf N were the only 
parameters whose relationship with fertilizer N ex-
ceeded a coefficient of determination of 0.3 at the 
2017 Jackson (WTREC) site-year, and only height 
and NDVI exceeded a coefficient of determination 
of 0.3 at the 2018 Jackson (WTREC) site-year. It is 
unclear why strong leaf N relationships with fertilizer 
N rate changed from early- to late-season sampling 
dates in the 2018 Jackson (WTREC) site-year, but it 
is suspected a rainfall event might have generated a 
large flush of vegetative growth immediately prior to 
sampling. The low leaf N observed typically would be 
associated with periods of rapid growth late in the year 
while boll development is increasing exponentially.

easier to measure later in the season as N demand 
is much higher as bolls are developing. However, 
this is generally considered to be too late to make 
an impact on yield through fertilizer N application.

Figure 3. Late-season (after 15 July) response of height, 
soil plant analysis meter (SPAD), dark green color index 
(DGCI), normalized difference vegetation index (NDVI) 
and leaf nitrogen (N) to applied fertilizer N rate averaged 
across site-year. Plotted data consists of plots receiving all 
N fertilizer at the pre-squaring application timing.

The relationships of leaf N with SPAD, DGCI, 
and NDVI from early- and late-season measurements 
are shown in Fig. 4. Coefficients of determination 
(R2) of leaf N with SPAD, DGCI, and NDVI were all 
weak (R2 ≤ 0.13) during early-season measurements, 
by the late-season measurement timings moderate 
to strong relationships (R2 > 0.4) were observed be-
tween leaf N and SPAD as well as leaf N and DGCI. 
Both relationships appeared to be quadratic, with 
R2 values between leaf N and SPAD, and leaf N and 
DGCI equaling 0.619 and 0.453, respectively. Nitro-
gen deficiency symptoms tend to be more visible and 

Figure 4. Relationships of leaf N with NDVI, DGCI, and 
SPAD graphed by sampling time, where the break between 
early and late the second week of flower (typically 15 July).

Across all sampling dates, a moderate relation-
ship (R2 = 0.327) was observed between SPAD and 
DGCI (Fig. 5). In contrast, no relationship was ob-
served between NDVI and DGCI (R2 = 0.055) and 
SPAD and NDVI (R2 = 0.002). It is hypothesized that 
these poor relationships are a function of NDVI’s 
sensitivity to biomass.

Figure 5. Relationships between SPAD, DGCI, and NDVI 
across early and late sampling times. Data from the late 
season 2016 Grand Junction site-year was excluded due to 
the severe drought stress present prior to that sampling date. 

Aerial-based Measurements. Significant dif-
ferences were observed between the three site-years 
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evaluated; thus, correlation analysis was conducted 
by site-year (Table 5). The correlation between leaf 
N and all other measurements was not consistent for 
2016 Milan and 2017 Grand Junction. It is notable 
that all ground-based and aerial measurements 
and VIs were highly correlated to leaf N at the 
later sampling date. This is in agreement with the 
ground-based analysis, where correlations of leaf N 
with SPAD, DGCI, and NDVI were mixed early in 
the season and became stronger later in the season. 
Of the five wavelengths evaluated, all but NIR (840 
nm) were significantly correlated to leaf N at the 
2017 Jackson site (p < 0.01) and at the 2017 Grand 
Junction site (p < 0.05). Similar trends in wavelength 
correlation to mid-season cotton leaf N were found 
in a ground-based study by Raper and Varco (2015).

Plant height was significantly positively corre-
lated with GreenSeeker NDVI at all three site-years. 
Many studies have noted that NDVI is a better indi-
cator of plant biomass than plant N status (Li et al., 
2001; Raper et al., 2013). The correlation analysis 
for final seed cotton yield was conducted only with 
treatments 1 through 4 (0, 45, 90, and 135 kg N ha-1) 
that did not receive a second N application. GreenS-
eeker NDVI and plant height were both positively 
correlated to seed cotton yield at every site-year. 
All reflectance readings and VIs, except NIR, were 
significantly correlated with final seed cotton yield 
at the 2017 Jackson site. Again, this is most likely 
due measurements being collected later as compared 
to the 2016 Milan and 2017 Grand Junction sites.

Both DGCI and the SPAD reading are indicative 
of the concentration of chlorophyll in crops such 
as corn (Rorie et al., 2011b) and cotton (Read et 
al., 2003). Wang et al. (2012) developed a model to 

predict cotton chlorophyll content from DGCI data 
with a R2 of 0.88. This model was applied to both the 
ground- and UAV-based DGCI values in the current 
dataset and compared to SPAD measurements as the 
other indicator of plant chlorophyll content (Fig. 6).

Figure 6. A regression of SPAD measurements to ground-
based or UAV-based DGCI predictions of chlorophyll as 
modeled by Wang et al. (2012).

Table 5. Pearson correlation (r) values between specified plant parameters, vegetation indices, and individual wavelengths 
from ground-based sensors and UAV-based sensors from 2016 Milan, 2017 Grand Junction (GJ), and 2017 Jackson prior 
to Application B

SPAD 0.680 ** -0.224 ns 0.853 ** 0.593 ** 0.213 ns 0.405 * 0.526 * -0.390 ns 0.614 *
DGCI 0.434 * -0.289 ns 0.578 ** 0.443 * 0.112 ns 0.341 ns 0.232 ns -0.345 ns 0.523 *
NDVI 0.771 ** -0.095 ns 0.565 ** 0.776 ** 0.431 * 0.486 ** 0.721 ** 0.688 ** 0.700 **

Leaf N - - - - - - 0.845 ** -0.523 ** 0.612 ** 0.847 ** -0.170 ns 0.648 **
Plant height 0.845 ** -0.523 ** 0.612 ** - - - - - - 0.733 ** 0.558 * 0.558 *

DGCI-corr -0.290 ns -0.515 ** 0.696 ** -0.356 * 0.468 ** 0.601 ** -0.269 ns 0.339 ns 0.867 **
NDVI -0.394 * -0.539 ** 0.761 ** -0.413 * 0.583 ** 0.700 ** -0.331 ns 0.503 * 0.820 **
NDRE -0.404 * -0.395 * 0.868 ** -0.352 * 0.638 ** 0.598 ** -0.331 ns 0.582 * 0.762 **

GNDVI -0.471 ** -0.398 * 0.842 ** -0.431 * 0.608 ** 0.598 ** -0.343 ns 0.561 * 0.806 **
SCCCI -0.373 * -0.303 ns 0.849 ** -0.289 ns 0.619 ** 0.547 ** -0.319 ns 0.584 * 0.724 **

B 0.208 ns 0.567 ** -0.673 ** 0.325 ns -0.599 ** -0.618 ** -0.073 ns -0.492 ns -0.774 **
G 0.263 ns 0.387 * -0.779 ** 0.329 ns -0.621 ** -0.526 ** 0.011 ns -0.517 * -0.788 **
R 0.261 ns 0.586 ** -0.745 ** 0.382 * -0.607 ** -0.668 ** 0.003 ns -0.466 ns -0.842 **

RE 0.127 ns 0.386 * -0.779 ** 0.216 ns -0.684 ** -0.500 ** -0.110 ns -0.518 * -0.726 **
NIR -0.222 ns -0.327 ns 0.316 ns -0.078 ns 0.402 * 0.328 ns -0.603 * 0.571 * 0.090 ns

Leaf N Plant height

ground-
based

UAV-
based

Yield (only Trt 1-4)
2016 Milan 2017 GJ 2017 Jackson 2016 Milan 2017 GJ 2017 Jackson 2016 Milan 2017 GJ 2017 Jackson

zSignificance levels are denoted by **p < 0.01 and *p < 0.05.

Chlorophyll meter measurements were mod-
erately correlated with both methods of predicting 
chlorophyll content, with the Pearson correlation 
coefficients (r) of 0.715 and 0.843 for the UAV- 
and ground-based DGCI values, respectively. The 
ground-based chlorophyll prediction (R2 = 0.71) 
from this dataset is stronger than the UAV-based (R2 

= 0.51). This can be caused by additional noise in the 
UAV data obtained by the wider field of view. Still, 
this dataset shows promise for the use of DGCI de-
rived from early-season ground- and UAV-collected 
RGB images to predict chlorophyll content.
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Seed Cotton Yield. Three separate models were 
tested to determine 1) the impact of fertilizer N rate 
on seed cotton yield, 2) the impact of splitting the 
N application versus applying all N pre-square on 
seed cotton yield, and 3) the impact of delaying the 
fertilizer N application until flower on seed cotton 
yield. The first four treatments of 0, 45, 90, and 135 
kg N ha-1 applied pre-square were compared within 
the first model (Table 6, Fig. 7). In the second model, 
treatments 2, 3, and 4 (45, 90, and 135 kg N ha-1 
applied pre-square) were compared to treatments 
5, 6, and 7 ( a total of 45, 90, and 135 kg N ha-1 
split into two applications) (Table 7). In the third 
model, treatments 3, 6, and 8 (90 kg N ha-1 applied 
pre-square, split, and delayed until flower) were 
compared (Table 8, Fig. 8).

Table 6. Analysis of variance (ANOVA) table for seed cotton 
yield response to site-year, replication nested within site-
year, and fertilizer nitrogen (N) rate WHERE N Rate equals 
0, 45, 90 or 135 kg ha-1 and Timing equals early season 

Source DF Sum of Squares F Ratio P > F
Model 26 45545047 7.7974 <.0001
Site-year 5 31256573 27.8263 <.0001
Replication  
(Site-year) 18 11630433 2.8761 0.0009

N Rate 3 2658041 3.9439 0.0117
Error 69 15501193
Total 95 61046240

Figure 7. Response of seed cotton yield to fertilizer nitrogen 
(N rate) graphed by site-year. Values not sharing any letter 
within the N rate among all site-years are significantly dif-
ferent by the Fisher’s protected least significant difference 
at the 5% level of significance.

Table 7. Analysis of variance (ANOVA) table for seed cotton 
yield response to site-year, replication nested within site-
year, fertilizer nitrogen (N) rate, fertilizer N timing, and 
their interactions. Fertilizer N rate equals 45, 90 or 135 kg 
ha-1 and Timing equals early season or split

Source DF Sum of Squares F Ratio P > F
Model 28 63067309 12.8801 <.0001
Site-year 5 48646134 55.6353 <.0001
Replication 
(Site-year) 18 13600651 4.3208 <.0001

N Rate 2 324737 0.9285 0.3981
Timing 1 311759 1.7528 0.1844
N Rate x 
Timing 2 254017 0.7263 0.4859

Error 115 20110629
Total 143 83177938

Table 8. Analysis of variance (ANOVA) table for seed cotton 
yield response to site-year, replication nested within site-
year, and fertilizer nitrogen (N) timing. Fertilizer N rate 
equals 90 kg ha-1.

Source DF Sum of Squares F Ratio P>F
Model 25 34603307 10.7967 <.0001
Site-year 5 24581235 38.3485 <.0001
Replication 
(Site-year) 18 9158559 3.9689 <.0001

Timing 2 863514 3.3679 0.0432
Error 46 5897163
Total 71 40500470

Figure 8. Response of seed cotton yield to fertilizer nitrogen 
(N) timing graphed by site-year. Values not sharing a letter 
are significantly different by the Fisher’s protected least 
significant difference at the 5% level of significance.
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Across all site years, a limited response to fer-
tilizer N rate was observed (Table 6; Fig. 7). A sig-
nificant increase in seed cotton yield was observed 
between the untreated and N application rates of 
45 and 135 kg N ha-1, but no significant differences 
were observed between the untreated and 90 kg 
N ha-1 treatments or the 45 and the 135 kg N ha-1 
treatments. Limited response of seed cotton yield 
to N applied is suspected to be driven in some site-
years potentially due to the presence and variability 
of soil residual N. No significant response in seed 
cotton yield was observed when splitting the 45, 90 
or 135 kg ha-1 N applications (Table 7). Analysis of 
the 90 kg ha-1 treatments consisting of pre-squaring, 
flowering and split N timings indicated delaying 
the entire N application until flowering resulted in 
greater yields than applying the entire application 
pre-square (Table 8; Fig. 8). Significant differences 
between split application timing and a pre-square or 
delayed (at flower) timing were not captured (Fig. 8).

DISCUSSION

Results from this study reinforce three major issues 
limiting the utility of in-season cotton N status measure-
ments to drive variable rate fertilizer N applications. 
First, strong cotton response to applied fertilizer N 
might not appear every year, especially in areas where 
soil nitrate levels can provide much of the N required 
by the crop. When Main et al. (2015) summarized 
cotton N response across 20 U.S. site-years, they only 
observed a significant response to fertilizer N in 11 of 
the 20 site-years. As a result, they incorporated soil 
nitrate data to generate strong, consistent trends across 
all locations (Main et al., 2015). Weak to moderate 
responses of cotton to fertilizer N rate also have been 
reported in several site-years by Oliveira et al. (2012).

Second, even when cotton response to fertilizer 
N is moderate to strong, cotton demand for N is low 
during the early season and does not increase to a 
substantial level until boll fill begins (Mullins and Bur-
mester, 1990). Poor correlations between early-season 
measurements and applied fertilizer N are commonly 
reported (Oliveira et al., 2012). Most N deficiencies 
develop after peak bloom when fertilizer N applica-
tion cannot completely alleviate the deficiency.

Finally, it is commonly recommended that 
fertilizer N be applied prior to bloom (Duncan and 
Raper, 2018; Lemon et al., 2009). Sidedress N must 
be moved into the effective rooting zone by an incor-
porating rainfall event or irrigation, and depending 

upon source, might not be immediately available 
to the plant. Although irrigation could allow pro-
ducers to extend the application window, bloom 
typically represents the last opportunity to make a 
yield-impacting fertilizer N application. According 
to Oliveira et al. (2012), “Producers who currently 
apply N at the early square stage will also weigh the 
logistical risks of delaying N applications against 
the possible benefits of sensor use.” Although our 
results suggest these benefits could be notable, it is 
not clear if they will be substantial enough to war-
rant the added risk.

Much of the research to date has focused on the 
early-season assessment of cotton N status to drive 
variable rate fertilizer N applications within the cur-
rent growing season. Because demand for N is low 
during the early season, soil nitrate often meets early-
season demand and all fertilizer N should be applied 
prior to first bloom, it might be appropriate to shift the 
research focus towards the use of late-season assess-
ments of cotton N status to drive variable rate fertilizer 
N applications for the following season. Coupled with 
soil nitrate sampling, it is possible that this approach 
could support increased N use efficiency in the cotton 
production system while not forcing the producer to 
incur unreasonable levels of risk.

CONCLUSIONS

This study provides information to researchers, 
producers, and advisors on the utility and current 
limitations of in-season measurements of cotton N 
status. Correlations of leaf N with both ground- and 
UAV-based measurements were often weak during the 
window of time in which a yield-impacting fertilizer 
N application could be made. At later season sampling 
dates, strong relationships were noted between leaf 
N and SPAD and leaf N and DGCI. Although this 
information will not be able to completely alleviate 
N deficiencies within the current season, late-season 
measurements could potentially provide valuable 
information to be used in subsequent seasons or to 
direct supplemental foliar N applications within 
the current season. Across all sampling dates and 
site-years, ground-based DGCI had a positive linear 
relationship with SPAD (R2 = 0.327). Furthermore, 
early-season DGCI from ground-based (R2 = 0.71) 
and aerial-based (R2 = 0.51) images were successfully 
used to predict chlorophyll. These findings indicate 
that DGCI could potentially be used as a replacement 
for SPAD in determining cotton N status.
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