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ABSTRACT

The use of unmanned aircraft systems (UAS) 
delivering imaging technologies in agricultural 
settings has become more prevalent over the 
past five years and is growing in pest manage-
ment programs. Here, spectral data from a 
three-band consumer-grade camera with a filter 
to obtain Near Infrared (NIR) data, mounted on 
a fixed-winged UAS, was used to assess the abil-
ity to detect cotton fleahopper, Pseudatomoscelis 
seriatus (Reuter) (Hemiptera: Miridae), injury 
to immature fruiting bodies on cotton. In a small 
plot experiment conducted two years and two 
planting periods each year, cotton fleahopper 
densities were manipulated with insecticide. Vari-
able populations of cotton fleahopper across the 
plots were achieved in 2015, ranging between 0 
and 3.5 cotton fleahopper-days over a five-week 
period when squares were forming. Derived 
from spectral data of multiple UAS flights, un-
expected but inconsistent trends (by regression 
analysis) of increasing Normalized Difference 
Vegetation Index (NDVI), values with increasing 
cotton fleahopper days were detected in both 
plantings and years (five of 12 regressions were 
significant). Our preliminary data suggest that 
differences in cotton fleahopper activity on cotton 
may be reflected in NDVI values using a modi-
fied consumer-grade camera in-season. But the 
interpretation of NDVI may be complicated by 
the feeding site of cotton fleahopper, leading to 

unexpected and inconsistent regressions. Explora-
tion of image resolution and bandwidth to define 
optical sensor needs appears important for cotton 
fleahopper, given its feeding habitat and injury to 
cotton. The application of UAS-derived remotely 
sensed data to detect insect-induced plant stress 
continues to have merit, but a merging of best 
suited UAS technology to the needs of detecting 
insect-induced cotton stress will be a research-
intensive endeavor.

One benefit of airborne remote sensing 
technologies in the agricultural sector is the 

potential time saved by automating plant stress 
detection in the field. There are multiple studies 
investigating the use of handheld spectrometers and 
ground-based spectral imaging technologies (hyper- 
and multi-spectral sensors) to detect and quantify 
arthropod-induced stress in crops (Nansen and 
Elliott, 2016). Satellites, manned aircraft, and more 
recently unmanned aircraft systems (UAS) are three 
platforms allowing researchers to utilize remotely 
sensed data. Satellite imagery has been used for 
automated mapping and classification over large 
geographic areas, such as detection of defoliation 
caused by bark beetles in forests and drought-related 
stress (Eklundh et al., 2009). Although satellite 
imagery can cover large geographic areas, there 
are practical constraints for pest management such 
as low temporal resolution, low spatial resolution, 
susceptibility to cloud cover effects on image quality, 
and slow data translation into useable products for 
land managers (Zhang and Kovacs, 2012). Manned 
aircraft provide higher resolutions than satellite 
imagery, but image quality is also prone to similar 
cloud cover effects, and data collection is limited 
by the availability of pilots, aircraft with proper 
equipment, and camera operators. Unmanned 
aircraft systems (UAS) can fly at lower altitudes, 
providing high-resolution imagery comparable with 
ground-based sensors. This can offer more flexibility, 
automation, and efficiency to perform repeat surveys 
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at higher frequencies relevant to grower needs for 
use in precision agriculture. The downside, however, 
is the geographic area coverage is more appropriate 
to individual field-scaled applications compared with 
the other satellite or traditional airborne platforms. 

With advances in reducing the size and weight 
of optical sensors, including the use of commercial-
grade (three-band) cameras, and their placement on 
more accessible UAS platforms, the use of remote 
sensing in agricultural systems has been on the 
increase in the past decade. There are multiple 
studies investigating the effects of fertilization 
(Muñoz-Huerta et al., 2013), irrigation (Ha et al., 
2013), weed detection (Sudbrink et al., 2015; Thorp 
and Tian, 2004), and yield predictions using wave-
lengths in the visual spectra from remotely sensed 
data. Studies using handheld sensors acquiring a 
wide range of spectral data from insect-stressed 
plants are plentiful in cropping and forest systems. 
They support the feasibility of using remotely sensed 
reflectance data from optical sensors mounted on a 
UAS for insect-induced stress detection (Nansen et 
al., 2013). Studies using data from multi-spectral or 
simpler commercial-grade (modified to acquire near-
infrared data) cameras mounted on UAS are rare and 
provide mixed results in the ability to detect plant 
stress caused by insects (e.g., Marston et al., 2020; 
Stanton et al., 2017). Remote sensing technologies 
delivered on UAS platforms for mixed uses may be 
particularly valuable in large-scale agricultural sys-
tems, such as field crop, forest, and forage systems, 
where crop monitoring resources are limited. 

Spectral characteristics of plants such as re-
flectance and absorption by leaves can provide an 
understanding of physiological responses to growth 
conditions and stressors in the environment (Carter 
and Knapp, 2010), including those caused by insects 
(Carroll et al., 2008). The potential of remote sens-
ing to assess crop health, biomass and yield with the 
use of vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI), has been well 
noted in the literature. Applied to stress detection, 
these indices can estimate the amount of photosyn-
thetic radiation absorbed by plants as chlorophyll 
concentration change brought on by metabolic 
disturbances caused by stresses. Stressors include 
nutrient deficiencies, water stress, and pest-induced 
stress in plants (Knipling, 1970). Normalized Dif-
ference Vegetation Index is a ratio expressed as the 
difference between Near Infrared and Red bands 
normalized by their sum, with a resulting scale of 

-1 to 1. It was initially developed to differentiate 
green vegetation from a non-vegetative background 
with higher values indicative of greener (healthier) 
vegetation (Silleos et al., 2006). Specific to cotton, 
remotely sensed spectral data has been successful in 
detecting aphid and spider mite infestations by using 
spectral changes in the leaves (Reisig and Godfrey, 
2007). This study found that wavelengths in the 
Near Infrared (NIR) region acquired by a portable 
spectrometer were moderately accurate predictors of 
aphid and mite infestations and were able to detect 
infestations above economic thresholds. Further, 
they found that these changes were linked to other 
plant stressors such as nitrogen or water deficiency, 
making it challenging to distinguish nitrogen and 
insect-induced stress. Reay-Jones et al. (2016) re-
ported variation of within-field spatial data for stink 
bug, cotton boll injury, and NDVI measurement 
using tractor-mounted and handheld sensors. 

The agricultural region of South Texas is a large-
scale growing system consisting mainly of cotton, 
sorghum, and corn. The system may benefit from the 
automation of crop monitoring via UAS to supple-
ment or serve as a substitute for direct observations 
by crop consultants serving this large-scale system. 
In this region, UAS has been used to measure plant 
height and quantify lodging in maize with compa-
rable accuracy to ground human sampling (Chu et 
al., 2017). Unmanned aircraft systems have also 
been used in sorghum, where the use of vegetation 
indices detected the effects of aphid stress on yield, 
although with considerable variability (Stanton et al., 
2017). There have been few studies to our knowledge 
relating UAS-derived data to insect-induced injury to 
reproductive structures of cotton. Reisig and Godfrey 
(2007) focused on aphids and spider mites causing 
stress symptoms on leaves, while Reay-Jones et al. 
(2016) reported mixed capabilities to relate NDVI 
within-field data to stink bug activity and cotton 
boll injury. 

In South Texas, the main cotton insect pests are a 
complex of plant bugs with the predominant species 
being the cotton fleahopper, Pseudatomoscelis seria-
tus (Reuter) (Hemiptera: Miridae). Cotton fleahopper 
in high numbers can cause square abscission reduc-
ing boll set and results in a significant reduction of 
yield (Ring et al., 1993). They have piercing-sucking 
mouthparts similar to aphids, but they primarily 
injure immature fruiting buds (squares) and not 
leaves nor fertilized bolls, providing an opportunity 
to investigate whether remotely sensed reflectance 
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data using a consumer-grade/low-fidelity camera 
sensor is useful to detect stress derived from injury 
to rapidly growing reproductive tissue. Using these 
data, we discussed constraints and future research 
needed to adapt the current use of imaging drones 
in large-scale agricultural systems for mixed appli-
cations, including monitoring and assessing insect-
induced plant stress.

MATERIALS AND METHODS

Experimental Design. In 2015 and 2016, a 
replicated field experiment was conducted at Cor-
pus Christi, TX, to investigate the effect of different 
spray regimens on cotton fleahopper populations 
and cotton yield. We acquired data from optical 
sensors mounted on a UAS to investigate the use of 
remotely sensed imagery and vegetation indices to 
detect cotton fleahopper-induced stress caused by 
their feeding on immature fruiting buds. All plant-
ings were Phytogen PHY-333-WRF varieties (Dow 
Agrosciences, Indianapolis, IN). Crop management 
followed normal agronomic procedures for the re-
gion (Morgan, 2018). In South Texas, growers use 
a threshold between 0.1 and 0.25 cotton fleahoppers 
per plant to time an insecticide application (Vyavhare 
et al., 2018), which was exceeded in the field experi-
ments on multiple occasions. 

The experiments were laid out in a split-plot 
design. Individual split-plot sizes were four rows 
by 12m with four replications in 2015 and six in 
2016. In 2015, the main plot factor was planting date 
with two levels, early (May 1, 2015) and late (May 
13, 2015) planted plots. In 2016, the planting dates 
were March 30 (early) and April 20 (late). For both 
years, an insecticide regime of four levels was the 
split factor, in which insecticide treatment was ap-
plied when weekly monitoring indicated populations 
exceeding 0.15, 0.30, and 0.45 cotton fleahoppers 
per plant along with an unsprayed control. For both 
years, the insecticide used was thiamethoxam (Cen-
tric, Syngenta Crop Protection, Greensboro, NC) and 
applied label rates via tractor-mounted spray boom 
as experimental thresholds were reached until the 
second week of bloom. All cotton fleahopper per 
plant threshold treatments triggered only one in-
secticide application, but timing differed across the 
three treatments. In 2015, the 0.15 cotton fleahopper 
per plant threshold was exceeded on June 10, and 
insecticide was applied the same day. The 0.3 and 
0.45 cotton fleahopper per plant thresholds were 

exceeded on June 17 and insecticide was applied 
the same day. In 2016, the cotton fleahopper per 
plant threshold of 0.15 was exceeded on May 27 
and treated the same day. The 0.3 and 0.45 cotton 
fleahopper per plant thresholds were exceeded on 
June 8, triggering same-day insecticide application. 
Functionally, the 0.3 and 0.45 treatments were the 
same but were kept in analyses to keep the design 
(number of replications and physical layout) in bal-
ance across treatments. 

For both years, insect counts were taken weekly 
over a five-week period (2015: June 10 to July 24, 
2016: May 27 to July 14) beginning at the first week 
of occurrence of fruiting buds (first detection of 
pinhead-sized squares) which are most susceptible 
to cotton fleahopper feeding (Ring et al., 1993). To 
estimate cotton fleahopper density, 20 plants in the 
middle two rows of each four-row plot (to avoid 
disturbances from plot to plot) were sampled us-
ing the beat bucket method (Brewer et al., 2012). 
Briefly, a five-gallon bucket was used to beat foliage 
of plants in groups of two or three for a total of 20 
plants. Dislodged nymphs and adults were counted 
in the bucket and recorded. After defoliation at the 
end of the season, the middle two rows were har-
vested using a two-row John Deere picker (Moline, 
IL, USA). A hand-grabbed sample selected from the 
weighed seed cotton of each plot was ginned using 
a ten-saw Eagle Continental gin (Birmingham, AL, 
USA) to determine percent lint turnout. The weight 
of the seed cotton per plot and percent lint turnout 
was used to calculate lint weight per plot.

UAS Data Collection. For both years, the im-
agery was acquired from a fixed-wing eBee UAS 
(senseFly, Cheseaux-Sur-Lausanne, Switzerland) 
containing a 12-megapixel (4048x4048) Powershot 
S110 (Canon USA, Melville, NY) consumer-grade 
sensor with a sensor size of 7.44 by 5.58 mm. This 
UAS has a fully autonomous flight that can be 
programmed to capture imagery at the user-defined 
flying height, percent image endlap, and percent 
image sidelap. The eBee can fly a maximum time 
of about 50 minutes on a fully charged battery, de-
pendent on weather conditions and sensor weight. 
The camera stored images in RAW and JPEG format 
and was modified with a filter to capture imagery in 
three bands of the electromagnetic spectrum: green 
(500-575 nm), red (575-650 nm), and near-infrared 
(800-900 nm). The camera was programmed to auto-
capture imagery triggered by the onboard navigation 
and processor control system of the UAS platform. 
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the field whose coordinates were precisely surveyed 
using s Real-time kinematic (RTK) GPS instrument. 
Georeferencing was accurate within 1.0 to 5.0 cm 
horizontally and vertically. Full details of the RTK-
enabled UAS platform and SfM process are available 
(Chu et al., 2017; Stanton et al., 2017). 

We computed the band ratio index Normalized 
Difference Vegetation Index (NDVI) of all three 
flights for each year by using two bands (R and 
NIR) of the three-band (R-G-NIR) orthomosaic im-
age from the flights. This image was imported into 
a geographic information system (GIS) program, 
ArcMap (ESRI, Redlands, CA). Using a raster cal-
culator function, NDVI maps were created for each 
flying date using the common band ratio: NDVI = 
(NIR – Red) / (NIR + Red). The experimental plots 
were georeferenced as a vector using the orthomo-
saiced images for each year. The two middle rows 
of each subplot were further delineated as individual 
polygons in the GIS to extract NDVI values cor-
responding with pest data collection. Polygons had 
identical sizes (8m x 0.8m) for both years and were 
individually placed at the best positions aligning 
with the cotton rows. The polygons mainly contained 
vegetation pixels due to good canopy coverage. 
Therefore no filtering for low soil reflectance values 
was done prior to NDVI calculations as done when 
considering stress on young plants with low ground 
coverage (Stanton et al., 2017). Zonal statistics were 
computed for each plot to include the range, mean, 
standard deviation, minimum, and maximum NDVI 
values in the area within the data row polygons. 

Analysis of variance (ANOVA) following 
the experimental design was used to compare the 
response variables across the cotton fleahopper 
per plant thresholds of 0.15, 0.25, and 0.45 cotton 
fleahoppers per plant (and unsprayed control) for 
the early and late plantings. Since cotton fleahopper 
per plant thresholds received only one insecticide 
application at varying dates, cotton fleahopper 
density was converted into cumulative cotton flea-
hopper days for analysis. Using the averages of 
cotton fleahoppers per 20 plants per plot on a given 
sampling day, cumulative cotton fleahopper days 
was calculated using the formula ∑[(xi + xi−1)/2] × 
(ti − ti−1), where (xi + xi−1)/2 is the cotton fleahopper 
density x between two consecutive sampling dates 
sampling periods i, and (ti − ti−1) is the number of 
days t between sampling dates (Gordy et al., 2019; 
Kieckhefer et al., 1995). To initiate the cumulative 
cotton fleahopper days, a start sampling date one 

All flights were conducted with at least 60% endlap 
and 70% sidelap to ensure sufficient image overlap 
for photogrammetric processing. The flight and 
flight plan was conducted under the supervision of 
a certified pilot who adhered to FAA regulations 
concerning drone use for research purposes. The 
facility (Texas A&M AgriLife Research and Exten-
sion Center) where the experiment was conducted 
had necessary permits for drone use. 

Images from three UAS flights were considered 
for use in 2015: June 10, June 23, and July 29. All 
three flights were used for analysis, but we note that 
the flight of June 23 most closely coincided with 
early bloom when squares were plentiful and the 
experimental cotton fleahopper per plant thresh-
olds had been exceeded. Cotton fleahoppers were 
counted within three days of each flight. Flights 
were flown with the Cannon PowerShot S110 (R-
G-NIR) commercial-grade camera with a filter to 
obtain NIR data at altitudes between 90m and 100m 
above ground level resulting in an average ground 
sample distance of 2.9cm. In 2016, images from 
three flying dates (June 23, July 15, and July 21) 
were considered. Flight specifications and param-
eters were the same as in 2015. 

Image Processing and Indices Derivation 
and Analysis. Over 250 raw images were captured 
during each UAS flight that covered approximately 
38 hectares, which included the experimental plots. 
These images were downloaded and transferred to 
portable hard drives for post-processing. The soft-
ware Pix4Dmapper Pro (Pix4D SA, 1015 Lausanne, 
Switzerland) was used to process the imagery using 
structure from motion (SfM) photogrammetry. SfM 
is different from traditional photogrammetry in that it 
does not need the use of precisely calibrated metric 
cameras to extract three-dimensional information 
from a scene. Instead, it uses a highly redundant 
and iterative bundle adjustment by automatically 
extracting and corresponding thousands of features 
from multiple overlapping images to simultaneously 
solve for camera internal and external parameters 
(position and orientation) and reconstruct the 3-D 
scene (Westoby et al., 2012). Outputs from SfM 
photogrammetric processing included a densified 
3-D point cloud, a digital surface model (DSM), and 
three-band orthomosaic imagery. During data pro-
cessing, ground control points (GCPs) were used for 
improving the absolute georeferencing of the created 
data products. The ground control points consisted of 
aerial control targets placed around the perimeter of 
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week before the first detection was selected, with 
monitoring results set to 0 cotton fleahoppers per 
plant for sampling date t0. The response variables 
for each plot were cumulative cotton fleahopper 
days, average NDVI values extracted from data row 
polygons, and estimated lint weight at the plot level. 
If a significant effect of cotton fleahopper per plant 
threshold on a response variable was found, a means 
separation test using Tukey’s HSD (α = 0.05) was 
conducted to compare the four treatments (Neter et 
al., 1985). In addition, regression analysis was used 
to test the linear relationships of NDVI values with 
cumulative cotton fleahopper days and with yield us-
ing individual plot means of NDVI across all cotton 
fleahopper per plant thresholds from the early and 
late planted plots (Neter et al., 1985). 

RESULTS

Cumulative Cotton Fleahopper Days and 
Cotton Yield. Cotton fleahopper was the primary 
sucking bug detected. Other sucking insects that 
injure cotton were absent (spider mites, aphids) or 
occurred at trace levels (stink bugs or other plant 
bugs) that never approached economic thresholds. 
Cotton fleahopper per plant thresholds had a sig-
nificant effect on the cumulative cotton fleahopper 
days up to the date of data collection for both early 
(F=8.36; df =3,16; P < 0.0001) and late plantings 
(F= 9.55; df =3,16; P < 0.0001) in 2015 (Fig. 1A, 
1B). In the early planted plots, cotton fleahopper per 
plant thresholds decreased cotton fleahopper days 
in the treated plots (Fig. 1A). Similarly, in the late 
planted plots, the unsprayed control accumulated sig-
nificantly more cotton fleahopper days (1.26 ± 0.22) 
on average compared to the cotton fleahopper per 
plant threshold treatments (Fig 1B). In 2016, cotton 
fleahopper per plant thresholds had a marginal (0.05 
< P < 0.10) effect on accumulated cotton fleahopper 
days in the early planted plots (F=2.41; df =3,44; P = 
0.0796) and the late-planted plots (F=2.42; df =3,44; 
P = 0.0791). Compared to 2015, there was a narrower 
range of cotton fleahopper days in 2016 (2016 data 
not shown due to lack of significant differences).

Cotton fleahopper per plant thresholds had a 
significant effect on lint weight for both early (F= 
3.94; df =3,16; P = 0.043) and late (F= 5.36; df 
=3,36; P = 0.0037) planted plots in 2015. The 0.15 
cotton fleahopper per plant threshold had the high-
est yield (255 ± 12g), and the unsprayed control had 

the lowest yield (216 ± 9g) in the early planted plots. 
Cotton fleahopper per plant threshold in 2016 had no 
effect on lint weights in early (F= 1.15; df =3,44; P 

= 0.22) or late (F= 1.37; df =3,44; P = 0.26) planted 
plots (2016 data not shown).

Variation in NDVI and Relationship to Cot-
ton Fleahopper. In 2015, NDVI values calculated 
from the June 23 flight differed across the cotton 
fleahopper per plant thresholds in the early planting 
(F=3.135; df =3,16; P = 0.05) (Fig. 1C) and a more 
significant effect was seen using NDVI values from 
the July 15 flight (F=5.98; df =3,16; P = 0.006) 
(Fig. 1E). No differences in NDVI values for all 
three flights were seen across the cotton fleahopper 
per plant thresholds in the late plantings or the early 
planting of the July 28 flight (P > 0.1) (Fig. 1D, 1F-
G). In 2016, cotton fleahopper per plant threshold 
had no significant effect (P > 0.10) on NDVI values 
calculated from all three flights in both the early and 
late planted plots (2016 data not shown). This was 
expected as per plant thresholds had no effect on 
fleahopper numbers. 

We inspected the relationship of the NDVI 
measures with cumulative cotton fleahopper days 
with regression. In both early and late plantings, 
there were varied linear associations between ac-
cumulated cotton fleahopper days and NDVI values 
across the different flights. Across both years, five 
of 12 regressions were significant, and all five were 
unexpectedly positive. NDVI values from the flight 
of July 15, 2015 increased as cumulative cotton 
fleahopper days increased in early (F= 15.64; df= 
1, 16; P= 0.0019) (Fig. 2C) and late plantings (F= 
6.04; df= 1, 36; P= 0.018) (Fig. 2C and 2D). There 
were no linear associations between NDVI values 
and cumulative cotton fleahopper days in the other 
two flights across both plantings (Fig. 2A, 2B, 2E, 
2F). In 2016, despite no significant effect of cotton 
fleahopper per plant thresholds on NDVI across all 
flights, there were three positive linear relationships 
between NDVI and cumulative cotton fleahopper 
days. These linear relationships were found in the 
early plantings of the June 23 (F= 11.675; df= 1, 41; 
P= 0.0019) (Fig. 3A) and July 23 flights (F= 16.1; 
df= 1, 41; P < 0.001)(Fig. 3E) and in the late planting 
of the July 15 flight (F= 3.75; df= 1, 41; P= 0.05). 
No linear relationships (P > 0.10) were seen in the 
late plantings of the June 23 (Fig. 3B) and July 23 
flights (Fig. 3F) or the early planting of the July 15 
flight (Fig. 3C).
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Fig. 1. Cumulative cotton fleahopper days (A, B), and NDVI (C-H) across cotton fleahopper per 
plant thresholds for 2015 early planted plots (Left column) and late planted plots (Right column). 
Letters indicate significant differences between means based on Tukey’s means separation test (α 
= 0.05). Treatments are from left to right on the x-axis: unsprayed control, cotton fleahopper per 
plant thresholds at 0.15, 0.25, and 0.45 cotton fleahoppers per plant (FPP). 
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Fig. 2. Linear regressions of NDVI regressed on cumulative cotton fleahopper days (A-F) for early (left column) and late 
(right column) planted plots for all three 2015 flights. June 23, 2015 (Top Row), July 15, 2015 (Milldle Row) and July 28, 
2015 (Bottom Row).
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DISCUSSION

Overall, the experiment of varying cotton flea-
hopper per plant thresholds on cotton fleahopper 
was successful in manipulating cotton fleahopper 
density that led to yield differences in 2015, while 
2016 cotton fleahopper data were more variable and 
did not lead to yield differences. Cotton plant vigor, 
growing conditions, and cotton development stage 

may have contributed to year-to-year cotton fleahop-
per variation (Barman et al., 2012). The relatively 
high cotton fleahopper day accumulation in the 
unsprayed control in 2015 compared to 2016 aided 
the ability to detect differences between the cotton 
fleahopper per plant thresholds and the unsprayed 
control in 2015 and may have aided detected differ-
ence in subsequent plant response (yield) and NDVI 
measurements.

Figure 3. Linear regressions of NDVI regressed on cumulative cotton fleahopper days (A, B) for early (left column) and late 
(right column) planted plots of all three 2016 flights. June 23, 2016 (Top Row), July 15, 2016 (Milldle Row) and July 23, 
2016 (Bottom Row
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Further, cotton fleahopper modestly followed 
the same trends in the unsprayed and threshold treat-
ments in accumulated cotton fleahopper days, and 
unexpected and inconsistent trends of increasing 
NDVI with increasing cotton fleahopper days (five of 
12 regressions were significant) were counter to our 
expectations. Variation of insect activity and its as-
sociation with yield and NDVI is not uncommon with 
other pests in cotton. For example, Reisig and Godfrey 
(2006) detected no differences in insecticide treatment 
on yield for cotton aphid and spider mite densities but 
were still able to detect insect-induced damage via 
reflectance and vegetation indices. The results suggest 
that NDVI values derived from spectral data acquired 
by a commercial-grade (modified three-band) camera 
mounted on a UAS were limited or inadequate in its 
ability to detect stress by cotton fleahopper where the 
insect exceeded regional economic thresholds during 
two years of study. Using reflectance data as a surro-
gate measure of insect-induced stress may be particu-
lary challenging for insects that feed on reproductive 
tissue. Additional years of data with economically 
damaging populations of cotton fleahopper are needed 
to better resolve the relationships. 

There appears to be potential and limits in using 
UAS imaging drones for insect-induced cotton stress. 
Overall, it appears difficult to detect insect-induced 
stress from piercing-sucking insects such as cotton 
fleahopper (data from our study) and stink bugs (Reay-
Jones et al., 2016) that feed on immature fruiting buds 
and bolls, respectively, using NDVI as estimated 
from UAS-derived data. We found that as the number 
of cotton fleahoppers increased, NDVI values also 
increased, unlike aphid pests in cotton or sorghum, 
where higher aphid populations led to lower NDVI 
or NIR values (Reisig and Godfrey, 2007; Stanton et 
al., 2017). Although successful in using vegetations 
indices and the NIR-band reflectance values to predict 
cotton aphid and spider mite infestations on leaves, 
Reisig and Godfrey (2006) also found unexpected dif-
ferences in reflectance values across insecticide treat-
ment combinations. Further, Reay-Jones et al. (2016) 
reported increasing NDVI values were associated 
with boll injury from stink bug feeding. Again, this is 
contrary to the expectation of pest-induced stress, in 
this case stink bugs injuring bolls is associated with 
decreasing NDVI values. 

Since cotton fleahopper feeds on the young fruit-
ing structures of cotton plants (squares) and the injury 
often leads to square abscission, the plant may com-
pensate for the lack of fruit production by shifting 

more nutrients to the vegetative growth potentially 
increasing reflectance values. It has been shown that 
insect-induced square loss or hand removal of fruit-
ing structures leads to increased vegetative growth 
and an increase in canopy photosynthesis (Holman 
and Oosterhuis, 1999; Pettigrew et al., 1992). Further, 
this has been reported in other studies where insect 
or human-induced foliage damage lead to increased 
photosynthetic activity and photosynthates present in 
leaves (Detling et al., 1979; Fay et al., 1993; Martens 
and Trumble, 1987)root respiration (RR. In lima 
beans, rapid structural compensation for leaf mining 
injury in mature foliage leads to the maintenance of 
high levels of photosynthetic activity (Martens and 
Trumble, 1987). This trend should be tested in the 
future with remote sensing as this may be a way to 
discern insect-induced damage from insects that do 
not induce readily visible foliar damage to the plant.

In contrast to our results with cotton fleahopper, 
NDVI and reflectance values were able to detect 
cotton aphid and spider mite populations at or above 
economic thresholds and were found to be moderately 
accurate predictors of injury of cotton leaves and sub-
sequent yield (Reisig and Godfrey, 2006). While cot-
ton fleahoppers feed on cotton squares, aphids pierce 
the phloem system and remove nutrients directly 
affecting leaf and photosynthetic health. Aphids are 
relatively sessile insects and can reach high numbers 
on leaves, which can induce reflectance changes in the 
plant as well as produce an excess of honeydew that 
may also affect reflectance values. Honeydew cov-
ers the plant leaves in a glossy film and is a substrate 
for sooty mold, which can cause leaves to turn black, 
making detection via UAS-derived reflectance data 
more feasible. Spider mites feed by piercing/slashing 
plant cells and tissue to feed on the nutrients causing 
chloroplast damage leaving a dead cell that turns 
brown (Reisig and Godfrey, 2006). In high numbers, 
spider mites can cause yellowish spots or browning 
on leaves, making detection with reflectance measure-
ments more viable (Reisig and Godfrey, 2006). Plant 
bugs are highly mobile, and cotton fleahopper-induced 
injury is primarily on young fruiting structures; there-
fore, damage attributed to them may be more difficult 
to detect in general (Brewer et al., 2016; Ring et al., 
1993) and specifically by reflectance measurements. 

Constraints and Future Research. Here, a 
fixed-winged UAS captured three-band (R-G-NIR) 
imagery from a modified consumer-grade and low-
fidelity camera sensor. The camera used a relatively 
wide bandwidth range that may be prone to errors or 
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insensitivity in detecting cotton fleahopper-derived 
stress on cotton. Three flights were carried out each 
year allowing us to only make inferences on insect-
induced stress at that point in time corresponding to 
estimated cotton fleahopper accumulation days. Our 
goal was to test the feasibility of using commercial 
grade sensors on readily available UAS platforms 
however, it appears that there is a need for sensors 
with higher spatial and spectral resolutions at least 
at the research stage of investigation as done in re-
mote sensing studies to detect insect-induced plant 
stress (Nanasen and Elliott, 2016). The unexpected 
but inconsistent positive trend of cotton fleahopper 
densities and NDVI, and modest differences between 
cotton fleahopper per plant thresholds and NDVI, 
was intriguing. Given past proof-of-concept research 
using multi-spectral handheld sensors and the ap-
plicability to monitoring cotton with UAS for other 
purposes, we recommend research comparisons of 
ability to detect insect-induced cotton stress by key 
pests, including those damaging leaves and reproduc-
tive tissue, across a range of sensors and platforms. 
These may include modified RGB, multi-spectral, 
and hyperspectral data acquired by hand or tractor-
mounted devices and ideally the same or similar qual-
ity spectral data acquired by UAS. More comparative 
research inclusive of other vegetation indices and 
with higher grade and possibly hyperspectral sensors 
is warranted to further delineate insect stress.

Alternatively, the lack of correlation to NDVI 
observed in this study could be due to the increase 
in cotton fleahoppers not producing detectable levels 
of plant stress response by the dates of the flights 
used for the analysis. It could be that the levels of 
cotton stress during the dates of the flights used in the 
analysis were inadequate for detection by the NDVI 
metric derived from the commercial-grade (three-
band) camera modified to acquire NIR data. Future 
experimentation is warranted to better delineate the 
minimum detectable threshold of cotton fleahopper-
induce injury using UAS imaging drones. We suggest 
it is premature to add insect-induced cotton stress 
detection to the mission of a UAS with a commercial-
grade camera tasked for nutrient and water stress 
detection (Barbedo, 2019). Future experimentation 
should include weekly flights from first cotton flea-
hopper detection until peak bloom. Further, given the 
variability of cotton fleahopper populations, such as 
our 2016 experiment, incorporating simulated cotton 
injury into experiments may be useful. For example, 
if simulated levels of reproductive tissue feeding by 

cotton fleahopper leads to detectable increases of 
NDVI values as our preliminary data suggests, this 
information can aide in discerning what level of pest 
pressure leads to this trend.

Specific to cotton that experiences various 
forms of leaf and reproductive tissue stress caused 
by insects and other arthropods (Brewer et al., 2012; 
Reay-Jones et al., 2016; Reisig and Godfrey, 2007), 
caution is warranted in adapting the current use of 
imaging drones for mixed applications in nutrient, 
irrigation, and pest management (Barbedo, 2019). 
The application of UAS-derived remotely sensed 
optical data to detect insect-induced plant stress 
continues to have merit, but a merging of best suited 
UAS technology to the needs of detecting plant stress 
will continue to be a research-intensive endeavor 
(Moses-Gonzales and Brewer, 2021).
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