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ABSTRACT

Maximizing cotton fiber quality is crucial for 
the continued success of the U.S. cotton industry. 
Previous studies have indicated that spatial vari-
ability of fiber-quality properties exists and is a 
factor in revenue variability across a field. Site-
specific fiber-quality prediction potentially could 
be managed on the farm to optimize fiber quality 
with respect to profitability, or the harvest could be 
segregated according to fiber quality to increase a 
producer’s overall crop price. Fiber micronaire was 
identified as the target property for study because 
of its moderate variation at the farm-field level and 
its importance to producers and the textile industry. 
Two years’ cotton and soil data from two fields near 
Brooksville, MS, were used to investigate the extent 
to which soil parameters could explain spatial varia-
tion in cotton fiber quality. Spatial variability existed 
in both soil and fiber-quality properties, and as ex-
pected from prior research, micronaire was found to 
have relatively large variability compared to other 
quality properties. Spatial autocorrelation in the 
data was considered by using Moran’s I but found 
not to be a factor. When simple linear regression 
was employed, the individual soil-related factors 
most closely related to overall micronaire variability 
were clay content, pH, and relative site elevation. 
Multiple linear regression was also employed, and 
one soil variable, pH, accounted for 42% of the 
overall variability in micronaire for the south field 
in year one; whereas pH, magnesium, and sodium 
together accounted for more than 41% of the mi-
cronaire variability for the north field in year two. 

Site-specific prediction of micronaire based on soil 
parameters alone continues to be a challenge ac-
cording to the results of this study.

Fiber quality is a primary concern in cotton 
production. High-speed spinning equipment 

used in modern textile mills requires high-quality 
cotton fiber to ensure high-quality end products and 
efficient processing; for example, micronaire in the 
range of 3.8 to 4.4 (Estur, 2004). Correspondingly, 
better fiber quality at the farm level enhances price 
and makes the crop more marketable. It is well 
known that cotton fiber varies from bale to bale 
because of genetic variation and environmental 
factors such as planting date, harvest timing, weather, 
and soil parameters including fertility, pH, and 
water availability. Therefore, for maximum profit, 
it is important for cotton producers to manage 
both genetics and environmental factors so as to 
optimize fiber quality and yield. Genetic factors 
can be managed through variety selection, whereas 
managing the environmental factors associated with 
fiber quality presents a greater challenge.

Researchers have reported spatial variability 
in some fiber-quality factors in agricultural fields 
(Bradow and Davidonis, 2000; Bradow et al., 1997a, 
b; Elms and Green, 1998; Johnson et al., 2002), sug-
gesting the potential of site-specific crop manage-
ment (SSCM) to optimize fiber quality. In SSCM, a 
field is broken down conceptually into smaller zones, 
and management decisions are based on the require-
ments of each zone. Global positioning system (GPS) 
and geographic information system (GIS) technolo-
gies can be combined with variable rate technology 
(VRT) equipment to apply crop inputs based on the 
predicted requirements of a particular management 
zone. As with fiber quality, soil and crop properties 
vary spatially within a field. If the soil properties 
affecting micronaire could be determined, they con-
ceivably could be related to fiber quality and enable 
SSCM to improve it.

Within a given field of a single cotton variety, 
variation in micronaire generally relates to fiber 
maturity (Bradow and Davidonis, 2000; Bradow et 
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al., 1997a, b). Factors related to the in-field growth 
period might greatly influence the maturity of har-
vested cotton; for example, relatively high micro-
naire (i.e., mature) fiber results when the supply of 
carbohydrates is not limited. Disease, water stress, 
loss of leaf function, potassium deficiency, and cool 
nighttime temperatures during boll development, 
among other factors, can decrease micronaire (Kerby, 
1994). The premium micronaire range is 3.7 to 4.2, 
with price penalties for micronaire below 3.5 and 
above 4.9 (USDA-AMS, 2001).

Typically, significant soil variations occur 
within a field even under uniform climate, cultural 
practices, and irrigation schedules (Warrick and 
Gardner, 1983). Elms and Green (1998) evaluated 
variability of cotton yield and fiber quality along 
with soil texture, organic matter (OM), nitrogen (N), 
phosphorus (P), potassium (K), calcium (Ca), pH, 
cation exchange capacity (CEC), zinc (Zn), man-
ganese (Mn), iron (Fe), and copper (Cu) within an 
irrigated cotton field in Texas. They also reported on 
the relationships between cotton and soil properties, 
showing that micronaire was positively correlated 
with soil pH (R = 0 42. , = 0 001. ), and fiber length 
was negatively correlated with P concentration 
(R = −0 28. , = 0 05. ).

Johnson et al. (2002) reported on spatial vari-
ability in cotton yield and fiber quality relative to the 
underlying soil spatial variability in a South Carolina 
field. Over two years of study, data on the majority 
of fiber properties were normally distributed. Soil 
moisture, pH, P, and OM appeared to have the 
greatest influence on both cotton yield and quality. 
None of the correlations between soil properties 
and the length and diameter group of fiber proper-
ties exceeded a magnitude of 0.500. However, the 
positive correlations of soil Ca, magnesium (Mg), 
and pH with fiber length indicated that site-specific 
application of lime and, to a lesser extent, K, pos-
sibly could have resulted in longer fiber. Furthermore, 
additional P and OM possibly could have increased 
fiber diameter and reduced short fiber content. On the 
basis of simple correlation analyses, the addition of 
P and/or OM, as well as soil amendments that lower 
soil pH, appeared to increase fiber maturity and, 
correspondingly, micronaire. Increased levels of P 
also were correlated with decreased fiber yellowness 
and increased fiber whiteness. High levels of K and 
OM were correlated with improved fiber whiteness 
as well. The field site highest in pH, Ca, and Mg 
content produced immature fiber with micronaire in 

the price penalty range. These studies suggested that 
integrating site-specific maps of fiber properties with 
maps of soil properties could allow optimization of 
cultural inputs and other production practices.

Johnson et al. (1999) studied a field in Louisiana 
and found lint yield positively correlated to soil OM, 
boron (B), Cu, Fe, Mn, and Zn. The best predictors of 
fiber length and short fiber content were Mn, B, and 
Fe, whereas Na and Mg best predicted fiber diameter. 
Fiber maturity (described by theta, immature fiber 
fraction, micronaire, etc.) was most highly related 
to Mg, K, Cu, and arsenic (As). Although significant 
correlations between soil and fiber properties were 
observed, the strength of these correlations was weak. 
Field maps of yield and fiber-quality parameters 
showed they were influenced by landscape position 
and soil nutrient distribution. Soil erosion processes 
apparently had modified the distribution of soil nu-
trients in this field. The center of the experimental 
site, with high elevation, had the lowest yield but 
appeared to produce the most mature fiber.

Although yield is clearly the most significant 
variable output in terms of profitability, fiber quality 
is also a significant factor. Ge et al. (2011) compared 
the fiber-quality contribution to revenue variability 
with the yield contribution in two fields. They found 
that fiber quality was 13% as important as yield in 
one of the fields and 31% as important in the other. 
Thus, producers have incentive to manage their crops 
to maximize fiber quality.

The primary objective of this research was to ex-
amine simple linear and multiple linear correlations 
between cotton fiber-quality properties (micronaire, 
strength, length, length uniformity, Rd, and +b) and 
soil fertility properties (pH, Ca, Mg, K, Na, and P), 
soil texture properties (clay and sand content), and 
field topography properties (relative elevation and 
slope). A secondary objective was to account for spa-
tial variability in the process by considering Moran’s 
I statistic. If soil properties could explain enough of 
the variation in fiber quality, SSCM of soil conditions 
could then possibly be used to optimize fiber quality. 
Additionally, a fiber-quality prediction model poten-
tially could be used to distinguish regions of similar 
fiber quality for site-specific harvesting.

MATERIALS AND METHODS

Data Collection. Data from two cotton fields 
totaling approximately 35 ha (86 acres) near Brooks-
ville, MS, were collected over two cotton production 
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seasons. The fields, referred to as South and North, 
consist primarily of Brooksville silty clay loam (fine, 
smectitic, thermic Aquic Chromudert) and are nonir-
rigated. A GPS receiver with horizontal positioning 
accuracy of approximately 1.0 m (3.3 ft) was used to 
locate 0.4-ha (1.0-acre) grid points for soil sampling 
at 48 sample positions in the North field and 38 in 
the South field. Ten soil cores of 15-cm (6-in) depth 
were extracted with a 2.5-cm (1.0-in) diameter probe 
within a 10-m (33-ft) radius of each measured grid 
point and mixed to form a 500-g (1.10-lb) compos-
ite sample. Each composite sample was air dried 
at room temperature, ground thoroughly to pass 
through a 2-mm (0.08-in) sieve, and analyzed for 
selected chemical and physical properties. Extract-
able Ca, Mg, K, Na, and P were analyzed according 
to the Lancaster Soil Test Method (Cox, 2001) and 
Mehlich 3 Method (Mehlich, 1984). Soil pH in a 1:2 
(soil:water) slurry was measured with a pH meter. 
Soil texture was determined with the hydrometer 
method (Gee and Bauder, 1986). Elevation above 
a reference point within the field was mapped with 
laser-plane elevation survey equipment, and a dif-
ferential GPS receiver was used for the horizontal 
field position measurement. Slope values were de-
termined by converting the elevation measurements 
into cell-based digital elevation models with a spline-
function interpolation method (Cox et al., 2005). 
Because physical properties of soils and topography 
typically remain stable from year to year, these data 
were measured during one year and assumed to be 
the same for both years.

The soil parameters studied were selected based 
on their ability to be altered at reasonable cost as 
well as previously established effect on plant growth 
and development that could affect fiber quality 
under certain conditions. Although OM and N are 
important factors, both were deemed unsuitable for 
determining consistent fiber-soil relationships. Al-
though soil OM is generally stable over the course 
of a growing season, the scope of this study was 
limited to determining the relationships between 
fiber quality and manageable soil factors, and thus 
OM was not considered a variable of interest. In 
general, the effect of OM can be reflected in the soil 
fertility parameters (which are readily manageable). 
Furthermore, there is no viable soil test N method 
available to producers in the mid-South, and N fertil-
izer recommendations generally are made based on 
yield goals (pre-plant) or on in-season plant-canopy 
based spectral reflectance (Stewart and McBratney, 

2001; Thompson et al., 1999). Hence, N also was 
determined to be unmanageable based on spatial and 
temporal variability.

Each field was chisel plowed followed by disk-
ing each spring. Cotton cultivars planted in both 
fields were Deltapine 33B in year one of the study 
and Deltapine 458BR in year two. The cultivars were 
planted in 97-cm (38-in) rows formed by ridge tilling. 
Weed and insect populations were controlled on an 
as-needed basis with standard production practices.

Rainfall was similar overall in both growing 
seasons—taken as 1 April to 30 September for the 
critical precipitation window—with 49.8 cm (19.6 
in) in year one and 42.5 cm (16.8 in) in year two. 
However, rainfall distribution was not consistent 
across seasons. Although the year one growing sea-
son had a little more overall rainfall than year two, 
year one had almost 20% less in the 6 wks prior to 
planting, 26% less in the 25 d after planting, 202% 
more in the next 35 d of crop development, and 
approximately 16% less during the next 50 d of 
midseason fruit development, with no rain for 28 d 
in late July and early August.

Standard management practices were used for 
boll opening and defoliation. During harvest, seed 
cotton was hand harvested in blocks at the soil-core 
sites to estimate yield. Also, samples for fiber-quality 
analyses were collected manually at the outlet of a 
two-row cotton-picker duct from 6 m (20 ft) on either 
side of the soil-sampling grid points. Approximately 
0.6-kg (1-lb) seed cotton samples were ginned on a 
small roller gin at the Southwestern Cotton Ginning 
Laboratory (USDA Agricultural Research Service) in 
Mesilla Park, NM. After ginning, the samples were 
measured for color, trash content, fiber strength, mi-
cronaire, length, and length uniformity with a High 
Volume Instrument (HVI) cotton classing system 
at the Cotton Classing Office (USDA Agricultural 
Marketing Service) in Dumas, AR.

Data Analysis Methods. Analytical procedures 
within the SAS (SAS Institute, 2017) statistical 
software package were used to calculate descriptive 
statistics for and correlations between fiber-quality 
properties (HVI length, strength, micronaire, unifor-
mity, and the reflectance properties of Rd and +b) and 
the following sample-site properties: soil texture (clay 
and sand), certain soil nutrients (extractable Ca, K, P, 
Mg, and Na), site topography (elevation and slope), 
and yield. The PROC MEANS procedure was used to 
produce basic descriptive statistics, and PROC CORR 
was used to produce the Pearson correlation matrix.
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where N is the number of cases, xi is the value of 
the variable at location i, xj is the value at location 
j(i ≠ j), X is the mean of the variable,and wij, a 
distance-based weight, is the inverse distance 
between locations i and j(1/dij).

Thus, global Moran’s I statistics were calculated 
with the residuals of MLR to validate selected MLR 
models, given the potential spatial autocorrelation in 
the soil and cotton data. Crimestat II (Levine, 2002) 
software was used for this purpose as it calculates 
Moran’s I and related statistics to detect spatial 
autocorrelation in sample residuals. If no spatial 
autocorrelation exists, the expected value of I, E(I), 
is calculated as:

E(I) = 1/(1 – N)

where N is the sample size of I. The values of I and 
E(I) are used to calculate a normalized statistical 
value for I, Z(I) which should have a normal 
distribution. The null hypothesis of the normality 
test is the absence of spatial autocorrelation; if 
|I, Z(I)| > 1.96 for a two-tailed test with confidence 
level p=0.05, the null hypothesis is rejected at this 
confidence level. The Z statistic was calculated as:

Z(I) = [I – E(I)]/S

where S is the standard deviation of I.
Data Mapping Methods. Relationships between 

soil and cotton properties could be useful in zone 
delineation for site-specific practices, so it was im-
portant to map the parameters measured. Any spatial 
autocorrelation in a particular parameter must be ac-
counted for when creating interpolated maps of that 
parameter. Kriging is a method of interpolation that, 
when calculating values of points that have not been 
sampled, generally assumes the existence of spatial 
autocorrelation evident at the sampling distance. Ac-
cording to the cross-validation variance, the Gaussian 
model fit the data best of the models available.

The Gaussian function is described as follows:

γh = C0 (1 – e–(–h/L)2) + γ0

Where h = lag, γ0 = nugget, C0 = sill-nugget, and 
L = length scale.

If spatial autocorrelation is not found at the 
spatial scale of the data, other interpolation meth-

Multiple linear regression (MLR) analysis was 
used to determine the ability to use soil properties to 
estimate cotton properties, with a focus on micronaire. 
The PROC RSQUARE procedure was used in an 
effort to eliminate the effects of possible additional 
collinearity. This method assumes that, for a given 
number of independent variables in a model, the 
combination with the highest R2 value is the optimal 
model. However, the value of R2 increases with each 
additional independent variable in the model regard-
less of the variable’s predictive power. Therefore, 
Mallow’s Cp was used in determining the model 
with the most appropriate number of independent 
variables. For a subset model in which k is the number 
of variables used,  indicates a potentially 
under-specified model, whereas  indicates 
a potentially over-specified model. When the value 
of Cp is approximately equal to the number of regres-
sors in the model, a reasonable model is indicated. It 
should be pointed out that PROC RSQUARE uses the 
error mean square from the most complete model to 
estimate variance. If this is not a good estimate, then 
the bias portion of Cp can be negative, in which case 
Cp can be less than k (Walpole and Myers, 1993). 
According to Myers (1990), the lowest value of Cp in 
a group of regression models generally indicates the 
most appropriate model.

In addition to the problem of collinearity among 
measured parameters, spatial autocorrelation can 
present a problem with linear models. Cliff and Ord 
(1973) stated that spatial autocorrelation among 
regression residuals could imply an improper regres-
sion model. Spatial autocorrelation, the relationship 
of a variable to itself across space, exists between 
two points if the value at one point can give an 
indication of the value at the other point. Because 
linear regression assumes independent and identical 
error distribution, spatial autocorrelation presents 
a problem for regression models if the error terms 
show a spatial pattern in which points close together 
are more similar or different than points farther apart. 
Positive spatial autocorrelation means that more 
similar values tend to be near each other, whereas 
negative spatial autocorrelation means that more 
different values tend to be near each other.

Spatial error dependence in a linear model com-
monly is diagnosed with Moran’s I statistic (Moran, 
1948). Moran’s I compares the value of the variable 
at any one location with the value at all other loca-
tions (Anselin and Rey, 1991; Griffith, 1987) and is 
formally defined as follows:
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ods can be equally valid. Regardless, kriging maps 
were developed for all soil and cotton HVI param-
eters with the Surfer version 14 software package 
(Golden Software, Golden, CO). The size of the 
sampling grid, 0.4 ha (1.0 acre), restricted the mini-
mum distance at which the actual ranges of spatial 
autocorrelation could be calculated to roughly 64 
m (209 ft), the shortest distance between two grid 
points. The existence of spatial autocorrelation at 
a smaller scale was not detectable with the data 
set at hand and would not have affected the MLR 
analyses regardless.

RESULTS

Data Summary. The difference in growing-
season rainfall distribution between years one and 
two was evident in the yield (Table 1), which was 
53% higher (on average) in year two than year 
one. The lesser amount of pre-plant rainfall in 
year one resulted in less available soil moisture 
to initiate a good stand, and the lesser amount of 
rain over the first 25 d after planting added to the 
problem. Then, the much higher rainfall over the 
next 35 d of crop development led to rank growth 
of biomass and delayed onset of fruiting. Finally 
the lower rainfall in the next 50 d of midseason 
fruit development, along with a 28-d span with no 
rainfall in late July and early August, the hottest 
time of year, further compounded the problem, 
severely reducing yield in year one. The reduction 
was particularly acute in South field, which had 
better soil conditions. Year two yield in South field 
was 84% higher than in year one, whereas year two 
yield in North field was 22% higher than in year 
one. Average elevation (Table 1) in South field 
was 7.6 m higher than that of North field, but the 
average slope of South field was 3.3%, whereas 
North field averaged 5.1%.

Notable differences in soils data are as follows 
(Table 2). Clay content was 8% higher in South 
field. A soil constructed of the average clay and 
sand contents from the two fields would rate as 
silty clay loam for the South field and silt loam for 
the North field. Soil pH was higher in North field 
and slightly higher overall in year two. Levels of 
K were higher in South field and higher overall 
in year one. Levels of P were higher in South 
field. Levels of Mg were higher in North field and 
higher overall in year two. Levels of Ca were much 
higher in North field, corresponding to its higher 

pH. Levels of Na were higher in South field and 
higher overall in year one. Other than Ca and P, 
soil properties exhibited normal or nearly normal 
distributions. There was considerable variability in 
the soils data for each year and field. Coefficients 
of variation (CVs) above 50% in soil properties 
existed for Ca and P in North field year one and 
Na in North field year two.

Fiber-quality properties (Table 3) were nor-
mally distributed and exhibited significant vari-
ability in each year and field as well. However, the 
only fiber property with a CV in excess of 10% was 
micronaire, with a high of 12.4% in North field 
year two and a low of 5.3% in South field year two. 
The higher level of in-field variability of micro-
naire compared to other fiber-quality properties is 
consistent with the literature and is the reason why 
studies of spatial variability of fiber quality have 
tended to focus on micronaire. The value of mi-
cronaire (overall mean of 4.20) tended to be higher 
in South field, probably because of the better soils 
in South field and thus the likely greater level of 
water availability during fiber development. Year-
to-year trends had micronaire increasing in South 
field—as might have been expected because of 
better rainfall patterns and correspondingly higher 
yield—but decreasing in North field. The reason 
for reduced micronaire in North field year two is 
unknown, but it is likely related to the following: 
(a) North field had lower clay content and higher 
average slope than South field, which could have 
caused the high rainfall in the early part of year 
one to run off and percolate through more quickly, 
meaning a lower propensity to be waterlogged and 
thus more mature plants during the fiber develop-
ment period; and (b) the lesser amount of rain 
early in year two could have resulted in a lack of 
water for adequate plant growth early in the sea-
son, meaning that fruiting was delayed. Each field 
and year included some cotton in the micronaire 
discount and premium price ranges (Table 4), with 
North field year one being the best (2.2% low, 0.0 
% high, 55.6% premium) and North field year two 
being the worst (22.9% low, 2.1% high, and 33.3% 
premium). Strength had an overall mean of 26.8 
g/tex. Length (overall mean of 33.4 32/in) and 
uniformity (overall mean of 81.3%) were slightly 
higher in year one. The values of Rd and +b were 
higher in year two, with Rd being slightly higher 
overall in South field, whereas +b was slightly 
higher overall in North field.
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Correlation Analysis. Pearson correlation 
analysis among all soil properties, site elevation 
and slope, and fiber properties indicated that 
numerous properties were correlated across both 
fields and both years at the 0.05 significance level 
within and among all variable groups. Yield was 
positively correlated with micronaire, Rd, and 
elevation (Table 5). One pair of fiber properties 
(Rd and +b) and several soil and site parameters 
were correlated with an R greater than 0.50 in 
magnitude. The most commonly occurring soil 
and site properties in this category were clay, 
pH, and elevation. Soil-clay relationships were 
expected because clay provides binding sites for 
soil nutrients and is commonly correlated with 
elevation due to the size-related dislocation and 
translocation properties of the soil particles. Crop 
management practices such as ground work (e.g., 
tillage, land forming) and fertilizer application 
can influence correlations among soil nutrients. 

Table 1. Elevation and slope for South and North fields as well as yield in both fields for years 1 and 2

Field Mean Elevation (m above field reference) Mean Slope (%) Year Mean Yield (lb./ac.)

South +10.70 3.28
1 1245
2 2294

North +3.15 5.10
1 958
2 1169

Table 2. Soil properties in South and North fields in years 1 and 2

Field
Clay (%) Sand (%)

Year
pH K (ppm) P (ppm) Mg (ppm) Ca (ppm) Na (ppm)

Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV

South 27.7 11.8 15.7 21.6
1 5.44 11.9 112.7 18.5 31.9 31.5 50.7 24.7 3984 57.9 51.8 27.7
2 5.93 12.2 72.6 23.7 26.4 30.8 54.8 28.0 4112 162.8 55.9 23.1

North 19.6 34.5 15.1 27.1
1 6.90 11.2 86.4 22.3 7.5 74.2 52.0 27.5 10276 73.2 40.9 38.1
2 7.25 12.0 63.8 31.3 13.7 35.7 69.4 45.3 10392 94.2 26.3 66.0

Table 3. Cotton fiber properties in South and North fields in years 1 and 2

Field Year
Mike (units) Strength (g/tex) Length (in./32) Unif. (%) Rd (units) +b (units)
Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV

South
1 4.31 8.6 25.9 5.5 33.6 2.1 81.4 1.1 69.0 2.2 7.00 6.2
2 4.65 5.3 27.7 6.3 33.0 2.4 81.4 1.0 76.0 1.1 7.84 4.6

North
1 4.06 9.2 27.2 5.9 34.1 2.0 82.0 1.1 69.5 1.4 7.07 3.8
2 3.88 12.4 26.5 6.3 32.9 2.6 80.5 1.4 73.7 1.7 7.94 3.7

Table 4. Percentage of cotton samples in the low-micronaire and high-micronaire price discount ranges and the premium 
price range

Field Year Low Discount (%) High Discount (%) Premium (%)

South
1 2.7 0.0 40.5
2 0.0 13.2 2.6

North
1 2.2 0.0 55.6
2 22.9 2.1 33.3

Table5. Individual variables—elevation, slope, yield, soil 
properties, and fiber properties—correlated with one 
another at R2 levels above 0.40

Correlated pairs of properties
(|R|>=0.50)

Correlated pairs of properties
(0.40<=|R|<0.50)

Rd, +b (0.696) mike,pH (-0.465)
clay,pH (-0.507) mike,P (0.405)
clay,Na (0.537) mike,elev. (0.493)
clay,elev. (0.504) lngth,unif. (0.417)
pH,Ca (0.695) lngth,+b (-0.448)
pH,P (-0.533) clay,P (0.483)
pH,elev. (-0.656) pH,Na (-0.443)
Ca,Mg (0.577) Ca,elev. (-0.407)
P,elev. (0.633) Na,elev. (0.463)
mike, yield (0.683) elev., yield (0.491)
Rd, yield (0.565)

No fiber properties were as strongly correlated 
with individual soil and site properties, but mi-
cronaire was correlated with elevation, pH, and P 
at R-magnitude levels above 0.40.
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MLR Analysis. Based on MLR with Mallow’s 
Cp, the R2 values for most models were found to be 
less than 0.5. For the full model with all indepen-
dent variables (X), the dependent variable (Y) with 
the largest R2 value was micronaire. Collinearity 
diagnostics (condition index) showed that collin-
earity existed among the independent variables. 
The optimal prediction model for micronaire based 
on Mallow’s Cp has an R2 value of 0.42 (Table 6). 
Thus, in the best case with an optimal model, soil 
variability could account for only 42% of the vari-
ability in a fiber-quality parameter. It is worth noting 
that the largest model selected by Mallow’s Cp had 
three regressors. It is also worth noting that Mg was 
a regressor in three of four optimal models, whereas 
pH was a regressor in two. For these two fields over 
the two years of study, pH and Mg had significant 
explanatory power.

north-central and southeastern parts of the field 
grew higher micronaire fiber, regardless of the year. 
Some level of consistency in the micronaire maps 
between years suggests that these maps can provide 
an estimate of future micronaire values, perhaps 
serving as a starting point for segregated harvesting 
based on micronaire.

Table 6. Micronaire prediction model selected based on 
multiple linear regression with Mallow’s Cp for optimal 
model size

Year Field R2 Model Variables
1 South 0.42 pH
1 North 0.31 Mg
2 South 0.20 Ca, Mg
2 North 0.41 pH, Mg, Na

Figure 1. South field micronaire map, year 1.

Spatial Autocorrelation Analysis. The Moran’s 
I statistics for each field and year include Z(I) values 
between -1.96 and +1.96 (Table 7), so no significant 
spatial autocorrelation appears to exist in the residu-
als at the 0.05 significance level. This result indicates 
that the 64 m (209 ft) sampling distance did not cause 
autocorrelation problems in the prediction models, 
and that an interpolation method other than kriging 
would have been reasonable.
Table 7. Results of Moran’s I in residuals of regression model

Field 
and Year Sample 

Size
Moran’s 

I
Expected 

I
Std  
of I Z(I)

South 1 37 -0.008 -0.028 0.036 0.538
North 1 45 -0.037 -0.023 0.030 -0.494
South 2 38 -0.030 -0.027 0.036 -0.074
North 2 48 0.001 -0.021 0.028 0.779

Data Mapping. In the South field, micronaire 
maps from years one and two (Figs. 1 and 2) indi-
cate that the southwestern part of the field tended 
to produce higher micronaire fiber, regardless of 
the year. In the North field, micronaire maps from 
years one and two (Figs. 3 and 4) indicate that the 

Figure 2. South field micronaire map, year 2.

Figure 3. North field micronaire map, year 1.
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Figure 4. North field micronaire map, year 2.

DISCUSSION

The level of spatial variability in soil and fiber 
properties, particularly regarding micronaire, fol-
lowed the literature (Elms and Green, 1998; Johnson 
et al., 2002; Kerby, 1994; Warrick and Gardner, 
1983) and suggested that micronaire is the best can-
didate for prediction in the field. However, because 
soil-parameter variation accounted for a maximum 
of 42% of the variation in micronaire, predicted 
micronaire maps could not be expected to reflect 
accurately the actual micronaire maps. Ultimately, 
predicting cotton micronaire values based on soil 
parameters alone appears to be impractical, and more 
factors (such as history of spatial variation, tem-
perature, and precipitation trends during the growing 
season, cultural practices, planting and harvesting 
date, and variety) should be considered to be able 
to delineate field zones for precision management 
of micronaire. Research on engineering solutions 
to mapping of classing-office fiber quality data back 
to the field has been conducted (Ge et al., 2012). 
Modern harvesters, which produce modules of seed 
cotton onboard the machine, enable the collection 
of position data during harvest, so it is now possible 
to map the boundaries of each harvested module. If 
fiber quality data from bales originating from each 
module were averaged and mapped back to the mod-
ule harvest zone, micronaire maps could be made at 
the resolution of individual modules. Furthermore, 

research has been conducted to develop image-based 
optical sensors for micronaire estimation (Sui et al., 
2008), and this capability was ultimately developed 
for seed cotton so that it could be applied on a har-
vester (Schielack et al., 2016), potentially enabling 
high-resolution micronaire maps to be produced. 
Similarities that existed between micronaire maps 
of the same field for two different years suggest that 
historical micronaire maps can help provide an esti-
mate of future micronaire values and perhaps serve 
as a starting point for segregated harvesting based 
on micronaire. An intelligent information system 
that can store and analyze multiyear and multifield 
data sets might be useful in finding a more effec-
tive prediction method for micronaire. Significant 
percentages of cotton from these fields were in the 
micronaire discount and premium price ranges, an 
indication that harvest separation potentially can be 
economically justifiable.

CONCLUSION

Previous research found that cotton fiber-quality 
variation exhibits some correlation with soil-property 
variation. However, there has been no solid evidence 
that fiber-quality variation could be predicted ef-
fectively by soil parameters. Two years’ data of 
soil nutrient content and texture for two fields in 
Brooksville, MS were studied with respect to their 
predictive capabilities in regard to fiber quality. 
Multiple regression analyses were conducted to 
determine whether fiber-quality factors could be 
estimated effectively from soil parameters, and 
spatial autocorrelation was considered by calculat-
ing Moran’s I. Kriging maps were produced for all 
measured parameters and for predicted micronaire 
values. The following conclusions were drawn: 1. a 
notable amount of variation existed in most of the 
soil parameters and in some cotton fiber-quality fac-
tors; 2. cotton fiber micronaire exhibited relatively 
large variability among fiber-quality parameters; 3. 
significant percentages of cotton from these fields 
fell in the micronaire discount and premium price 
ranges; 4. spatial autocorrelation was shown not to 
be a factor in the field data, which were collected 
at a grid distance of approximately 64 m (209 ft); 5. 
similarities existed between micronaire maps of the 
same field for two different years; and 6. soil param-
eters accounted for only a portion of the variation in 
micronaire, at best approximately 42%.
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