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ABSTRACT

An experiment was conducted in 2013 to 
determine the extent that soil microbes degrade 
neonicotinoid insecticides, commonly used as 
insecticide seed treatments, into secondary me-
tabolites. Soil was collected from a field where 
efficacy problems against thrips (Thysanoptera: 
Thripidae) were observed in cotton during 2013. 
At the same time, soil was also collected from an 
area with no previous exposure to insecticides. 
Part of the soil from each location was sterilized 
by autoclaving. Both sterilized and unsterilized 
soil were treated with an identical dilution of 
either Gaucho 600 (imidacloprid) or Cruiser 
5F (thiamethoxam). After 25 days, samples 
were tested to determine the concentrations of 
neonicotinoid insecticides, including metabolites. 
Thiamethoxam and two of its metabolites were 
detected in soil treated with the Cruiser dilution. 
Imidacloprid and three of its metabolites were 
detected in soil treated with Gaucho. Sterilizing 
the soil sample significantly reduced the con-
centrations of imidacloprid and thiamethoxam 
metabolites. These results suggested that soil 
microbes were present in the soil samples from 
both locations that can degrade insecticides. The 
levels of degradation to secondary metabolites 
were approximately 14% and 2% or less for 
imidacloprid and thiamethoxam, respectively. 
It is unlikely that these relatively low levels of 
microbial metabolism would substantially im-
pact the efficacy of insecticide seed treatments, 
especially considering the primary metabolites 
found retain some insecticidal activity.

Several species of thrips (Thysanoptera: Thripidae) 
are common pests of cotton that routinely rank 

among the top three insects reducing yield in the 
United States (Stewart et al. 2013, Williams 2013). 
Preventative at-planting treatments, either in-furrow 
granular or liquid insecticides or seed treatments, are 
often recommended to control thrips infestations in 
seedling cotton (Cook et al. 2011). In the last ten 
years, neonicotinoid seed treatments such as Gaucho 
(imidacloprid; Bayer CropScience, Raleigh, NC) or 
Cruiser (thiamethoxam; Syngenta, Greensboro, NC) 
have been used almost exclusively for thrips control 
in Tennessee and much of the Cotton Belt.

Under field conditions, neonicotinoid insecti-
cides are known to persist in the soil for a year or 
longer, albeit at relatively low levels relative to 
initial concentrations (Stewart et al. 2014, Xu et 
al. 2016). Under laboratory conditions, Sharma 
and Singh (2014) found the half-life of imidaclo-
prid in soil to be 32 – 43 days, depending upon 
soil type. Metabolites found in this study included 
chloronicotinic acid, imidacloprid-nitroguanidine, 
imidacloprid olefin and imidacloprid 5-hydroxy. 
Similarly, Karmakar et al. (2006) reported a half-
life of thiamethoxam of 11 – 26 days in four soil 
types. Clothianidin is a recognized primary metabo-
lite of thiamethoxam (Nauen et al. 2003, Tomizawa 
and Casida 2005).

Beginning roughly in 2011 in the Mid-South, 
thrips control failures with neonicotinoid seed treat-
ments, particularly thiamethoxam, became more 
commonly observed (Stewart 2013). Continuous 
use of some pesticides has been known to speed up 
microbial degradation of certain herbicides, such as 
atrazine (Mueller et al. 2010, 2015), and insecticides 
such as aldicarb (Suett and Jukes 1988). Zhou et al. 
(2013) reported the bacterium Ensifer adhaerens 
degrades thiamethoxam from the rhizosphere soil, 
so metabolism of neonicotinoid insecticides by soil 
microorganisms is not unexpected. Therefore, an 
experiment was conducted in 2013 to determine the 
extent that soil microbes degrade thiamethoxam and 
imidacloprid into secondary metabolites, potentially 
reducing their efficacy to control insect pests.
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MATERIALS AND METHODS

Soil Collection and Preparation. In early July of 
2013, a Collins silt loam soil was collected from a field 
at the Milan Research and Education Center in Milan, 
TN. Neonicotinoid seed treatments had been used annu-
ally in this field for cotton or corn, since 2002, with the 
exception of two years (2006, 2009) where soybean was 
planted without an insecticide seed treatment. This field 
was selected because poor control of thrips by neonicoti-
noid seed treatments, especially thiamethoxam, had been 
observed during 2012 and 2013 as noted by Vineyard 
(2015) (Fig. 1). At the same time, a Bibb fine sandy loam 
soil was collected at the West Tennessee Research and 
Education Center in Jackson, TN from a mowed grassy 
area that was isolated from agricultural fields and had 
no previous exposure to insecticides. Approximately two 
19.4-liter (5 gal) buckets of soil were collected at each 
location from the top 5 - 7.5 cm of the surface. The soil 
was thoroughly mixed, and about 50% of the soil from 
each location was sterilized by autoclaving for 60 min-
utes at 121°C and allowed to cool to ambient temperature.

Immediately after treating, the soil was mixed 
within self-sealing plastic bags, transferred to 250 
ml plastic beakers, and stored in an open shed for 15 
days at shaded, ambient outside temperatures. Daily 
maximum temperatures averaged 31.0°C (range = 
28.9 – 33.3°C) during the duration of the study, with 
an average minimum temperature of 19.5°C (range 

= l5.0 – 22.8°C). Distilled water (30 ml) was added 
on day three and nine of the 15-day storage period 
to prevent desiccation. After 15 days, the beakers 
were transferred to a temperature-controlled room 
and held for ten days at 20-23°C to allow for addi-
tional drying. The soil was again mixed as described 
above, and a 57 g (2 oz) subsample was submitted 
for testing of neonicotinoid concentrations.

Chemical Analyses. Soil samples were analyzed 
to determine the levels of neonicotinoid residues by 
the United States Department of Agriculture Agricul-
tural Marketing System (USDA AMS) Science and 
Technology Laboratory Approval and Testing Divi-
sion, National Science Laboratories, Gastonia, NC. 
This laboratory is accredited to ISO/IEC 17025:2005 
for specific tests in the fields of chemistry and micro-
biology, including testing for pesticide residues. The 
samples were extracted for analysis of agrochemicals 
using a refined methodology for the determination 
of neonicotinoid pesticides and their metabolites 
using an approach of the official pesticide extraction 
method (AOAC 2007.01), also known as the QuECh-
ERS method, and analyzed by liquid chromatography 
coupled with tandem mass spectrometry detection 
(LC/MS/MS) (Kamel 2010; Lehotay et al. 2005; 
Zhang et al. 2011). Quantification was performed 
using external calibration standards prepared from 
certified standard reference material. The analyti-
cal limit of detection (LOD) for each neonicotinoid 
insecticide and its metabolites are shown in Table 1.

Statistical Analyses. Within an insecticide treat-
ment, data were analyzed as a two by two factorial of 
soil location and autoclaving treatment. The relative 
amount of total metabolites present as a percentage 
of the total neonicotinoid concentration was calcu-
lated for each sample. An arcsine transformation 
was used because percentages were analyzed and 
preliminary analysis indicated that transformation 
normalized the data. Proc GLIMMIX (SAS Institute 
Inc. 2013) was used to determine main effects of 
location, autoclaving treatment, and their interaction 
on the concentration of neonicotinoid metabolites (α 

= 0.05, LSMEANS, DDFM=SATTERTHWAITE). 
The relative concentrations of individual metabolites 
were evaluated identically.

Figure 1. Thrips injury observed in cotton during 2013 
where an in-furrow treatment of aldicarb (Temik 15G, 820 
g ai/ha) or insecticide seed treatments of thiamethoxam 
or imidacloprid (Cruiser 5F or Gaucho 600, 0.375 mg ai/
seed) was applied. Relative injury was rated on a 0 – 5 scale 
with 0 indicating no injury. Data are shown for 22 and 27 
days after planting. Different letters indicate significant 
differences among treatments by rating date (P < 0.05).

Soil Insecticide Treatment. Both sterilized and 
unsterilized soil from each location were treated with 
an identical dilution of either Gaucho 600 (imidaclo-
prid, Bayer CropScience) or Cruiser 5F (thiamethoxam, 
Syngenta). Because drying might affect the viability of 
soil microbes, there was no attempt to standardize dif-
ferences in the moisture of soil collected from the two 
locations or resulting from autoclaving. A dilution was 
prepared of 0.5 ml of formulated product per 1,000 ml 
of water, and a syringe was used to add 10 ml of this 
solution to 341 g (12 oz) of soil. This was replicated four 
times for each combination of insecticide, autoclaving 
treatment, and soil-collection location.
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RESULTS

Thiamethoxam and two of its metabolites, clo-
thianidin and clothianidin TZMU, were detected in soil 
treated with Cruiser. Clothianidin composed 89% of 
metabolites detected, but represented <1% of the total 
neonicotinoid concentration in the soils treated with 
thiamethoxam. Imidacloprid and three of its metabo-
lites were detected in soil treated with Gaucho. Detect-
able imidacloprid metabolites included imidacloprid 
olefin, imidacloprid olefin des nitro, and imidacloprid 
urea. Across both locations and autoclaving treatments, 
these metabolites represented 6.9, 1.1, and 0.6% of the 
total neonicotinoid concentration, respectively. Average 
concentration levels (ng/g or ppb) for parent neonic-
otinoids and total metabolites are presented in Table 2.

For soil treated with imidacloprid, there was 
a significant main effect of autoclaving (F = 237; 
df = 1, 12; P < 0.0001). There was approximately a 
10 – 12% reduction in metabolites of imidacloprid 
when the soil was autoclaved (Table 3). The source 
of the soil did not significantly affect this result (P = 

0.5633) nor was there a significant interaction of soil 
source and the sterilization treatment (P = 0.0977).

Much lower percentages of metabolites were found 
in soil treated with thiamethoxam, ranging from 0.1 – 
2.1% of the total neonicotinoid concentration (Table 
3). However, soil source, the autoclaving treatment, 
and the interaction of these two factors were highly 
significant (F = 66.7, 46.3 and 33.2 respectively; df = 
1, 12; P < 0.0001). In general, a higher percentage of 
thiamethoxam metabolites were found in soil collected 
from the agricultural field in Milan compared with the 
Jackson location (Table 3). For thiamethoxam-treated 
soil from the Milan location, metabolites as a percent-
age of total neonicotinoid concentrations were about 
five-fold higher in unsterilized soil compared with 
sterilized soil. In the non-agricultural field (Jackson), 
total thiamethoxam metabolites were reduced 2.2-fold 
by sterilizing the soil.

When analyzed across both locations, within 
the insecticide treatment, all individual metabolite 
concentrations were reduced by autoclaving the soil 
(data not shown; F > 60; df =1, 12; P < 0.0001 for all).

Table 2. Mean ± SE concentration levels (ng/g) of parent neonicotinoid insecticides and the total of their metabolites in soil 
treated with thiamethoxam (Cruiser) or imidacloprid (Gaucho)

Soil Treatment Location Autoclaved Concentration (ng/g)
Thiamethoxam Metabolites

Thiamethoxam Jackson Yes 6,070 ± 347 6.3 ± 4.5
Jackson No 5,878 ± 472 17.8 ± 17.8
Milan Yes 6,480 ± 218 27.8 ± 1.8
Milan No 7,828 ± 164 171 ± 6.9

Imidacloprid Metabolites
Imidacloprid Jackson Yes 4,660 ± 283 113 ± 67.1

Jackson No 3,900 ± 330 643 ± 44.6
Milan Yes 5,703 ± 83 230 ± 20.9
Milan No 5,860 ± 489 900 ± 45.2

Table 1. Neonicotinoid residues of parent compounds, their metabolites, and the analytical limit of detection (LOD) that 
were screened for during analyses of soil samples

Pesticide Residue LOD (ng/g) Pesticide Residue LOD (ng/g)
Thiamethoxam 1.0 Imidacloprid 1.0
Thiamethoxam metabolites Imidacloprid metabolites

Clothianidin z 1.0 6-Chloronicotinic acid 30
Clothianidin MNG 50 Imidacloprid 5-hydroxy 1.0
Clothianidin TMG 50 Imidacloprid des nitro hcl 2.0

Clothianidin TZMU z 50 Imidacloprid olefin z 10
Clothianidin TZNG 50 Imidacloprid olefin des nitro z 16

Imidacloprid urea z 1.0
z Metabolites detected in this study



131VINEYARD AND STEWART: MICROBIAL DEGRADATION OF NEONICOTINOID INSECTICIDES IN THE SOIL

standard seed treatment rate of 0.375 mg ai/seed for 
either imidacloprid or thiamethoxam, this represents 
a dose equivalent to eight treated seed in the same 
volume of soil. This would appear to be a reason-
able approximation of a field dose. It seems unlikely 
that the levels of microbial metabolism we observed 
would appreciably impact either insecticides ability 
to control insect pests when used as seed treatments. 
Also, the primary metabolites detected, clothianidin 
and imidacloprid olefin, retain some insecticidal 
activity. For example, both Surchail et al. (2001) 
and Nauen et al. (2001) reported that imidacloprid 
and imidacloprid olefin had similar oral LD50 
values for adult honey bees, Apis mellifera L. (Hy-
menoptera: Apidae), whereas imidacloprid urea is 
essentially non-toxic. Clothianidin is a commonly 
used seed treatment in many crops including corn, 
Zea mays L., although personal observations in field 
tests indicate less activity than thiamethoxam when 
used at equivalent rates for thrips control in cotton 
(unpublished data).

Tobacco thrips, Frankliniella fusca (Hinds), are 
the most common thrips species found on seedling 
cotton in the Mid-South and Southeast (Stewart et al. 
2013). More recent research has shown that tobacco 
thrips have developed resistance to neonicotinoid 
insecticide in much of the Mid-South and Southeast 
(Darnell et al. 2015, 2016; Huseth et al. 2016), and 
insecticide resistance has been associated with the 
diminished performance of neonicotinoid insecti-
cides in controlling thrips in cotton. Indeed, assays 
of tobacco thrips collected from the Jackson and 
Milan locations during 2014 indicated resistance 
to both thiamethoxam and imidacloprid (Huseth et 
al. 2016). In comparison to documented resistance, 
microbial degradation in soils from these locations 
appears to be considerably less important.
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