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ABSTRACT

Precision agriculture in cotton production 
attempts to maximize profitability by exploiting 
information on field spatial variability to optimize 
fiber yield and quality. For precision agriculture to 
be viable economically, collection of spatial vari-
ability data within a field must be automated and 
incorporated into normal harvesting and ginning 
operations. An automated prototype system that 
uses image processing to estimate the micronaire 
value of cotton fiber during harvest was designed 
and built. The system was based on a camera with 
a visible Indium Gallium Arsenide detector sensi-
tive to a broad range of visible and near-infrared 
(NIR) energy. Image processing algorithms were 
developed to identify foreign matter in the images 
so that it could be excluded from the measurement 
of reflectance in three NIR wavebands. After the 
effects of foreign matter were removed, the NIR 
reflectance measurements had a strong relationship 
to standard micronaire measurements, even though 
the measurements were made on seed cotton, which 
has a high level of foreign matter compared to fiber 
samples. A simplified version of the system could be 
constructed from a similar camera with only three 
optical band-pass filters at 650, 1550, and 1600 nm. 
The prototype system developed shows promise for 
in-situ measurement of cotton fiber quality, specifi-
cally micronaire, and can enable creation of fiber 
quality maps to improve crop management and 
ultimately profitability.

Cotton farm revenue is determined by two major 
factors, yield and fiber quality, both of which 

vary significantly across farm fields (Ge et al., 2008; 
Johnson et al., 2002; Sassenrath et al., 2005). In a 

study by Ge et al. (2011), fiber quality’s importance 
in determining revenue was 13% that of yield in one 
field and 31% in another, so it is clearly important 
when considering field spatial variability. Currently, the 
only practical way to track fiber quality variability in a 
field is by using GPS to record the harvest locations of 
modules and assigning each module area an average 
quality based on post-facto measurements at the gin or 
classing office. Ge (2012) built and tested a wireless 
module-tracking system to map harvest boundaries 
of conventional modules within a field and Sjolander 
(2011a, b) automated the system’s operation. Since 
the introduction of onboard moduling harvesters, 
this mapping capability should be simpler and closer 
to commercial realization. However, although a 
fiber quality map generated in such a way would be 
useful, it would still not match the resolution of other 
variability maps such as those of yield, elevation, 
and soil electrical conductivity. Manual sampling to 
produce a high-resolution fiber quality map would 
be cost prohibitive, but high-resolution fiber quality 
measurements potentially could be integrated into the 
harvesting process if an automated fiber quality sensor 
were available for use on board a harvester.

Among fiber properties typically measured, 
micronaire is the most spatially variable (Ge et al., 
2008). High Volume Instrument (HVI) micronaire 
measurement is an established and accepted method 
of classifying fiber quality as it relates to fineness and 
maturity. However, the method used is applicable only 
with fiber samples in a laboratory setting because the 
instruments require controlled ambient conditions 
(ASTM, 2011). Thomasson and Shearer (1995) and 
Rodgers et al. (2009) found strong relationships 
between multiple spectroscopically measured near-
infrared (NIR) reflectance bands and micronaire (R2 

= 0.96 in both studies), and Sui et al. (2008) found an 
even stronger relationship (R2 = 0.98-0.99) between 
multiple NIR bands measured with a camera and the 
micronaire of the clean and uniform International Cot-
ton Calibration Standards.

It is apparent that optical-reflectance methods could 
be used for measuring micronaire, possibly enabling 
reduced instrument size and allowing for a harvester-
based sensing system. However, measuring micronaire 
on a harvester requires making the measurement on 
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seed cotton, a much more difficult task because of its 
entrainment of seeds and foreign matter. Cotton foreign 
matter and fiber have different reflectance properties 
throughout the visible and NIR portions of the spectrum 
(Fig. 1; unpublished data), so it is conceivable that for-
eign matter could be eliminated from the analysis; for 
example, Thomasson et al. (2005a, b) developed and 
tested an image analysis-based system that improved 
cotton color measurements by identifying foreign mat-
ter and removing it from the analysis. Also, Zhang and 
Li (2014) applied several image processing techniques 
to foreign-matter identification in cotton and have 
improved that capability. Although these studies have 
used a camera and an image analysis system to measure 
cotton color and trash content, the idea of measuring 
micronaire with such a system is novel.

luminate the presented sample, (5) optical filters and a 
mechanism capable of positioning and changing them 
to restrict reflected light to specified wavebands, (6) 
a data acquisition and computing device to store and 
process data collected by the imaging sensor and to 
control automated functions including filter changing 
and image acquisition, and (7) a set of algorithms to 
analyze the images and estimate micronaire.

An Indigo Alpha NIR camera with a visible In-
dium Gallium Arsenide detector (FLIR Technologies, 
Wilsonville, OR) was selected as the imaging sensor. 
It has NIR sensitivity in a wavelength range sensitive 
to fiber fineness and maturity as well as visible light 
sensitivity, which can enable clear differentiation of 
foreign matter from cotton fiber. Images collected with 
this sensor have 256 x 318 pixels with 12-bit resolution 
and are stored in double precision (64-bit) binary arrays. 
A sampling window of 3-mm thick Borofloat glass was 
integrated into a press frame (Fig. 2), enabling samples 
to be compressed flat against the window, presenting 
a roughly planar and void-free surface of cotton with 
some foreign matter interspersed. Because of the physi-
cal compression of the cotton sample against sampling 
glass, the surface image was taken as representative of 
the cotton and foreign matter composition. The overall 
imaging system was designed to be compact to simplify 
harvester adaptation, but minimum size was limited by 
the 25-mm focal distance of the camera’s lens. A steel 
frame was built to hold the camera and cotton sample 
at a constant position relative to each other. A pair of 
50-W quartz-tungsten-halogen (QTH) lamps (MR16 
Superline™ Reflecto™ Series; Ushio Corp., Cypress, 
CA) served as the light source because of their consis-
tent spectral output and emission across the visible and 
NIR range. The lamps were placed at the corners of the 
frame in positions that prevented direct reflection from 
the sampling window to the sensor.
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Figure 1. Spectral reflectance of cotton fiber and cotton trash 
(unpublished data).

The objective of this research was to design, build, 
and test a system that collects and analyzes visible 
and NIR images to estimate micronaire on cotton 
samples. Specific questions address (1) how accurately 
the system could measure micronaire in samples of 
machine-harvested seed cotton and lint and (2) how 
different methods of segmenting foreign matter from 
fiber affected the accuracy.

MATERIALS AND METHODS

System Design. The following components were 
required for a system to collect, store, and process 
images of cotton samples: (1) an imaging sensor that 
(a) provides sensitivity to variation in cotton fiber fine-
ness and maturity and (b) can differentiate between 
fiber and foreign matter, (2) a device to present cot-
ton samples to the imaging sensor, (3) a frame that 
defines and maintains the relative position between 
image sensor and sample, (4) a lighting system to il- Figure 2. Cotton sample imaging press and window.
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The sensing system required multiple images 
of the same cotton sample through different opti-
cal filters, so a motor-driven wheel (model F102B; 
ThorLabs, Newton, NJ) was incorporated to switch 
the filters without moving other system components. 
Optical band-pass filters at 1450, 1550, and 1600 
nm (part number FB1450-12, Fig. 3; FB1550-12, 
Fig. 4; and FB1600-12, Fig. 5; ThorLabs, Newton, 
NJ) were selected for their transmission properties 
in wavebands that had shown strong correlation 
to cotton fiber micronaire in the work of Sui et al. 
(2008). Filters at 650 and 1300 nm (part number 
FB650-40, Fig. 6; FB1300-30 Fig. 7; ThorLabs, 
Newton, NJ) were selected for their ability to dif-
ferentiate fiber from foreign matter according to 
unpublished data by Thomasson and Sui. A set of 
biconvex lenses transmitted the image across the 
filters in the filter wheel (Fig. 8). In the images 
collected each pixel represented 0.0625 mm2 of a 
cotton-sample surface.

Figure 3. Transmission curve for the 1450-nm band-pass 
filter with 12-nm FWHM.
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Figure 4. Transmission curve for the 1550-nm band-pass 
filter with 12-nm FWHM.
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Figure 5. Transmission curve for the 1600-nm band-pass 
filter with 12-nm FWHM.
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Figure 6. Transmission curve for the 650-nm band-pass filter 
with 40-nm FWHM.
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Figure 7. Transmission curve for the 1300-nm band-pass 
filter with 30-nm FWHM.

Figure 8. Sketch of the biconvex lens setup to transmit the 
image across the filter wheel.
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A laptop computer (Dell Corp., Round Rock, 
TX) controlled the filter wheel through a USB-to-se-
rial adapter and the camera through a frame-grabber 
card (PCI-1422; National Instruments, Austin, TX). 
Computer algorithms were written in C++ to control 
system operation, calibration, and image preprocess-
ing. MATLAB (Version 7; MathWorks, Natick, MA) 
code was written to post-process images.

The control system was designed to receive input 
from the sampling mechanism during automated op-
eration, which would indicate that a cotton sample had 
been collected and placed on the sample window. The 
control system would then position the appropriate 
optical filter between the image sensor and the cotton 

The camera’s spectral sensitivity, along with 
the spectral transmission properties of the vari-
ous filters and the spectral emission properties of 
the light source, caused great variation in sensor 
response when filters were changed. Thus, neu-
tral density filters were added to the band-pass 
filters, and the required transmission level of each 
(Table 1) was estimated by considering spectral 
energy content from light source to sensor. The 
components included in the calculations were the 
lamps (Fig. 9), the reflectance of a typical cotton 
sample (Fig. 10), each of the band-pass filters, 
and the imaging sensor (Fig. 11). Spectrally flat 
components (i.e., lenses) were excluded. These 
filter modifications roughly balanced the camera 
sensitivity across all the filters so that aperture 
and integration times could be held constant. Even 
though no significant refraction was expected to 
occur due to minor thickness differences of the 
optical filter combinations, a clear glass blank was 
attached to each to equalize the thickness of the 
filter combinations.
Table 1. Neutral density requirements on commercially 

available optical band-pass filters

Filter Part Number %T
FB650-40 100

FB1300-30 21
FB1450-12 100
FB1550-12 79
FB1600-12 70

Figure 9. Spectral data for the relative energy provided by 
the QTH lamps.
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Figure 10. Average spectral reflectance data for cotton fiber 
(Sui et al., 2008).

Figure 11. Indigo Alpha and visible Indium Gallium Arsenide 
photon relative spectral response (Walker, 2004).
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sample. Then an image specific to the current filter 
would be collected and stored before the wheel would 
move again. After images were collected through all 
optical filters, the processor would direct the sampling 
mechanism to release the current sample and begin 
collecting the next. During the actual experiment, 
sampling was done manually and input to the control 
system was given by the operator.

The calibration program used flat-field correction 
to account for any non-uniform illumination on the cot-
ton samples. The program directed the operator to place 
a plain white reference in the cotton sample holder so 
that it could be presented to the imaging sensor as a cot-
ton sample would be. The system then acquired images 
through each filter and created a map of illumination 
variability that would be used during preprocessing to 
correct images of cotton for non-uniform illumination 
through each of the five optical filters.

During post-processing, a particular image was 
analyzed to identify and exclude foreign matter pixels 
from those used to measure the reflectance of cotton 
fiber at each wavelength. Pixels were classified as 

“cotton” or “foreign matter” based on a modified ver-
sion of Otsu’s method (Otsu, 1979), a dynamic thresh-
olding method that previously had resulted in a strong 
relationship between NIR reflectance of fiber from 
International Cotton Calibration Standards and their 
micronaire values (Sui et al., 2008). With this method, 
a histogram of the pixel values in the cotton sample 
image was generated, and the distance between each 
pixel value and the mode pixel value was calculated. 
Both high and low threshold limits were set based on a 
preselected proportional distance from the mode pixel 
value. Pixel values between the thresholds were taken 
as representing cotton and those outside the thresholds 
were taken as representing foreign matter. Two images 
were used to differentiate foreign matter from fiber 
and the results were compared between the two. (1) 
A ratio image of the 650-nm and 1300-nm waveband 
images was calculated based on unpublished data by 
Thomasson and Sui, which indicated major differ-
ences in the way cotton fiber and foreign matter reflect 
light in these two wavelengths. The threshold limit 
parameters in this case were to exclude 10% of the 
pixels from the lower side of the histogram and pixels 
with values more than 1.5 times the mode value. (2) 
The original image at 650 nm was used by itself. The 
threshold limit parameters in this case were to exclude 
12% of the pixels from the high end of the histogram 
and then set the lower limit at the same distance as 
from the upper limit to the mode.

Experiment. A laboratory-based experiment 
was conducted to evaluate the operation of the 
fiber-quality sensing system and to quantify the 
relationship between seed cotton fiber reflectance 
and HVI micronaire values. Cotton samples were 
collected at the Texas A&M AgriLife Research 
farm in Burleson County, Texas. Because Stanislav 
and Morgan (2007) found a relationship between 
soil apparent electrical conductivity (ECa) in these 
fields and cotton fiber micronaire, ECa data were 
used to locate sampling points likely to maximize 
variation in micronaire values. The ECa data were 
organized into three groups: low, medium, and high. 
Stratified random sampling was used to generate 
a similar number of sampling points in each ECa 
group. A total of 86 sampling points were located 
with GPS and flagged, and samples were collected 
during harvest operations in 2008 and 2009. At each 
flag, cotton samples were collected from the duct of 
a John Deere 9965 cotton picker by reaching with 
a gloved hand into the airflow at the duct outlet 
and intercepting the cotton before it went into the 
picker basket. Several handfuls were required to 
collect approximately 0.25 kg of seed cotton per 
sample site, allowing plenty for presentation to the 
fiber-quality sensing system.

Because QTH lamps take time to reach a consis-
tent operating temperature and their energy output 
varies with temperature, the fiber quality sensing sys-
tem was turned on and allowed to equilibrate for at 
least 30 min. at the beginning of each data-collection 
session. After warm up, the camera was calibrated by 
adjusting gain and offset to provide expected outputs 
for dark and light reference tiles that were relatively 
spectrally flat across the spectral range of interest. 
After calibration, a 100-g (0.22-lb) subsample from 
each of the seed cotton samples was presented to 
the imaging system. The subsamples were pressed 
evenly in the press frame and then aligned with the 
positioning marks on the camera for image collec-
tion. The user operated the control-system software 
to initialize data collection.

Once imaging of the seed cotton samples was 
complete, samples were ginned at the Cotton Im-
provement Laboratory at Texas A&M University in 
College Station, TX. The same image acquisition 
and analysis process was repeated with the ginned 
lint samples. A portion of each lint sample was sent 
for HVI analysis, including micronaire measurement, 
at Texas Tech University’s Fiber and Bio-Polymer 
Research Institute in Lubbock, TX. Micronaire lev-
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els ranged from 3.1 to 4.7 for the 2008 harvest and 
3.8 to 5.1 for the 2009 harvest. Samples from both 
years were combined into one group for analysis. The 
cotton pixel values in each sample’s NIR image set 
were averaged, and these averages were compared to 
HVI micronaire values of the samples using multiple 
linear regression, in which micronaire value was the 
dependent variable. Models of one, two, and three 
regressors (image wavelengths) were compared for 
their ability to estimate micronaire.

RESULTS AND DISCUSSION

Overall, the fiber quality sensing system per-
formed as designed and analysis of image data 
collected with the system resulted in a strong re-
lationship between seed cotton image pixel values 
and the micronaire values of the ginned lint samples. 
The correlation was slightly stronger (R2 = 0.74) 
when basing the cotton versus foreign-matter pixel 
classification on the single image at 650 nm than 
on the 650- and 1350-nm image ratio (R2 = 0.73; 
Fig. 12; Table 2). Estimated micronaire values for 
seed cotton had a linear relationship with measured 
values, and half of the estimates were within 0.2 
units of measured micronaire. The relationship 
between image pixel values and micronaire was 
even stronger (R2 = 0.85 and 0.86, respectively) 
for the ginned lint samples.

It is clear that correlations between image-based 
reflectance and micronaire are stronger with lint cot-
ton than with seed cotton (Table 2). This result is not 
surprising, because foreign matter makes up a much 
larger portion of seed cotton than lint. To confirm the 
effects of foreign matter on reflectance measurements, 
one can note that Thomasson et al. (2005b) showed the 
relationship between uncleaned lint color and cleaned 
lint color to be much stronger than the relationship 
between seed cotton color and cleaned lint color.

Figure 12. Estimated vs. observed ratio image method; seed 
cotton.

Table 2. Linear regression results; generated using both seed-cotton and lint-cotton, and both the single-image and image-
ratio method of trash removal

Optical band-pass filter  
wavelength (nm)

Single Image Method Image Ratio Method
R2 Adj. R2 RMSE R2 Adj. R2 RMSE

Seed  
Cotton

1450 + 1550 + 1600 0.74 0.73 0.27 0.73 0.72 0.28
1450 + 1550 0.73 0.72 0.27 0.72 0.71 0.28
1550 + 1600 0.73 0.73 0.27 0.72 0.71 0.28
1450 + 1600 0.74 0.73 0.27 0.72 0.71 0.28

1450 0.68 0.67 0.30 0.66 0.65 0.31
1550 0.73 0.73 0.27 0.71 0.71 0.28
1600 0.73 0.73 0.27 0.71 0.71 0.28

Lint  
Cotton

1450 + 1550 + 1600 0.85 0.85 0.20 0.86 0.86 0.20
1450 + 1550 0.85 0.85 0.20 0.86 0.86 0.20
1550 + 1600 0.85 0.85 0.20 0.86 0.86 0.19
1450 + 1600 0.84 0.84 0.21 0.85 0.85 0.20

1450 0.80 0.80 0.23 0.81 0.81 0.23
1550 0.85 0.85 0.20 0.86 0.86 0.20
1600 0.84 0.84 0.21 0.85 0.85 0.20
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It is also clear that the image used for threshold-
ing, whether a single image at 650 nm or an image ra-
tio of 650 and 1350 nm, was not a major factor in the 
strength of relationship between cotton reflectance 
and micronaire. For seed cotton, the single-image 
method resulted in a slightly higher R2 value (0.74 
vs. 0.73). For lint cotton, the ratio-image method 
resulted in a slightly higher R2 value (0.86 vs. 0.85)

What might be somewhat surprising is that 
in most cases, reflectance in one wavelength was 
virtually as predictive of micronaire as reflectance 
in multiple wavelengths (Table 2). For seed cotton, 
the best one-regressor model (1550 or 1600 nm) 
had an R2 value of 0.73, whereas the three-regressor 
model had an R2 value of 0.74. For lint cotton, the 
best one-regressor model (1550 nm) had an R2 value 
of 0.86, whereas the three-regressor model also 
had an R2 value of 0.86. One might infer from this 
result that one spectral band would be adequate for 
estimating micronaire, but experience suggests that 
a sensor including multiple wavelengths will have 
superior robustness over a wide range of samples 
and environmental conditions.

Although the relationship between lint reflec-
tance and micronaire was not as strong (R2 = 0.86 
vs. R2 = 0.99) as in the report of Sui et al. (2008), it 
must be kept in mind that the lint used in this study 
was not specially prepared and had not been cleaned 
at all after harvest except for being run through a 
gin stand. The lint in the earlier report was specially 
prepared, very clean and uniform, International 
Cotton Calibration Standards. Thus it is likely that 
a major difference in strength of the relationship 
was the difference in foreign matter and prepara-
tion in the sets of cotton samples. Furthermore, the 
range of micronaire values in this study was 3.1 to 
5.1, whereas the earlier study had a range of 2.7 to 
5.6. This difference likely also explains some of the 
difference in strength of relationship.

To develop a dedicated sensor for harvester-based 
fiber quality measurement, simplicity and speed are 
desirable. Both of these can be achieved by reducing 
the number of spectral bands measured to as few as 
possible without negatively affecting accuracy. Be-
cause the results indicate that thresholding for trash 
based on one visible image was about as accurate as 
using a ratio of one visible and one NIR band, it is 
apparent that one visible band would be a better choice. 
Also, although one band was almost as accurate at 
estimating micronaire as were three bands, robustness 
is improved by using multiple bands, so it appears 

that two bands would be the best choice. Thus, a vis-
ible Indium Gallium Arsenide camera with rotating 
filters at 650, 1550, and 1600 nm should constitute a 
reasonably accurate and simple system.

CONCLUSIONS

A system was designed, built, and tested to acquire 
images of seed cotton, process them by removing the 
effects of the foreign-matter particles, and then aver-
age the reflectance of the cotton pixels and relate it 
to the measured micronaire value of the cotton fiber. 
The prototype system operated as designed and offers 
potential for being adapted to use on board a harvester, 
which would enable the creation of detailed fiber 
quality spatial-variability maps. The system showed 
a strong linear relationship between the reflectance 
of the fiber portion of seed cotton samples and mi-
cronaire values, and 50% of the estimated micronaire 
values were within 0.2 micronaire units of the HVI 
measured value. Analyses suggest that a camera 
sensitive to visible and NIR energy could be used as 
the sensor in such a system with only three optical 
band-pass filters. One at 650 nm could be used to 
detect foreign matter, and two at 1550 and 1600 nm 
could be used to estimate micronaire.
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