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ABSTRACT

The development and application of crop-
ping system simulation models for cotton pro-
duction has a long and rich history, beginning 
in the southeastern U. S. in the 1960s and now 
expanded to major cotton production regions 
globally. This paper briefly reviews the history 
of cotton simulation models, examines applica-
tions of the models since the turn of the century, 
and identifies opportunities for improving mod-
els and their use in cotton research and deci-
sion support. Cotton models reviewed include 
those specific to cotton (GOSSYM, Cotton2K, 
COTCO2, OZCOT, and CROPGRO-Cotton) 
and generic crop models that have been ap-
plied to cotton production (EPIC, WOFOST, 
SUCROS, GRAMI, CropSyst, and AquaCrop). 
Model application areas included crop water 
use and irrigation water management, nitrogen 
dynamics and fertilizer management, genetics 
and crop improvement, climatology, global 
climate change, precision agriculture, model 
integration with sensor data, economics, and 
classroom instruction. Generally, the literature 
demonstrated increased emphasis on cotton 
model development in the previous century 

and on cotton model application in the current 
century. Although efforts to develop cotton 
models have a 40-year history, no comparisons 
among cotton models were reported. Such ef-
forts would be advisable as an initial step to 
evaluate current cotton simulation strategies. 
Increasingly, cotton simulation models are be-
ing applied by nontraditional crop modelers, 
who are not trained agronomists but wish to 
use the models for broad economic or life-cycle 
analyses. Although this trend demonstrates 
the growing interest in the models and their 
potential utility for a variety of applications, 
it necessitates the development of models with 
appropriate complexity and ease-of-use for 
a given application, and improved documen-
tation and teaching materials are needed to 
educate potential model users. Spatial scaling 
issues are also increasingly prominent, as mod-
els originally developed for use at the field scale 
are being implemented for regional simulations 
over large geographic areas. Research steadily 
progresses toward the advanced goal of model 
integration with variable-rate control systems, 
which use real-time crop status and environ-
mental information to spatially and temporally 
optimize applications of crop inputs, while also 
considering potential environmental impacts, 
resource limitations, and climate forecasts. 
Overall, the review demonstrates a languished 
effort in cotton simulation model development, 
but the application of existing models in a 
variety of research areas remains strong and 
continues to grow.

Cotton (Gossypium hirsutum L. and Gossypium 
barbadense L.) is an important commodity 

crop globally, providing sources of fiber, feed, 
food, and potentially fuel for diverse industries. 
Cotton fiber is used in products ranging from 
textiles to paper, coffee filters, and fishing nets. 
Cottonseed meal and hulls are used mainly 
for ruminant livestock feed. Cottonseed oil is 
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currently refined as a vegetable oil for human 
consumption and has potential as a biofuel. From 
2008 to 2012, China was the top cotton producer 
and averaged 33.1 million bales annually (USDA-
FAS, 2013), followed by India (25.1 million 
bales), the U.S. (14.7 million bales), Pakistan 
(9.3 million bales), Brazil (7.2 million bales), 
Uzbekistan (4.2 million bales), and Australia (3.2 
million bales). One bale contains 218 kg (480 
lbs) of cotton fiber. In the 2010 to 2011 growing 
season, average global cotton fiber yield was 757 
kg ha-1 and ranged from 1681 kg ha-1 in Australia 
to 200 kg ha-1 in some resource-limited countries. 
A main issue for cotton in the developed world is 
the high cost of production, and improvements 
in cotton production practices are needed to 
keep cotton economically competitive with other 
commodity crops and alternative fiber sources. 
For cotton production to be sustainable, water 
and energy resource limitations also must be 
considered. These goals for improved cotton 
production can be realized with smarter irrigation 
and nitrogen (N) fertilizer management, better 
understanding of climate impacts on cotton yield, 
further advancement in cotton breeding and 
genetics, greater adoption of precision agriculture 
technologies, and increased knowledge of cotton 
genetics by environment by management (GEM) 
interactions.

Many of the issues facing cotton industries 
can be better understood and perhaps mitigated 
by implementing process-based cropping system 
simulation models (Boote et al., 1996; Reddy et 
al., 1997a), which are important and powerful 
computer-based tools for guiding cotton manage-
ment and research. Developers of these models 

synthesized the knowledge gained from decades 
of field, laboratory, and controlled-environment 
experiments and produced computer algorithms 
that simulate fundamental cropping system pro-
cesses, including evapotranspiration (ET), soil 
water redistribution, nutrient dynamics, energy 
transfer, and crop growth and development. Past 
model applications include assessing irrigation 
and N management alternatives for cotton (Hearn 
and Bange, 2002), analyzing potential global 
warming impacts on cotton production (Reddy et 
al., 2002a), and forecasting seed cotton yield (seed 
plus fiber) from satellite remote sensing images 
(Hebbar et al., 2008).

In the U.S., early development and application 
of crop growth models was historically linked 
with the cotton industry. By the mid-1970s, fun-
damental equations were developed to describe 
cotton growth and development (Baker et al., 
1972; McKinion et al., 1975; Wanjura et al., 1973), 
cotton plant N balance (Jones et al., 1974), ET, 
and soil water balance (Ritchie, 1972; Shirazi et 
al., 1976). Also, the effects of leaf angle and leaf 
area vertical distribution on light penetration and 
cotton canopy photosynthesis had been examined 
using computer models (Fukai and Loomis, 1976). 
Approaches for simulating the development of 
cotton fruits, including squares, bolls, seed, and 
fiber, were investigated later (Jackson et al., 1988; 
Wanjura and Newton, 1981). Notably, these initial 
efforts led to the development of the GOSSYM 
simulation model (Table 1) and the accompany-
ing CrOp MAnagement eXpert system (COMAX), 
which was used across the U.S. Cotton Belt to 
guide on-farm cotton management in the 1980s 
(McKinion et al., 1989; Whisler et al., 1986).

Table 1. General information on existing cotton simulation models.

Model Predecessor 
Models

Programming 
Language

Time  
Step

Key  
References

Decision Support  
Tools

GOSSYM SIMCOTI
SIMCOTII

Fortran Daily Baker et al. (1983)
Reddy et al. (2002b) COMAX

Cotton2K GOSSYM
CALGOS

C++, formerly 
Fortran Hourly Marani (2004) None

COTCO2 KUTUN
ALFALFA Fortran Hourly Wall et al. (1994) None

OZCOT SIRATAC C#, formerly 
Fortran Daily Hearn and Da Roza (1985)

Hearn (1994)

APSIM
CottBASE

HydroLOGIC
VARIwise

Whopper Cropper
CSM-CROPGRO-

Cotton
CROPGRO-

Soybean Fortran Daily Hoogenboom et al. (1992)
Jones et al. (2003) DSSAT
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In addition to GOSSYM/COMAX, other 
simulation models for cotton production systems 
were developed more recently (Table 1): Cotton2K 
(Marani, 2004), COTCO2 (Wall et al., 1994), 
OZCOT (Hearn, 1994), and CROPGRO-Cotton 
(Jones et al., 2003; Pathak et al., 2007, 2012). A 
variety of generic cropping system models, with 
reduced complexity for simulating a variety of 
crop types, were also recently evaluated for cot-
ton production (Farahani et al., 2009; Sommer et 
al., 2008; Zhang et al., 2008). The models vary 
greatly in details and approaches for simulating 
various plant and soil processes and manage-
ment practices, and none have yet reached their 
full potential. Landivar et al. (2010) provided an 
excellent review of strategies for physiological 
simulation of cotton growth and development; 
however, “it [was] not the purpose of this chapter 
to compare cotton models.” Landivar et al. (2010) 
mainly described model development approaches 
and did not contrast existing cotton models or re-
view recent advances in cotton model applications.

The objective of this article was to review the state 
of the art in development and application of computer 
simulation models for cotton production systems. Be-
cause of its comprehensive scope, cotton researchers 
with diverse interests and levels of expertise should 
find useful information herein. Given the trend for new 
cotton modeling efforts beyond traditional analyses of 
agronomic field experiments, the review also provides 
a resource for nontraditional and beginning modelers 
to learn about past and present cotton modeling efforts. 
A brief history is presented of cotton model develop-
ment and applications in the last century, from 1960 
to 2000. Descriptions and qualitative comparisons of 
existing cotton models are emphasized in this section. 
Next, the review describes cotton model development 
and applications in the current century thus far. Since 
year 2000, the literature has demonstrated a marked 
increase in journal articles that describe applications 
of the cotton models previously developed, and fewer 
articles focus on development of new models. Finally, 
considering the reviewed literature holistically, a per-
spective is provided on anticipated future challenges 
and opportunities for the application of process-based 
simulation models to cotton production.

PAST DIRECTIONS: 1960-2000

Overview of Simulation Approaches. The 
cotton models discussed herein are classified as 

mechanistic, dynamic, and deterministic. The 
models are mechanistic as they describe pro-
cesses with some level of understanding (e.g., 
plant growth based on calculations of intercepted 
radiation). They are dynamic, because the time 
variable is explicit. Thus, the models use partial 
differential equations to calculate how quanti-
ties vary with time (e.g., transpiration and plant 
growth). The models are deterministic rather than 
stochastic, because the calculations are made 
without any associated probability distribution. 
Although most cotton simulation models share 
these characteristics, different model design 
strategies have been explored. For example, the 
cotton model of Plant et al. (1998) used qualita-
tive categorical variables (e.g., HIGH, MODER-
ATE, or LOW) rather than quantitative variables 
to describe plant and soil states. The coarseness 
of the Plant et al. (1998) model improved simula-
tion robustness at the expense of precision, but 
the model was arguably less mechanistic and 
dynamic than traditional cotton models. Most 
cotton models simulate soil and plant processes 
explicitly and quantitatively in a mechanistic, 
dynamic, and deterministic fashion.

Process-based crop models share a common 
goal of estimating crop yield by simulating the 
contribution of soil water, nutrient, and plant 
growth and developmental processes to the forma-
tion of harvestable plant products. However, the 
approaches used to simulate these processes vary 
widely among existing crop models (Tables 2 and 
3; Landivar et al., 2010). To simulate plant devel-
opment, many crop models use a growing degree-
day concept, where measured air temperature is 
assessed in relation to known functions of crop 
development rate with air temperature. Simulation 
details, such as the number of development stages 
considered, the treatment of leaf appearance, and 
the development of yield components, vary widely 
among models (Table 2). Carbon (C) assimilation 
and biomass accumulation are commonly simulated 
as a function of measured solar irradiance, using 
simulated leaf area index (LAI) to calculate the 
fraction of photosynthetically active radiation in-
tercepted by the crop canopy. Simulations of water, 
nutrient, and temperature stresses and atmospheric 
carbon dioxide (CO2) concentrations ([CO2]) can 
further adjust energy to biomass conversions. Ap-
proaches for representing plant stress factors vary 
widely among models.
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Table 2. Crop growth and development processes simulated by existing cotton simulation models.

GOSSYM Cotton2K COTCO2 OZCOT CROPGRO-Cotton

Phenology

Develops vegetative 
and fruiting branches 
and nodes based on 

thermal time
Calculates the 

number of branches, 
squares, bolls, open 
bolls, fruiting sites, 
and aborted fruits

Develops vegetative 
and fruiting branches 
and nodes based on 

thermal time
Calculates the 

number of branches, 
squares, bolls, open 
bolls, fruiting sites, 
and aborted fruits

Develops meristem 
tissue, leaf primordia, 
petioles, growing and 
mature leaves, stem 
segments between 

nodes, squares, bolls, 
and open bolls  based 

on thermal time

Develops the number 
of fruiting sites based 

on thermal time
Calculates the 

number of squares, 
bolls, open bolls, and 
aborted fruits based 

on crop carrying 
capacity

Development proceeds 
through growth 
stages based on 

photothermal time: 
emergence, first leaf, 
first flower, first seed, 
first cracked boll, and 

90% open boll.
Calculates boll 

number and aborted 
fruits

Plant maps Yes Yes Yes No No

Potential 
carbon 

assimilation

Canopy-level 
radiation  

interception

Canopy-level 
radiation  

interception

Organ-level 
biochemistry 

(Farquhar et al., 
1980)

Canopy-level 
radiation  

interception

Leaf-level 
biochemistry 

(Farquhar et al., 
1980)

Respiration

Uses an empirical 
function of 

respiration based 
on biomass and air 

temperature

Calculates growth 
and maintenance 
respiration and 

photorespiration

Calculates organ-
level growth and 

maintenance 
respiration and 

photorespiration

Uses empirical 
functions of 

respiration based on 
fruiting site count  

and air temperature

Calculates growth 
and maintenance 

respiration

Partitioning
Allocates carbon to 
individual growing 

organs

Allocates carbon to 
individual growing 

organs

Allocates carbon to 
individual growing 

organs

Allocates carbon 
to cohort pools for 
developing bolls

Allocates carbon 
to single pools for 

leaves, stems, roots, 
and bolls

Canopy size Calculates plant 
height

Calculates plant 
height

Calculates stem 
segment lengths None

Calculates hedgerow-
based canopy height 

and width

Yield 
components

Calculates fiber mass 
as a fraction of boll 
mass and boll size

Calculates  
burr mass and  

seed cotton mass

Calculates  
boll mass

Calculates fiber mass 
as a fraction of boll 
mass and boll size

Calculates boll mass, 
seed cotton mass, 
seed number, and 
unit seed weight

Stress
Calculates stress due 

to water, nitrogen, 
and air temperature

Calculates stress due 
to water, nitrogen, 

and air temperature

Calculates stress 
due to water and air 

temperature

Calculates stress due 
to water, nitrogen, 

and air temperature

Calculates stress due 
to water, nitrogen, 

and air temperature

Table 3. Atmospheric and soil processes simulated by existing cotton simulation models.

GOSSYM Cotton2K COTCO2 OZCOT CROPGRO-Cotton
[CO2] effect on 
photosynthesis Yes Yes Yes No Yes

[CO2] effect on 
transpiration No No Yes No Yes

ET Ritchie (1972)

Modified Penman 
equation from 
CA Irrigation 
Management 

Information System

Leaf-level energy 
balance coupled 

with stomatal 
conductance

Richie (1972)
Priestley and Taylor 
(1972) and FAO-56 
(Allen et al., 1998)

Soil water
2D RHIZOS model 

(Lambert et al., 
1976)

2D RHIZOS model 
(Lambert et al., 

1976)
2D model Ritchie (1972) Ritchie (1998) and 

Ritchie et al. (2009)

Soil nitrogen
Dynamic simulation 

of soil and plant 
nitrogen balances

Dynamic simulation 
of soil and plant 

nitrogen balances
No

Static, empirical 
approach that 

predicts potential N 
uptake

Godwin and Singh 
(1998) or Gijsman et 

al. (2002)

Soil phosphorus No No No No Yes

Soil salinity No Yes No No No

Waterlogging No No No Yes Yes

Flooding No No No No Yes



14JOURNAL OF COTTON SCIENCE, Volume 18, Issue 1, 2014

Perhaps the most important physiological differ-
ence among models is whether they use a radiation use 
efficiency approach to account for plant growth and 
maintenance respiration (Monteith, 1977) or whether 
they explicitly simulate photosynthesis and respira-
tion as independent processes (Boote and Pickering, 
1994; Farquhar et al., 1980; McCree, 1974; Mutsaers, 
1982; Penning de Vries, 1975; Penning de Vries et al., 
1974). Models also differ in simulation details for leaf 
area expansion, stem elongation, organ growth, and 
yield components. To simulate the soil water balance, 
several crop models implement the “tipping bucket” 
method of Ritchie (1972, 1998), whereas others use 
numerical methods to solve the soil water balance. 
Simulations of ET are conducted using a variety of 
methods with varying complexity and data require-
ments: Priestley and Taylor (1972); FAO-56 Penman-
Monteith (Allen et al., 1998); or surface energy bal-
ance. Approaches to simulate N dynamics are also 
variable, whereas some models do not simulate any 
nutrient effect on plant growth (Table 3). Models also 
vary in their consideration of management impacts on 
cotton production, including irrigation, fertilization, 
sowing date, tillage, and defoliation events (Table 4). 
The time steps of calculations also vary among models, 
but hourly or daily time steps are common (Table 1). 
Given the diverse approaches for simulating cotton 
production systems, it is not the objective of this re-
view to claim one approach as superior to the other, 

but rather to summarize and contrast the approaches 
currently implemented in existing cotton models. The 
appropriateness of a given model will depend mainly 
on the specific application.

Established Crop Simulation Models for Cotton
GOSSYM. The development, characteristics, and 

applications of the cotton model, GOSSYM, were 
previously described extensively (Baker et al., 1983; 
Hodges et al., 1998; Landivar et al., 2010; McKin-
ion et al., 1989; Reddy et al., 1997a, 2002a). Briefly, 
GOSSYM uses mass balance principles to simulate 
water, C, and N processes in the plant and soil root 
zone. It requires environmental variables, such as solar 
irradiance, air temperature, precipitation, and wind, 
as well as information on soil physical properties 
and cultural practices, including variety-dependent 
parameters. The model estimates potential growth and 
developmental rates as a function of air temperature 
under optimum water and nutrient conditions, and it 
reduces the potential rates by the intensity of envi-
ronmental stresses using environmental productivity 
indices (Baker et al., 1983; Reddy et al., 2008). Each 
day, the model simulates the birth and abscission of 
organs, their size and growth stage, and the intensity 
of stress factors. The user can assume certain future 
weather conditions (days, weeks, and years) to de-
termine fiber yield estimates and impact of altered 
cultural practices on cotton maturity and fiber yield.

Table 4. Management practices simulated by existing cotton simulation models and other applications.

GOSSYM Cotton2K COTCO2 OZCOT CROPGRO-
Cotton

Sowing date X X X X X
Cultivar selection X X X X X

Row spacing X X X X X
Skip rows X X X

Planting density X X X X X
Irrigation X X X X X
Fertilizer X X X X

Crop residue X
Tillage X X

Growth regulators X X
Defoliation X X X X

Insect damage X X X X X
Disease impact X X
Climate change X X X

Cropping sequences X X
Geospatial analysis X X X
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The GOSSYM model consists of several subrou-
tines for various aspects of crop production (Hodges 
et al., 1998) and biology (Reddy et al., 1997a). A 
unique aspect is its treatment of the soil (Lambert 
et al., 1976) and the processes therein, as they influ-
ence the plant’s physiological processes. In addition 
to plant and soil processes, an expert system known 
as COMAX was explicitly developed for the GOS-
SYM model (Hodges et al., 1998; Lemmon, 1986; 
McKinion et al., 1989).

The concept and development of GOSSYM 
started in the late 1960s with a meeting at the Uni-
versity of Arizona, sponsored by the Department of 
Agronomy and Agricultural Engineering (Baker et 
al., 1983; Hodges et al., 1998; Landivar et al., 2010; 
Reddy et al., 2002b). Significant contributions were 
made from several institutions (Baker et al., 1972, 
1976, 1983; Hesketh and Baker, 1967; Hesketh et 
al., 1971, 1972; Lambert et al., 1976; McKinion 
et al., 1975; Wanjura et al., 1973) in the years after 
that first meeting.

With the construction of Soil-Plant-Atmosphere-
Research facilities at several locations in the south-
eastern U.S. (Phene et al., 1978; Reddy et al., 2001), 
cotton physiological, growth, and developmental 
processes as affected by abiotic stress factors were 
quantified. Based on data from these facilities, al-
gorithms were developed to improve the model’s 
functionality and accuracy of simulation results (Ma-
rani et al., 1985; Reddy et al., 1993, 1995, 1997a,b, 
2000, 2001, 2003). In 1984, GOSSYM was first 
implemented on commercial cotton farms as a deci-
sion support system (DSS). Based on user requests, 
the COMAX interface was developed to facilitate 
its delivery to over 70 cotton farms across the U.S. 
Midsouth. By 1990, GOSSYM-COMAX had been 
implemented on more than 300 commercial farms 
(Ladewig and Taylor-Powell, 1989; Ladewig and 
Thomas, 1992). Extensive model validation efforts 
were conducted across the U.S. Cotton Belt (Boone 
et al., 1993; Fye et al., 1984; Reddy, 1994; Reddy 
and Baker, 1988, 1990; Reddy and Boone, 2002; 
Reddy et al., 1985, 1995; Staggenborg et al., 1996) 
and overseas (Gertsis and Symeonakis, 1998; Gertsis 
and Whisler, 1998). Several modifications in the 
simulation procedures and model validation efforts 
using field data sets (Ali et al., 2004; Khorsandi and 
Whisler, 1996; Khorsandi et al., 1997) made the 
model applicable on many fronts, including farm 
management, economics, climate change, and policy 
issues (Doherty et al., 2003; Landivar et al., 1983a,b; 

Liang et al., 2012a,b; McKinion et al., 1989, 2001; 
Reddy et al., 2002b; Wanjura and McMichael, 1989; 
Watkins et al., 1998; Xu et al., 2005).

Cotton2K. The Cotton2K model was developed 
by Dr. Avishalom Marani at the School of Agricul-
ture of the Hebrew University of Jerusalem. The 
source code of Cotton2K is written in C++ and is 
available for free download (Marani, 2004). Cot-
ton2K uses the process-based equations of GOSSYM 
(Baker et al., 1972, 1983), and its history can be 
traced and linked to other cotton modeling efforts, 
including SIMCOTI (Baker et al., 1972), SIMCOTII 
(Jones et al., 1974), and CALGOS (Marani et al., 
1992a,b,c). The main purpose of Cotton2K was to 
provide a more useful model for cotton production 
in arid, irrigated environments, such as the western 
U.S. and Israel.

A general description of the history, main char-
acteristics, scientific principles, and input require-
ments for Cotton2K are given by Marani (2004). 
The fundamental difference between Cotton2K and 
GOSSYM is the weather data requirement. Whereas 
GOSSYM uses daily weather data, Cotton2K uses 
either measured hourly values of air temperature and 
humidity, wind speed, and shortwave irradiance or 
calculates hourly values from daily data using the 
method of Ephrath et al. (1996). The hourly weather 
values are used to calculate corresponding hourly 
water and energy balances; this allows the model to 
more closely represent arid conditions and improves 
the model’s ability to calculate more accurately the 
water balance under irrigation (Marani, 2004). The 
main effect of these changes was to improve the ac-
curacy in the calculation of ET, which also affected 
related variables. Further, the deviations created 
by using daily weather data time steps, rather than 
shorter time steps, was particularly important when 
hourly data followed nonlinear diurnal patterns or 
where interactions of weather parameters were im-
portant in calculation of energy or water balances 
(i.e., nonlinear diurnal wind speed patterns and/
or interactions of wind speed and solar irradiance 
driving ET) (Ephrath et al., 1996). Other modifica-
tions in Cotton2K included a routine for subsurface 
drip irrigation, updates to N mineralization and 
nitrification processes, calculation of N uptake us-
ing a Michaelis-Menten procedure, updates to plant 
growth and phenology functions, and energy balance 
equations to provide the temperatures of the soil 
surface and crop canopy (Marani, 2004). In summary, 
the addition of hourly weather input data allowed 
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the calculation and the integration of differential 
equations on an hourly time-step for the processes of 
plant transpiration, soil water evaporation, soil water 
redistribution, heat and N fluxes, and the exchanges 
of energy and water at the soil-plant-atmosphere 
interfaces. These modifications greatly improved 
the utility and the applicability of Cotton2K for ir-
rigation in arid environments.

The main processes calculated in Cotton2K are 
related to the exchanges of energy and water between 
the soil, plant, and the environment. Processes are 
based on the principles of mass and energy conserva-
tion, whereby inputs and outputs to the system are 
balanced and accounted for as a function of time. 
The Cotton2K model was designed for specific 
management of agronomic inputs, including irriga-
tion, N fertilizer, defoliation, and application of a 
plant growth regulator. Plant growth and develop-
ment are based on the “stress” theory (Craine, 2005; 
Grime, 1977), which includes stresses related to air 
temperature, water, C, and N. In this context, stress 
is a condition that restricts potential production 
due to suboptimal air temperatures and shortages 
of water and nutrients (Grime, 1977). Plant growth 
rates are related to ambient temperature using the 
concept of heat units (Peng et al., 1989; Wang, 1960). 
Potential growth rates of all plant organs, including 
roots, stems, leaf blades and petioles, and fruiting 
sites (squares, bolls, and seed cotton), are related to 
source-sink relations of C and water via stress factors. 
The stress factors between source and sink vary nu-
merically from 1 (no stress) to 0 (severe stress). The 
C stress is related to net C assimilation (i.e., gross 
photosynthesis minus photorespiration and growth 
and maintenance respiration). The water stress is 
related to transpiration and transport of water as a 
function of leaf water potential. The N stress is based 
on supply and demand of N. In the soil, Cotton2K 
calculates rates of available N from urea hydrolysis, 
mineralization of organic N, nitrification of ammo-
nium, denitrification of nitrate, and movement of 
soluble N. The model also calculates the N in plant 
organs (roots, stems, leaves, and fruiting sites) and, 
if supply does not meet requirements, an N stress 
factor is calculated. All supply and demand functions 
related to temperature, water, C, and N are dynamic 
and thus their values change with time.

The boundary conditions that define the one-
dimensional soil-plant-atmosphere system in Cot-
ton2K are 2 m above and 2 m below the soil surface. 
The height (2 m) above the soil surface represents 

the screen-height where input weather data are mea-
sured, and the soil depth of 2 m represents the lower 
boundary of the soil profile. Required input weather 
data include shortwave irradiance, air temperature, 
humidity, wind speed, and rainfall. Cotton2K uses 
hourly weather input values; however, if not available, 
daily values of radiation and wind run, and maximum 
and minimum values of air temperature and humid-
ity are used to calculate hourly values (Ephrath et 
al., 1996). For each irrigation event, the application 
method (sprinkler, furrow, and drip), timing (start 
and end), and applied depth are specified. The user 
defines the geometry of the soil profile by specifying 
the number and the thickness of each soil layer. At 
the onset of simulation, (i.e., time = 0), the user speci-
fies for each soil layer a value of temperature, water, 
organic matter, N, and soil salinity. In addition, the 
soil layers are grouped into horizons, each having 
unique soil hydraulic properties. These properties 
define the relationship of soil water content to water 
potential and to hydraulic conductivity and are used 
in Richards’ equation to calculate water movement 
in the soil profile. The user specifies the water table 
depth and the date and depth of each cultivation 
event. Other fixed parameter input values are location 
(latitude, longitude, and elevation), start and end of 
simulation period, date of planting and/or emergence, 
and field data (planting density and row spacing, in-
cluding skip rows). Parameters describing individual 
cultivars affect phenology, growth, and development 
and ultimately impact the calculation of cotton fiber 
yield as suggested by Marani (2004) and shown by 
Booker (2013). The current version of Cotton2K has 
been tested for six cotton cultivars: Acala SJ-2, GC-
510, Maxxa, Deltapine 61, Deltapine 77, and Sivon.

The Cotton2K model can be used in a manage-
ment mode for irrigation, N, defoliation, and applica-
tion of a growth regulator. Under these options, Cot-
ton2K is executed using predicted weather scenarios, 
and the user selects several options that include, for 
example, date of starting and ending irrigation, date 
of N fertilizer application, date of defoliation, and 
application of a plant growth regulator. Cotton2K 
outputs are recorded in text files, charts, and soil 
maps. The text files are a summary of all input and 
output values, detailed daily output, and plant maps. 
The charts plot the dynamics of key output variables 
with time, and the soil maps are two-dimensional 
plots of horizontal and vertical simulated values of 
soil water and nitrogen contents, temperature, and 
other variables, each as a function of time.
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The Cotton2K model has been directly and indi-
rectly used and tested by many researchers. Directly, 
Cotton2K has been used by Yang et al. (2008) where 
the effect of pruning and topping was tested under 
field conditions and by Yang et al. (2010) and Nair 
et al. (2013) to optimize irrigation allocation under 
limited water conditions. Recently, Booker (2013) 
incorporated Cotton2K into a landscape-scale model 
and applied it to cotton production across the major 
soil types of the Texas High Plains. Given the similari-
ties of Cotton2K to GOSSYM and CALGOS models, 
indirectly some of the algorithms in Cotton2K have 
been evaluated for a wide range of soil and envi-
ronmental conditions by Staggenborg et al. (1996), 
Clouse (2006), Baumhardt et al. (2009), and others.

COTCO2. The COTCO2 model simulates cot-
ton physiology, growth, development, water use, 
biomass, and boll yield (Wall et al., 1994). Writ-
ten in Fortran in a modular design, it is capable 
of simulating cotton crop responses to elevated 
[CO2] and potential concomitant changing climate 
variables, particularly temperature. Explicit physi-
ological mechanisms are used to minimize reliance 
on empirical relationships, which are data dependent. 
The morphogenetic template concept in the KUTUN 
model (Mutsaers, 1984) and the physiological detail 
in an alfalfa model, ALFALFA (Denison and Loomis, 
1989), served as prototypes for the COTCO2 model.

Leaf physiology is central to simulating plant 
response to the environment in COTCO2 and con-
sists of the following components, which are simu-
lated hourly: 1) leaf energy balance to account for 
stomatal effects on leaf temperature, transpiration, 
and assimilation; 2) stomatal conductance coupled 
with leaf energy balance; 3) biochemical chloroplast 
CO2 assimilation; 4) apparent dark respiration for 
each organ type based on basal coefficients for the 
quantitative biochemistry of biosynthesis of existing 
phytomass (maintenance respiration) and that linked 
to growth (growth respiration); and 5) carbohydrate 
pool dynamics.

Growth is simulated for individual meristem, 
stem segment, leaf blade, taproot, lateral root, and 
fruit (squares and bolls) organs. Potential growth 
is calculated, followed by the carbohydrate and N 
required to meet potential growth. Actual growth 
is based on potential growth, substrate availability, 
and water and temperature stress. Physiological age, 
which is the time-integrated value of developmen-
tal rate, places an upper limit on growth rate, and 
physiological age determines organ phenological 

state. The phenology of the simulated cotton plant 
does not develop based on calendar days. Rather, 
plant development and growth rates are based on 
a time-temperature running sum. The response of 
physiological time to temperature is based on an Ar-
rhenius equation with both low and high temperature 
inhibition. At the reference temperature (e.g., 25° C), 
physiological time is equal to calendar days. Within 
the low and high temperature limits, physiological 
time proceeds faster and slower than calendar time 
at temperatures higher and lower than the reference 
temperature, respectively.

The COTCO2 model can simulate cotton pro-
duction over a broad environmental range, while 
providing the means to predict the impact of change 
in [CO2] and any associated potential climate change 
on global cotton production. Ultimately, it could 
aid in the development of strategies to mitigate 
the adverse effects of global climate change, while 
optimizing those that are beneficial.

OZCOT. The structure of the OZCOT model has 
been described in detail by Hearn (1994) and Hearn 
and Da Roza (1985). It was developed using a top-
down approach, meaning processes were simulated 
with only sufficient detail to provide reliable estima-
tion of the impact of management and environment 
on cotton growth, development, and fiber yield. 
Simulation approaches were broadly mechanistic at 
the crop and plant level. The OZCOT model, which 
advances on a daily time step, is principally driven by 
air temperature and intercepted radiation, and it was 
built by linking a model of fruiting dynamics with 
a water balance model and simple N uptake model. 
In addition to validation using research experiments 
(Hearn, 1994), OZCOT also has been validated in 
commercial fields for both irrigated (Richards et al., 
2008) and rainfed cotton systems (Bange et al., 2005).

The central component of OZCOT is the fruit 
production and survival subroutine (Hearn and Da 
Roza, 1985), which was used in the SIRATAC pest 
management DSS (Hearn and Bange, 2002). The 
rates of fruit production, fruit shedding, and growth 
of organs are governed by C supply. The OZCOT 
model tracks the total number of fruiting sites, 
squares, bolls, and open bolls by daily cohorts. A 
new cohort of squares is produced and subsequently 
developed through anthesis to maturity. Although 
OZCOT does not explicitly simulate the branching 
structure of the plant, aspects of morphology are 
implicit in the function that generates the number 
of squares (Hanan and Hearn, 2003).
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Carbon supply for a given day is estimated from 
intercepted light and a canopy-level photosynthetic 
rate (Baker et al., 1983), with respiration calculated 
as an empirical function of fruiting site count and 
mean air temperature. Light interception is estimated 
using Beer’s law, and leaf area is simulated using an 
empirical correlation between fruiting site production 
and leaf area (Jackson et al., 1988). The rates of leaf 
expansion, photosynthesis, and fruiting are modulated 
by the supply of water and N and by waterlogging.

The water balance in OZCOT is calculated using 
the Ritchie (1972) approach with a calibrated soil 
water extraction routine based on increasing supply 
with increasing depth of extraction over time. The 
OZCOT model does not maintain a dynamic soil N 
balance analogous to water, but uses an N uptake 
model. At the start of the season, potential N uptake 
is estimated based on soil N and fertilizer inputs 
(Constable and Rochester, 1988) and is reviewed 
daily to calculate a stress index. The stress index 
scales the rate of a process and is based on the ratio 
either between supply and demand for a resource or 
between the current and maximum value of a state 
variable. In addition to N, there are also stress indices 
for shortages of water and C.

The OZCOT model can be principally used in 
two modes: a strategic mode that generates simula-
tions over multiple seasons using pre-determined 
management rules and historical climate data or a 
tactical mode that simulates specific management 
practices for a particular season. In both modes, daily 
values of rainfall (mm), maximum and minimum air 
temperature (degrees C), and solar irradiation (MJ 
m-2) are required. Relative humidity at 0900 h and 
wind run (km) can also be included for improved pre-
cision of daily ET estimates. Soil input information 
includes the number of soil layers and their depths, 
plant available water holding capacity, initial plant 
available water (in volumetric units), and average 
soil bulk density across layers.

Agronomic inputs include parameters for dif-
ferent cotton cultivars, including leaf type (okra 
or palmate), squaring rate, maximum boll size and 
development rate, fiber percentage, background fruit 
retention (transgenic or non-transgenic), row spac-
ing, plants per meter of row, initial available soil N, 
irrigation rates and application dates, N rates and 
application dates, and planting dates. If a specific 
planting date or days when irrigation occurs is not 
provided, management rules are used to estimate 
these times in the strategic mode.

The OZCOT model can simulate production in 
rainfed or limited irrigation cropping systems using 

“skip row” configurations (Bange et al., 2005). These 
are row configurations that have entire rows missing 
from the planting configuration to increase the amount 
of soil water available to the crop at critical growth 
stages. The OZCOT model uses a modified soil water 
content stress index that accounts for the non-uniform 
distribution of the availability of soil water from the 
planted and non-planted rows (Milroy et al., 2004).

Key outputs generated by the OZCOT model 
include seasonal estimates of fiber yield, yield com-
ponents, dates of phenological stages, maximum LAI, 
N use, and water balance metrics such as effective 
rainfall and crop water use efficiency (WUE). A 
separate output file is also generated that provides 
daily within-season calculations of crop progress, 
stress indices, and resource use.

The OZCOT model is the only supported cotton 
model in Australia that is used in decision support 
and research. Currently, the OZCOT model is the 
core component of the HydroLOGIC tactical and 
strategic cotton irrigation DSS (Richards et al., 2008). 
To refine simulations of in-season crop water use in 
HydroLOGIC, OZCOT was modified to accept ad-
ditional measurements of soil water status and crop 
growth, such as LAI and fruit number. Other DSSs 
that have used OZCOT include CottBASE (https://
cottassist.com.au) for irrigated cotton systems and 
Whopper Cropper (Nelson et al., 2002) for rainfed 
cotton systems. Both are databases of pre-run OZ-
COT simulations based on historical climate data 
for various combinations of management options, 
soils, and regions.

The crop growth component of OZCOT is used 
as the cotton module of the Agricultural Production 
Systems sIMulator (APSIM) modeling framework 
(Keating et al., 2003), which is used to address 
farming systems issues (Carberry et al., 2009). Four 
main components form the basis of APSIM: a set of 
biophysical modules that simulate farming system 
processes; management modules allowing users to 
specify management rules; modules to facilitate 
handling of input and output data; and a simulation 
engine that drives the simulation process and passes 
messages between independent modules. Biophysi-
cal modules are available for a diverse range of crops, 
pastures, and trees within APSIM, and modules for 
soil water balances, N and P transformations, soil 
pH, erosion and a full range of management controls 
are also included.
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Until recently, OZCOT was written in Fortran 
and compiled as a dynamic link library. Currently 
called “mvOZCOT”, the OZCOT model has been 
rewritten in C# and was reengineered using the 
common modeling protocol of the Commonwealth 
Scientific and Industrial Research Organisation 
(CSIRO) to allow more seamless integration with 
APSIM and other modeling frameworks (Moore et 
al., 2007). This has enabled OZCOT users to imple-
ment the model with other soil water and N modules. 
Although OZCOT continues to be used as a research 
and management tool, current efforts to enhance its 
functionality include the addition of new algorithms 
to simulate fiber quality and climate change impacts.

CSM-CROPGRO-Cotton. The Cropping System 
Model (CSM)-CROPGRO-Cotton model (Jones et 
al., 2003; Pathak et al., 2007) is implemented in 
the Decision Support System for Agrotechnology 
Transfer (DSSAT; Hoogenboom et al., 2012). The 
DSSAT system has a long history originating with 
the International Benchmark Sites Network for 
Agrotechnology Transfer (IBSNAT) Project that 
was funded by the U.S. Agency for International 
Development from 1982 through 1993 (Uehara and 
Tsuji, 1989). The initial crop simulation models 
of DSSAT included the CERES-Wheat, CERES-
Maize, SOYGRO, and PNUTGRO models. The 
SOYGRO, PNUTGRO, and BEANGRO models 
were later combined into a generic grain legume 
model, CROPGRO (Hoogenboom et al., 1992). To 
address cropping systems and especially crop rota-
tions, the CSM was developed (Jones et al., 2003). 
The CSM model uses a single set of computer code 
for dynamic simulation of the soil water, inorganic 
soil N, and organic C and N balances (Gijsman et 
al., 2002; Godwin and Singh, 1998; Ritchie, 1998, 
Ritchie et al., 2009). Recently a soil phosphorus 
module also was added to CSM (Dzotsi et al., 2010). 
For the simulation of growth, development, and 
ultimately yield for individual crops, different crop 
modules are being used, such as the CERES-Maize 
module for maize (Zea mays L.), CERES-Rice for 
rice (Oryza sativa L.; Ritchie et al., 1998) or the 
CROPGRO module for grain legumes (Boote et al., 
1998). This allows for the continuous simulation of 
crop rotations, such as a soybean (Glycine max (L.)
Merr.) and wheat (Triticum aestivum L.) rotation or 
a wheat and rice rotation (Bowen et al., 1998; Tojo 
Soler et al., 2011).

The CROPGRO module uses a daily time step 
for integration, starting at planting and ending at crop 

maturity or on the user-specified harvest date. The 
differences among the individual crops or species are 
handled through external genotype files, as opposed 
to values or specific equations that are embedded 
in the code. There are three genotype files: one 
each for cultivar, ecotype, and species coefficients 
(Hoogenboom and White, 2003). The latter includes 
a range of temperature functions for development, 
photosynthesis, partitioning, and various other physi-
ological functions. It also includes detailed composi-
tion parameters with respect to proteins, lipids, fiber, 
carbohydrates, and other properties of different plant 
components, including leaves, stems, roots, and 
reproductive structures. This approach assumes that 
the underlying plant physiological processes of each 
crop are similar, but the interaction of genetics with 
environment and management is different.

The original DSSAT systems did not include a 
model for fiber crops. Because of the importance of 
cotton in the southeastern U.S., especially as part of 
common rotations with peanut (Arachis hypogaea 
L.), there was a need for the development of a com-
prehensive cotton model. Rather than developing a 
new set of code, the decision was made to use the 
CROPGRO module as a template. The emphasis 
was to obtain detailed physiological information to 
define the functions and parameters for the species 
file and experimental data for initial model calibra-
tion and evaluation. The CSM-CROPGRO-Cotton 
model was developed through a collaborative effort 
among scientists at the University of Florida and the 
University of Georgia (Pathak et al., 2007). Because 
of the existing infrastructure of DSSAT, the cotton 
model could easily be added to DSSAT without creat-
ing different utilities for data input and application 
programs.

Similar to the other DSSAT crop simulation 
models, the CSM-CROPGRO-Cotton model re-
quires environmental data, crop management, and 
genetic information as inputs (Hunt et al., 2001). 
Required environmental measurements include 
daily weather data for maximum and minimum air 
temperatures, solar irradiance, precipitation, and soil 
profile data. Required soil data include soil surface 
characteristics, such as slope, color, albedo, soil 
drainage, and descriptions of a one-dimensional pro-
file, including lower limit of plant extractable water 
(LL), drained upper limit (DUL), saturated soil water 
content (SAT), bulk density, organic C, and total soil 
N. Recently, a new feature was added to the CSM 
models that allows input of [CO2] from an external 
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file, which is based on the CO2 values measured at 
the long-term CO2 monitoring site on Mauna Loa in 
Hawaii. Crop management practices include planting 
date; plant density and row spacing; planting depth; 
dates and amounts of irrigation application; dates, 
amounts, and type of fertilizer application; and dates, 
types, and depths of tillage. Environmental modifica-
tions, including climate change modifications, can 
be entered in the environmental modification section 
of the crop management file.

As stated previously, the genetic information is 
provided in three data files. The species file is as-
sociated with a specific crop and is part of the core 
model development and calibration. Therefore, end 
users should not modify parameters in the species 
file. The cultivar parameter file specifies 18 cultivar-
specific parameters for each cultivar. These include 
coefficients that describe the time from emergence to 
flowering, time from flowering to first boll and first 
seed, time from first seed to physiological maturity, 
maximum single leaf photosynthetic rate, single leaf 
size, specific leaf area, individual seed size, fraction 
of seed cotton weight over total green boll weight, 
and oil and protein composition of the seeds. The 
cultivar file that is distributed with DSSAT includes 
a few cultivars for which the cultivar parameters 
already have been defined, including those for the 
example experimental files that are distributed with 
DSSAT. In general, however, users must calibrate 
their cultivar parameters using a set of measured data 
from either experiments or variety trials (Pathak et 
al., 2012). The ecotype file includes 17 parameters 
that define the unique characteristics of a group of 
cultivars, such as a short-season versus a long-season 
cultivar, and they normally will not change among 
a group of similar cultivars.

In CSM-CROPGRO-Cotton, the overall inte-
gration of differential equations occurs on a daily 
time step. The CSM is written in Fortran (Thorp et 
al., 2012), and the software code includes different 
sections for model initialization, calculation of the 
rate variables, integration of the equations, and up-
date of the state variables. Both daily and seasonal 
output routines are available (Jones et al., 2003). The 
model is initiated at the start of simulation, which 
can occur at or prior to planting. At this point, the 
initial or boundary conditions are set, especially 
with respect to initial soil water content, inorganic 
soil N, soil organic C, and residue remaining from 
the previous crop. If the model is started prior to 
planting, only the soil processes are simulated. When 

planting occurs, the crop growth module is initiated 
and vegetative development is simulated. Internally, 
both the vegetative and reproductive development 
processes are calculated on an hourly basis, whereas 
integration occurs at a daily level. Hourly ambient 
temperature is calculated internally based on the 
maximum and minimum daily air temperature. In 
parallel to crop development, photosynthesis is simu-
lated on an hourly basis based on light interception 
of a hedgerow canopy, and integration occurs on a 
daily basis (Boote and Pickering, 1994). The model 
accounts for maintenance respiration based on cur-
rent total biomass, for growth respiration based on 
partitioning to the different plant organs, including 
roots, stems, leaves, bolls, and seed cotton, and for 
the composition of each organ.

During vegetative growth, partitioning to roots, 
leaves, and stems is a function of the development 
stage and is source-driven. However, once reproduc-
tive development has started, partitioning is sink-
driven based on the requirements for carbohydrates 
for the reproductive structures, including the bolls. 
Any remaining carbohydrates that are not used for 
growth of the reproductive structures can be used 
for further growth of the vegetative structures. Once 
flowering has started, the model accounts for the 
number of flowers that are formed on a given day, 
called clusters. This system is maintained through the 
entire reproductive process, allowing for the abortion 
of flowers, squares, and bolls if insufficient carbo-
hydrates are available for reproductive growth. The 
priority of the carbohydrate distribution is based on 
the status of the cohorts; the ones that were formed 
first have the highest priority for carbohydrates and 
the ones that were formed last have the lowest prior-
ity. During reproductive growth, remobilization of 
N from senesced leaves and petioles can also occur 
to support reproductive growth. Most of the growth, 
development, and partitioning processes have their 
own temperature response functions that are defined 
in the species file.

Drought stress is represented by two different 
stress factors: one that affects the turgor-based 
growth processes and another that affects photosyn-
thesis and growth processes. Drought stress occurs 
when the potential demand for water lost through 
transpiration and soil water evaporation is higher 
than the amount of water that can be supplied by 
the soil through the root system (Anothai et al., 
2013). Evaporative demand is calculated using the 
Priestley-Taylor equation, which requires daily solar 
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irradiance and maximum and minimum air tem-
peratures as input (Priestley and Taylor, 1972). An 
option is also available to use the Penman-Monteith 
equation for calculating potential ET. The soil water 
balance is based on the tipping bucket approach 
for a one-dimensional soil profile (Ritchie, 1972, 
1998). Each soil horizon or computational soil layer 
is characterized by the LL, DUL, and SAT, which 
can be calculated based on soil texture and bulk 
density using utilities provided with DSSAT. The 
daily potential ET demand is calculated first, and the 
potential water supply for root uptake is based on 
the soil water content of each layer, root distribution, 
and a root resistance factor. If the potential supply is 
greater than the potential demand, the supply is set 
equal to the demand, and the associated processes 
are updated. If the demand is greater than the supply, 
transpiration and soil water evaporation are reduced 
to the simulated supply, and drought stress factors are 
calculated based on the difference between potential 
demand and potential supply.

The CSM-CROPGRO-Cotton model includes 
a detailed soil and plant N balance. Although the 
original CROPGRO model included N fixation, the 
modular structure of CSM allows for individual 
modules to be turned on or off (Jones et al., 2003). 
A detailed description of the soil N balance is given 
by Godwin and Singh (1998), which is the same 
for all crop modules of the CSM. Soil N includes a 
myriad of processes that are calculated for each soil 
horizon or computational layer for the transforma-
tion of organic N to inorganic N in the form of nitrate 
and ammonium. For the calculation of the processes 
associated with soil organic C and N, there are two 
options. One is the original model developed by 
Godwin and Singh (1998), and the other is an ad-
vanced approach based on CENTURY (Gijsman et 
al., 2002). The latter approach is especially suitable 
for low-input systems or for determining the soil C 
balance associated with soil C sequestration.

Because of the generic structure of the CROP-
GRO model, the CROPGRO-Cotton module benefits 
from other model features that were previously 
added to CROPGRO. One such feature is the generic 
coupling points that emulate the potential impact of 
pests and diseases on crop growth and development 
(Boote et al., 1983, 2008, 2010). These coupling 
points allow for the removal of tissue of the various 
organs, a modification of leaf area, a reduction in the 
availability of carbohydrates, and various others that 
are specified in a crop-specific pest input file. The 

actual removal or changes are provided through a 
time-series input file. Ortiz et al. (2009) used this 
option to study the impact of southern root-knot 
nematodes on biomass growth and seed cotton yield.

Most of the applications of the CSM-CROP-
GRO-Cotton model have been conducted in the 
southeastern U.S., including the determination of 
irrigation water use in Georgia (Guerra et al., 2007), 
the impact of climate variability and El Niño/La Niña 
Southern Oscillation (ENSO) on seed cotton yield 
under different cotton management options (Garcia 
y Garcia et al., 2010; Paz et al., 2012), sensitivity to 
solar irradiance (Garcia y Garcia et al.; 2008) and 
other inputs (Pathak et al., 2007), and crop insur-
ance (Cabrera et al., 2006). Applications beyond the 
U.S. have been limited, except for a climate change 
application in Cameroon (Gérardeaux et al., 2013) 
and a study of irrigation strategies in Australia (Cam-
marano et al., 2012).

The CSM-CROPGRO-Cotton model is included 
in DSSAT (Hoogenboom et al., 2012). The most 
recent version of DSSAT can be requested from the 
DSSAT Foundation web site (www.DSSAT.net) at 
no cost. Utility programs are available within DSSAT 
for entering experimental and environmental data, 
as well as measured data, for model calibration and 
evaluation. DSSAT also includes special application 
programs for crop sequence or rotation analyses and 
for seasonal analyses that include economic com-
ponents. The source code for the model is available 
upon request.

Generic crop models. Several generic crop 
models, which simplify crop growth routines for 
applicability to a variety of crops, have also been 
developed, and limited reports are available for 
the use of such models in cotton. The Environ-
mental Policy Integrated Climate (EPIC) model, 
originally called the Erosion-Productivity Impact 
Calculator (Williams et al., 1984), simulates the 
impact of climate and management on soil erosion, 
water quality, and crop production. The generic 
crop model in EPIC (Williams et al., 1989) is 
currently parameterized for approximately 80 
crops. Evaluations of the EPIC model have been 
conducted for cotton systems in Georgia (Guerra 
et al., 2004) and Texas (Ko et al., 2009a). The 
Simple and Universal CROp growth Simulator 
(SUCROS; Van Ittersum et al., 2003) models daily 
canopy CO2 assimilation for potential production 
and includes a tipping bucket soil water balance 
routine with Penman ET. Zhang et al. (2008) modi-
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fied SUCROS (SUCROS-Cotton) to simulate “cut-
out”, fruit dynamics, fruit abscission, single boll 
weight, and fiber yield for cotton. The model was 
evaluated for a cotton system in China. Another 
Wageningen crop model, WOrld FOod STudies 
(WOFOST; Van Diepen et al., 1989; Van Itter-
sum et al., 2003), is used for generic crop growth 
simulations in the Soil-Water-Atmosphere-Plant 
model (SWAP; Kroes et al., 2008), which simu-
lates vadose zone transport of water and solutes. 
Crop yield in SWAP can also be computed using 
a simplified crop growth algorithm (Doorenbos 
and Kassam, 1979). The GRAMI model (Maas, 
1993a,b,c) was originally developed to estimate 
growth and yield of gramineous crops such as 
wheat, maize, and sorghum (Sorghum bicolor (L.)
Moench). The model was specifically designed to 
accept remote sensing data inputs for improving 
the accuracy of its crop growth simulation. Ko et 
al. (2005) modified the original GRAMI model to 
simulate growth and fiber yield of non-stressed 
cotton. The Root Zone Water Quality Model (RZ-
WQM; Ma et al., 2012) originally incorporated 
a generic crop growth model but now includes 
the CSM crop modules (Jones et al., 2003), spe-
cifically the CROPGRO-Cotton model for cotton 
systems. CropSyst (Stöckle et al., 2003) is a daily 
time-step cropping system model that simulates 
water and N balances, crop growth and develop-
ment, residue recycling, erosion by water, and 
salinity in response to climate, soils, and manage-
ment. Sommer et al. (2008) evaluated CropSyst 
for cotton in Uzbekistan.

Historic Applications of Cotton Models
In the previous century, cotton simulation 

models were used to assess irrigation and N fertil-
izer management strategies and to understand the 
effects of climate variability on cotton fiber yield. 
Many of these early efforts were based on the GOS-
SYM model (McKinion et al., 1989). Comparisons 
of GOSSYM-simulated crop water use with field 
measurements were an important step to evaluate 
the model for irrigation management purposes 
(Asare et al., 1992; Staggenborg et al., 1996). The 
Australian model, OZCOT, was used to make ir-
rigation management decisions in relation to water 
supply (Dudley and Hearn, 1993a; Hearn, 1992). To 
characterize N impacts on cotton production, GOS-
SYM was used to manage N fertilization events for 
a field study in South Carolina (Hunt et al., 1998), 

to evaluate N fertilizer recovery and residual soil 
N for cotton systems in Mississippi (Stevens et al., 
1996), and to assess the effect of N fertilization rate 
and timing on cotton fiber yield over a long-term 
weather record in West Texas (Wanjura and McMi-
chael, 1989). Ramanarayanan et al. (1998) used the 
EPIC model to optimize N fertilization management 
in Oklahoma, while considering N recovery in cotton 
fiber yield and N loss to the environment.

Using GOSSYM, Landivar et al. (1983a) ex-
amined effects of the “okra-leaf” trait on cotton 
fruit abscission and fiber yield. Under favorable N 
conditions, it appeared that a slight yield advantage 
with the okra-leaf trait was the result of improved 
light interception. However, under less favorable 
conditions, okra-leaf restricted LAI, which reduced 
yields. In a second paper (Landivar et al., 1983b), 
photosynthetic rate, specific leaf weight and leaf 
longevity were varied. Greater photosynthetic rate 
increased fiber yield, but if increased photosynthesis 
was achieved through greater specific leaf weight 
(thicker leaves), no yield benefit occurred. Extending 
leaf longevity appeared more promising for increas-
ing yield, but the model did not deal with possible 
tradeoffs between leaf longevity and processes such 
as N remobilization.

Due to concerns of declining cotton fiber yield 
over several decades, GOSSYM was used to exam-
ine climate effects on cotton fiber yield at several 
locations across the U.S. Cotton Belt (Reddy and 
Baker, 1990; Reddy et al., 1990; Wanjura and Barker, 
1988). Weather variables were shown not to be a 
driver of fiber yield declines, but increasing ozone 
level might have reduced fiber yields in Phoenix, AZ 
and Fresno, CA (Reddy et al., 1989). Small increases 
(10%) in fiber yield due to elevated CO2 were found 
when soil N levels were sufficient. Dudley and Hearn 
(1993b) used OZCOT to evaluate El Niño effects on 
irrigated cotton systems in Namoi, Australia. Other 
early applications of the GOSSYM model included 
an economic evaluation of alternative desiccant 
application strategies (Watkins et al., 1998) and an 
assessment of N fertilizer recommendations in the 
context of precision agriculture (McCauley, 1999). 
Exploration of the link between crop simulation 
models and canopy spectral reflectance indices was 
also an early priority in cotton research (Wiegand et 
al., 1986). Within-season calibration of crop growth 
models using remote sensing data was described 
originally by Maas (1988a,b) and later implemented 
in GRAMI. In this calibration procedure, within-
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season estimates of actual crop growth, such as LAI 
or ground cover, were obtained from remote sensing 
data. The model parameters and initial conditions 
were then iteratively adjusted to minimize the dif-
ference between simulated crop growth and the 
measured growth from remote sensing data (Maas, 
1993a,b,c). Finally, Larson and Mapp (1997) used 
the COTTAM model (Jackson et al., 1988) to esti-
mate cotton production responses and net revenue to 
various management inputs. The simulation results 
were then used to evaluate the performance of cot-
ton cultivars and to assess planting, irrigation, and 
harvest decisions under risk. These studies laid the 
foundation for cotton modeling applications in the 
new century.

PRESENT DIRECTIONS: 2000-2013

Recent Development of Cotton Models. Studies 
on the application of cotton simulation models after 
year 2000 vastly outnumbered the studies reporting 
new model developments. However, there are a few 
recent and notable accomplishments in the develop-
ment of simulation models for cotton. The AquaC-
rop model, supported by the Food and Agriculture 
Organization (FAO) of the United Nations, is a new 
generic crop model for simulating yield response 
to water management (Raes et al., 2009; Steduto et 
al., 2009). This effort resulted in a simulation model, 
based on plant physiology and soil water balance, 
that replaced previous FAO publications for estimat-
ing crop productivity in relation to water supply. In a 
short time, the model has been used for a number of 
irrigation management studies in cotton, discussed 
in the next section, and in other crops. Pachepsky 
et al. (2009) developed and parameterized the new 
WALL model for cotton, which simulates individual 
leaf transpiration with emphasis on water movement 
within the leaf. Finally, Liang et al. (2012a) developed 
a GOSSYM-based, geographically distributed cotton 
growth model that has been coupled with the Climate-
Weather Research Forecasting Model (Skamarock et 
al., 2005) for studying the effects of changing climate 
on cotton production.

The literature demonstrates a significant 
research thrust toward cotton simulation model 
development in China, the world’s leading cotton 
producer. Ma et al. (2005) conducted field studies 
at four locations in China and developed a simula-
tion model for cotton development and fruit forma-
tion. Zhu et al. (2007) designed a web-based DSS 

for crop management that included process-based 
simulation models for four crops, including cotton. 
Li et al. (2009) developed a model for simulating 
boll maturation, seed growth, and oil and protein 
content of cottonseed. The model was calibrated 
and evaluated using experimental data sets from 
two locations in China. Zhao et al. (2012) focused 
on cotton fiber production and developed a model 
for simulating cotton fiber length and strength based 
on air temperature, solar irradiance, and N effects.

Another noteworthy direction of research is 
the recent development of higher-dimensional 
models that simulate cotton canopy and root 
architecture. Coelho et al. (2003) used principles 
from GOSSYM and DSSAT-CSM to develop a 
model for simulation of horizontal and vertical 
distributions of cotton root growth at the field 
scale. Similarly, simulation of three-dimensional 
cotton root growth was investigated by Zhang 
and Li (2006) in China. Hanan and Hearn (2003) 
linked a model of cotton plant morphogenesis and 
architecture with OZCOT. The combined models 
allocated flower buds to assigned positions on the 
plant, and water, N, and C stresses controlled fruit 
growth and abortion. Jallas et al. (2009) combined 
a mechanistic model of crop growth and devel-
opment with a three-dimensional model of plant 
architecture. Together, the two models produced 
an animated visualization of cotton growth for one 
or several cotton plants. Alarcon and Sassenrath 
(2011) analyzed digital images of cotton cano-
pies and developed a dynamic model to simulate 
changes in cotton leaf number and leaf size dur-
ing the growing season. These studies evidence a 
move toward simulation models that consider the 
influence of plant architecture on cotton growth, a 
characteristic that is not considered in most exist-
ing cotton models.

Recent Applications of Cotton Models

Crop Water Use and Irrigation Management
North American cotton production. Several cot-

ton simulation models, including Cotton2K, CSM-
CROPGRO-Cotton, EPIC, GOSSYM, and GRAMI, 
were implemented for water-related research in 
North America since 2000. Researchers have used 
these models to assess crop water demand and as 
a tool for cotton irrigation scheduling. The models 
were sometimes integrated with other models and 
software to increase their utility and effectiveness.
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Baumhardt et al. (2009) simulated fiber yield 
using GOSSYM for a 40-yr period at Amarillo, 
TX and used these data to analyze the impact of 
irrigation depth, irrigation duration, and initial soil 
water content on WUE and fiber yield of cotton. At 
lower initial moisture content, fiber yield and WUE 
increased with increasing irrigation depth, whereas 
at higher initial soil water content, WUE was lower 
for the higher irrigation depth although fiber yield 
was higher. They also reported that, with low irriga-
tion water availability, concentrating the irrigation 
water to a subset of the field area could increase 
cotton fiber yield.

The CSM-CROPGRO-Cotton model was evalu-
ated for simulating cotton growth and development 
under different irrigation regimes in Georgia and 
was found to be a promising tool for irrigation 
scheduling (Suleiman et al., 2007). Simulations of 
ET were compared with field experimental data from 
Griffin, GA to evaluate the FAO-56 crop coefficient 
procedure for irrigation management in deficit irri-
gated cotton production. Root mean squared errors 
between measured and simulated ET ranged from 
2.5 to 3.5 mm d-1, and model efficiency statistics 
were less than 0.28. These results indicate potential 
for further refinement of the model’s ET simulation.

Guerra et al. (2004) evaluated the EPIC model 
to simulate cotton fiber yield and irrigation demand 
in Georgia. The model simulated cotton fiber yield 
and irrigation requirements with root mean squared 
deviations of 0.29 t ha-1 and 75 mm, respectively. 
The model performance for cotton was better than 
for soybean and peanut. The EPIC model was also 
used to compare simulated crop water requirements 
for cotton, peanut, and corn with the actual irrigation 
amounts applied by farmers in Georgia (Guerra et al., 
2005). This study revealed that EPIC was useful for 
assessing on-farm irrigation water demand. Guerra et 
al. (2007) used the CSM-CROPGRO-Cotton model 
to simulate irrigation applications for individual 
fields and then used kriging to estimate the spatial 
distribution of the irrigation water use for cotton in 
Georgia. The technique enabled estimation of water 
use at spatial scales more suitable to inform policy 
makers.

Nair et al. (2013) evaluated Cotton2K for the 
Texas High Plains by simulating cotton fiber yield for 
a 110-yr period at Plainview, TX. Sixty-eight differ-
ent irrigation treatments were simulated to analyze 
the production and profitability impacts of partition-
ing a center-pivot irrigated cotton field into irrigated 

and dryland areas. By irrigating only a subset of the 
field area, cotton fiber yield and profitability were 
increased. The benefit was higher when available 
irrigation water was low and in low rainfall years.

Ko et al. (2006) used a modified version of 
GRAMI, capable of within-season calibration us-
ing remotely sensed crop reflectance data, to model 
water-stressed cotton growth at Lubbock, TX. Even 
though the model adequately simulated cotton 
growth under deficit irrigation, its performance was 
unsatisfactory at higher irrigation regimes. Ko et 
al. (2009b) used data from field trials conducted in 
Uvalde, TX to calibrate the radiation use efficiency 
and the light interception coefficient of the EPIC 
crop model. The calibrated model simulated field 
conditions with more accuracy and hence could be 
a better tool to manage irrigation water resources.

Evett and Tolk (2009) reviewed nine papers that 
used cropping system simulation models to simulate 
yield and WUE of four crops, including cotton. All 
the models in these studies simulated WUE with 
considerable accuracy under well-watered condi-
tions, but performed poorly under water stress. Crop 
growth models are important components of web-
based DSSs, which can be used by crop managers 
for irrigation scheduling decisions (Fernandez and 
Trolinger, 2007).

Australian cotton production. The Australian 
cotton model, OZCOT (Hearn, 1994), is commonly 
used for irrigation water management research and 
decision support in Australia. It was used extensively 
to assess potential and risk of productivity and value 
of improvements in WUE across all Australian cot-
ton production regions at the field scale (e.g., Hearn, 
1992). The need for these assessments was associated 
with considerable reductions in water allocations 
and climate variability, including severe droughts. 
These investigations have also included assessments 
of seasonal climate forecasts to improve risk quan-
tification (e.g., Bange et al., 1999). Today much of 
this information is delivered in databases of pre-run 
OZCOT simulations, based on historical climate data 
for various combinations of management options, 
soils, regions, and seasonal forecasts (CottBASE; 
https://cottassist.com.au). Cammarano et al. (2012) 
used a calibrated CSM-CROPGRO-Cotton model to 
undertake similar assessments for research purposes.

In parallel to the use of OZCOT for research, 
a DSS named “HydroLOGIC” was developed to 
calibrate the OZCOT model using available weather, 
soil water, fruit load, and leaf area data for irrigation 
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scheduling (Hearn and Bange, 2002; Richards et al., 
2008). Irrigation timing was assessed by varying 
target soil water deficits for triggering irrigations and 
then by simple user optimization of fiber yield and 
water use estimates generated by OZCOT outputs. 
Simulations of fiber yield and water use were based 
on potential growth determined by OZCOT and 
historical climate records for the remainder of the 
season. HydroLOGIC can also be used in a strategic 
mode that enables users to explore the fiber yield and 
water productivity of irrigation management prac-
tices (pre- and post-season) under different weather 
patterns using long-term climate data. In this mode, 
schedules are user-defined and can irrigate the crop 
when the soil-water deficit reaches a set level, where 
the first and final irrigation dates are determined by 
square and boll development.

Recent advances in irrigation management have 
included the development of a framework “VARI-
wise” that develops and simulates site-specific ir-
rigation control strategies (McCarthy et al., 2010). 
VARIwise divides fields into spatial subunits based 
on databases for weather, soil, and plant parameters 
to better account for field variability. The OZCOT 
model is used in two capacities in VARIwise: 1) 
to simulate the performance of the control strate-
gies and 2) to calculate the irrigation application 
that achieves a desired performance objective (e.g., 
maximized bale yield or water productivity). In the 
first option, industry standard irrigation management 
strategies are tested, which apply irrigation to fill the 
soil profile. In the second option, VARIwise executes 
the calibrated crop model with different irrigation 
volumes over a finite horizon (e.g., 5 d) to determine 
which irrigation volumes and timing achieves the 
desired performance objective (e.g., maximize bale 
yield or water productivity) as calculated by the 
model. The optimal combination is implemented and 
this procedure is repeated daily to determine the tim-
ing of the next irrigation event and the site-specific 
irrigation volumes. An automatic model calibration 
procedure for soil water, vegetation, and fruit load 
was developed to minimize the error between the 
measured and simulated soil and plant responses 
(McCarthy et al., 2011). A genetic algorithm was 
used to refine the soil and plant parameters that 
characterized cotton development.

Evaluation of VARIwise has shown improve-
ments in irrigation WUE for center-pivot irrigated 
cotton (McCarthy et al., 2010) and surface irriga-
tion. The field implementation of VARIwise for 

surface irrigation includes irrigation hydraulics to 
determine the control actions (inflow rate and cut-off 
time) required to achieve the appropriate irrigation 
distribution along the furrow as determined by the 
control strategies. This further improves irrigation 
efficiencies. McCarthy et al. (2013) reviewed the 
use of crop models for advanced process control of 
irrigation and argued that process-based simulation 
models perform better than crop production func-
tions. Significant opportunity remains to further en-
hance the VARIwise system by linking the predictive 
functionalities of HydroLOGIC, which is focused 
on crop growth performance, with the improved 
irrigation practice recommendations generated by 
VARIwise.

On-farm water storage and distribution are 
limiting factors of the irrigation decision making 
process for cotton production. The APSIM frame-
work incorporates water storage and has enabled 
the exploration of irrigation management options 
that rely on effluent water or opportunistic capture 
of overland flow as water sources (Carberry et 
al., 2002a). To provide probabilistic forecasts of 
on-allocation and off-allocation water, catchment 
models and seasonal climate forecasts have been 
implemented, and the simulated water supply was 
used with a cotton simulation model to determine 
seasonal water requirements and cotton bale yield 
(Power et al., 2011a,b). The gross margins, water 
requirements, and subsequent bale yields were then 
used to evaluate different cropping areas with dif-
ferent water availability and management paradigms. 
Alternatively, the irrigation events were scheduled 
when the OZCOT-simulated soil water deficit 
reached a set limit or when OZCOT maximized bale 
yield (Ritchie et al., 2004). Then, a gross margin 
model was developed using the seasonal climate 
forecasts, estimated bale yield, and water application 
for the given water supply. The resulting bale yield, 
water and crop production costs, and crop price were 
provided for each year of the simulation.

With current water reform actions in the Aus-
tralian states of Queensland and New South Wales, 
water supply was calculated using seasonal stream 
flow forecasts from the Australian Bureau of Me-
teorology (Power et al., 2011b) and the Integrated 
Quantity Quality Model (IQQM), a river flow and 
water use hydrological model (Ritchie et al., 2004). 
The calculations can be used to estimate water avail-
ability for input into crop models. In these applica-
tions, OZCOT was used to determine the optimal 



26JOURNAL OF COTTON SCIENCE, Volume 18, Issue 1, 2014

planting area and water requirements for different 
planting areas according to the calculated volume of 
water at sowing (Power et al., 2011b).

Asian cotton production. Asia is home to sev-
eral major cotton producing countries in the world, 
including China, India, Pakistan, Kazakhstan, and 
Uzbekistan. Irrigated cotton production in these 
countries relies mostly on traditional water manage-
ment using surface irrigation practices. Nevertheless, 
several studies applied cotton simulation models for 
improving water management strategies in these 
Asian countries. Yang et al. (2010) used the Cotton2K 
model for estimating the irrigation water require-
ments for cotton in the North China Plain using 20 
years of agronomic, hydrologic, and climate data. 
On average, irrigated cotton production accounted 
for 8% of the total water requirements in that region. 
Singh et al. (2006) evaluated water management 
strategies at various spatial and temporal scales 
using the SWAP model in an agricultural district 
in Northern India. The simulation results indicated 
that seed cotton yield and water productivity could 
be improved by ensuring an adequate water supply 
during the kharif (summer) season. The SWAP model 
was also used by Qureshi et al. (2011) to determine 
irrigation amounts for cotton grown in the Syrdarya 
province of Uzbekistan. Results demonstrated that 
an irrigation application of 2500 m3 ha-1 produced 
an optimal seed cotton yield of 3000 kg ha-1 under 
the current climatic conditions with a water table 
depth of 2 m. Buttar et al. (2012) used a calibrated 
CropSyst model for studying the impact of global 
warming on seed cotton yield and water productiv-
ity of Bt cotton grown under semiarid conditions in 
North India. Their results showed that total ET and 
crop water productivity decreased with an increase 
in air temperature from 28° to 32° C.

Mediterranean cotton production. Irrigation 
water management simulation studies in the Medi-
terranean region have mostly used the AquaCrop, 
CropWat, and SWAP models. While using the SWAP 
model to evaluate the performance of the Menemen 
Left Bank irrigation system, located at the tail end 
of the River Gediz in western Turkey, Droogers et al. 
(2000) determined that the cotton irrigation require-
ment was about 1000 mm, and water productivity, 
expressed in terms of seed cotton yield per amount 
of water depleted from the soil, was maximized at 
an irrigation amount of 600 mm. Ismail and De-
peweg (2005) also studied water productivity and 
cotton production in relation to water supply under 

continuous flow and surge flow irrigation methods 
in short fields of clay and sandy soils in Egypt us-
ing the CropWat model (FAO, 2013). Their analysis 
indicated that surge flow irrigation is an efficient 
tool either to produce the same yield with less water 
than in continuous flow or to produce higher yields 
than continuous flow when using the same gross 
irrigation supply.

Garcia-Vila et al. (2009) determined the op-
timum level of applied irrigation water for cotton 
production in southern Spain under several climatic 
and agricultural policy scenarios using AquaCrop. 
After calibrating the model with data from four ex-
periments in the Cordoba Province, functions of seed 
cotton yield versus applied irrigation were developed 
for different scenarios, and an economic optimization 
procedure was applied. Maximum profits occurred 
when irrigation amounts were between 540 and 740 
mm for the conditions at the study area, depending 
on the climatic scenario. However, profits remained 
close to the maximum (above 95%) for applied ir-
rigation water levels exceeding 350 mm.

Accurate simulation of crop yield under vari-
ous irrigation regimes (full and deficit irrigation) 
is important to optimize irrigation under limited 
availability of water resources. Farahani et al. (2009) 
evaluated AquaCrop for cotton under full (100%) 
and deficit (40%, 60%, and 80% of full) irrigation 
regimes in the hot, dry, and windy Mediterranean 
environment of northern Syria. AquaCrop simulated 
seed cotton yields within 10% of the measured yields 
for the 40% and 100% irrigation regimes, whereas 
the errors increased to 32% for the 60% and 80% 
irrigation regimes. Simulations of ET, biomass, 
and soil water for the four irrigation regimes were 
particularly promising given the simplicity of the 
AquaCrop model and its limited parameterization. 
AquaCrop was also used to study seed cotton yield 
responses to deficit irrigation for a 3-yr (2007-
2009) field experiment conducted in the southeast 
of Damascus, Syria (Hussein et al., 2011). Drip ir-
rigation was used for cotton management under full 
and deficit irrigation (80%, 65%, and 50% of full 
irrigation). Simulations of seed cotton yields were 
within 6% of the measurements. However, the model 
overestimated WUE under water-deficit conditions.

Nitrogen Dynamics and Fertilizer Manage-
ment. Over application of N and other fertilizers 
on farmlands not only increases input costs but also 
causes excessive vegetative growth and delayed 
maturity in cotton. Excess N fertilizer can also con-
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taminate surface water and groundwater and can in-
crease nitrous oxide emissions from the soil. Cotton 
simulation models that include soil processes help 
assess impacts of fertilizer management, including 
application rates, method, and timing, on nutrient 
dynamics and water quality. Reddy et al. (2002b) 
reviewed the use of GOSSYM to assess the impact 
of fertilization on cotton productivity, evaluate N 
dynamics as influenced by fertilizer application rates, 
and investigate the effect of N fertilizer application 
timing on cotton fiber yield. In general, GOSSYM 
overestimated fertilizer N recovery by plants, which 
was attributed to the inability of the model to simu-
late mineralization and immobilization processes or 
ammonia volatilization losses from the soil or the 
plants (Boone et al., 1993).

Braunack et al. (2012) examined the effect of 
cotton planting date and cultivar selection on N use 
efficiency in cotton farming systems in Australia 
through field experiments and OZCOT model simu-
lations. From the field experiments conducted over 2 
yr at Narrabri in New South Wales, they found that 
there was no difference in N use efficiency between 
two cotton cultivars: CSX6270BRF and Sicot 70BRF. 
They also found that the N use efficiency was not 
statistically decreased if planting occurred within 30 
d from the normal target planting date of 15 October. 
The OZCOT simulations using 53 seasons (1957 to 
2010) of climate data for long, medium, and short 
cotton growing regions in New South Wales and 
Queensland indicated that the N use efficiency was 
relatively constant over planting dates from 30 Sep-
tember to 30 October in the medium and short season 
areas and from 30 September to 30 November in the 
long season areas, and decreased steeply thereafter.

The soil N dynamics and seed cotton yields under 
varying N rates for cotton in the Khorezm region in 
Uzbekistan were simulated by Kienzler (2010) using 
the generic cotton routine within the CropSyst model. 
The simulated plant N uptake was higher than the 
applied fertilizer for all treatments up to the N fertil-
izer rate of 160 kg ha-1 and increased with higher N 
fertilizer amounts to a maximum of 214 kg N ha-1 
for a fertilizer rate of 250 kg N ha-1. Simulated crop 
production under farmers’ practice was not N-limited 
when more than 80 kg N ha-1 was applied. Hence, 
while maintaining the total amount of N fertilizer 
within 120 to 250 kg N ha-1, changing the timing or 
number of applications did not improve seed cotton 
yields. The simulations also indicated that increasing 
seed cotton yields without increasing N losses was 

possible when water supply better matched demand.
The EPIC model was used by Kuhn et al. (2010) 

to estimate cotton fiber yields as a function of fertil-
izer application rates (ranging from 0 to 300 kg N 
ha-1) at the regional scale, by dividing the Upper 
Oueme basin in Benin, West Africa into 2550 crop 
response units, which were quasi-homogenous with 
respect to land use, soil, and climate. The outputs of 
the crop simulations for different N application rates 
were then used to establish yield response functions, 
which were finally integrated to an economic model 
to simulate the effects of tax exemptions on fertil-
izer use, crop yields, food balances, and use of land 
resources for the most important crops of the region, 
including cotton.

Chamberlain et al. (2011) used DAYCENT, a C 
and N cycling model, to simulate N dynamics under 
cotton production and then employed the simula-
tion results to assess the environmental impacts of 
land conversion from cotton to switchgrass in the 
southern U.S.. Long-term simulations showed a 
reduction of N in runoff (up to 95%) for conversion 
from cotton to switchgrass at N application rates of 
0 to 135 kg N ha-1. They concluded that the model 
could more accurately simulate relative differences 
rather than absolute values for each cropping system. 
Using RZWQM, Abrahamson et al. (2006) simulated 
nitrate leaching from tile drains under conventional 
and no-tillage management practices in cotton pro-
duction and rye (Secale cereale L.) cover cropping 
practices in a Cecil soil (kaolinitic, thermic, Typic 
Kanhapludult) in Georgia. However, the model was 
unable to simulate the pattern of nitrate transport in 
these soils, which led to large differences between 
simulated and measured values of leached nitrate (62 
and 73 kg ha-1 for conventional tillage and no-till, re-
spectively). The authors stated that the ion exchange 
equations in the RZWQM were included only for the 
major cations and not for anions adsorbed onto soil, 
and this might have resulted in the poor simulation 
of nitrate leachate losses.

Recently, Shumway et al. (2012) tested the new 
Nitrogen Loss and Environmental Assessment Pack-
age (NLEAP) for its ability to simulate N dynamics 
for different cropping systems, including cotton, 
in three different locations in the Arkansas Delta. 
Simulations by the NLEAP showed that the model 
simulated the effects of management on residual 
soil nitrate, and it could be used as a tool to quickly 
evaluate management practices and their effects on 
potential N losses from cropped lands.
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Genetics and Crop Improvement. The ability 
of crop models to simulate the interactive effects of 
plant traits, environment, and management makes 
such models attractive tools for crop improvement 
(White, 1998). Models find application both in simu-
lating how specific traits impact yield and in ana-
lyzing how variability in production environments 
impact yield. Although models are often proposed 
as tools for analyzing genotype by environment re-
sponses in support of breeding (e.g., Chapman et al., 
2003; White, 1998), no examples were found where 
a cotton model was used to characterize the target 
population of environments or to analyze the envi-
ronmental effects in breeding nurseries or varietal 
tests. One constraint might be that cotton simulation 
models lack sufficient genetic and physiological 
detail to describe cultivar differences in traits such 
as canopy temperature. Gene-based modeling is one 
avenue to strengthen the genetics and physiology of 
models, but it requires understanding of the genetic 
control of traits of interest (Bertin et al., 2010; White 
and Hoogenboom, 2003). Until gene-based model-
ing goals are realized, model inversion techniques 
could be useful to estimate crop traits of varieties 
in large field trials, where crop sensors are deployed 
for field-based high-throughput phenotyping (White 
et al., 2012).

Climatology. Because crop development is 
driven by weather, an important application of cot-
ton models is to analyze the impact of climatological 
patterns on production. Fernandez and Trolinger 
(2007) described a web-based DSS that provides 
easy access to weather network data and numerical 
tools that simulate cotton responses to environmental 
conditions in South Texas. A heat unit approach was 
used for crop development, whereas crop height, 
LAI, and canopy cover were simulated using empiri-
cal equations. To use models for large-scale spatially 
distributed simulations, reliable weather data is of-
ten unavailable, particularly for solar radiation and 
precipitation. Therefore, researchers have sought 
alternative ways to derive such data. Richardson and 
Reddy (2004) used seven solar radiation models and 
four temporal averaging schemes to estimate solar 
irradiance, and cotton production simulations were 
evaluated at 10 locations across the U.S. using the 
solar irradiance data in GOSSYM. Cotton fiber yield 
estimation accuracy depended on solar irradiance 
estimation accuracy, but location and management 
practice (irrigated versus rainfed) also impacted the 
simulation results. Although the radiation models 

estimated solar irradiance and fiber yield well, the 
combination of minimum and maximum air tem-
peratures, rainfall, and wind speed performed best 
for simulation of solar irradiance and fiber yield at all 
locations. Garcia y Garcia et al. (2008) compared the 
effects of measured and generated solar irradiance 
on simulations of cotton, maize, and peanut crops 
in Georgia using the CSM. Simulations of total ET, 
above-ground biomass, and seed cotton yield were 
similar for generated and measured solar radiation. 
They concluded that generated solar radiation data 
could be reliably used as input to cotton simulation 
models in locations where measured data were not 
available.

Cotton simulation models also have been used 
to study the effect of cyclical climate variations on 
cotton production, particularly the ENSO. Garcia y 
Garcia et al. (2010) studied the spatial variability of 
seed cotton yield and WUE of cotton grown in the 
southeastern U.S. as related to ENSO phases. Seed 
cotton yield and WUE of rainfed cotton were differ-
entially affected by ENSO, and seed cotton yield was 
differentially affected by rainfall, air temperature, 
and solar irradiance within ENSO phase. Simulated 
seed cotton yield for rainfed cotton was higher dur-
ing La Niña than during El Niño and neutral years, 
ranging from 3044 to 3304 kg ha-1 during El Niño 
years, from 2950 to 3267 kg ha-1 during neutral years, 
and from 2891 to 3383 kg ha-1 during La Niña years. 
Also, simulated seed cotton yield of rainfed cotton 
showed a stronger spatial dependence during El Niño 
and neutral years than during La Niña years. Paz 
et al. (2012) examined the ENSO effect on cotton 
fiber yields in Georgia for various planting dates at 
three spatial levels: county, crop reporting district, 
and region. Using CROPGRO-Cotton, fiber yields 
were simulated for 97 counties and 38 to 107 years, 
depending on county, each with nine planting dates 
within the planting window of 10 April through 6 
June. Fiber yields were separated by ENSO phase, 
and analyses showed different results regarding the 
ENSO effect. According to county level analyses, 
ENSO had little and spatially less consistent effects, 
but the effect became more evident at larger spatial 
scales. According to regional level analysis, the fiber 
yield difference among ENSO phases was minimal 
for average planting dates, but substantial if planting 
date deviated from the average. In the northern Mur-
ray Darling Basin, Australia, the impacts of ENSO 
phases on precipitation patterns were used to develop 
seasonal climate forecasts for the region (Ritchie et 
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al., 2004). To test the outcome of irrigators using 
climate forecasts to schedule irrigations, OZCOT 
simulations provided cotton bale yield responses to 
climate-based irrigation management over a long-
term weather record.

Liang et al. (2012b) implemented a geographi-
cally distributed GOSSYM model to simulate U.S. 
cotton fiber yield responses over a long-term climate 
record from 1979 to 2005. The model simulated 
long-term mean cotton fiber yield within 10% of 
measurements at a scale of 30 km across the U.S. 
Cotton Belt, and the model responded appropri-
ately to regional climate variation. The study was 
an important precursor to using the geographically 
distributed GOSSYM model for study of cotton 
responses to future climate scenarios. However, 
to use cotton models for future climate change 
scenarios, the weather inputs for air temperature, 
radiation, wind speed, and precipitation must be 
obtained from future climate models. These climate 
models, for now, provide monthly data, rather than 
the daily inputs required by most models. Reddy et 
al. (2002a) developed a method to create daily future 
weather files by modifying daily current weather 
assuming that changes in daily weather parameters 
remain constant for each month. The monthly mean 
maximum and minimum air temperature changes 
were added to current daily measurements and the 
change fractions for precipitation, solar irradiance, 
and wind speed were multiplied by current daily 
measurements to generate a 30-yr record of daily fu-
ture weather. This methodology retained the existing 
natural variability in the historic weather for those 
years. A similar methodology was used by Doherty 
et al. (2003) to simulate cotton fiber yields spatially 
across the southeastern U.S.

Global Climate Change. Simulation models are 
widely used to assess the potential impacts of climate 
change on cropping systems (White et al., 2011) and 
to quantify greenhouse gas fluxes from agricultural 
systems. In both applications, the models are val-
ued for their ability to quantify potential complex 
interactions of cultivars, weather, soils, and man-
agement. However, skeptics question the accuracy 
of simulation models relative to statistical models 
from historical analyses of yield and climate trends 
(Lobell et al., 2011; Schlenker and Roberts, 2009).

In impact assessment, the usual approach is to 
compare yield or other traits for a baseline situation 
(e.g., 30 years of historical weather and [CO2]) with 
one or more scenarios where future climatic and 

[CO2] conditions are input to the model for one or 
more reference periods or for an assumed generic 
change (e.g., by increasing daily air temperatures 2° 
C). Among methodological concerns in this process 
are how to realistically alter cultivar characteristics 
and management to account for likely adaptive 
changes in cropping seasons.

Modifications to the GOSSYM model were 
required to facilitate simulations of cotton re-
sponses under future climate scenarios. Model 
improvements have focused on the canopy pho-
tosynthesis response to elevated CO2 (Reddy et 
al., 2008), pollen and fruit production efficiency 
responses to higher air temperatures (Reddy et al., 
1997c), and growth and developmental responses to 
ultraviolet-B radiation effects (Reddy et al., 2003). 
Using GOSSYM, Reddy et al. (2002a) simulated 
cotton response to climate change, including an 
increase of [CO2] from 360 to 540 ppm, for a 30-yr 
period (1964 to 1993 as the baseline) at Stoneville, 
MS. Considering only effects of [CO2], fiber yield 
increased by 10% from 1560 to 1710 kg ha–1, but 
when all projected climatic changes were included, 
fiber yield decreased by 9% to 1430 kg ha–1. The 
adverse effect of warming was more pronounced in 
hot and dry years. With climate change, most days 
with average air temperatures above 32° C primarily 
occurred during the reproductive phase. As a result, 
the authors emphasized that irrigation will be needed 
to satisfy the high water demand, thus reducing boll 
abscission by lowering canopy temperatures. Also, 
if global warming occurs as projected, fiber produc-
tion in the future environment will be reduced, and 
breeding cultivars tolerant to heat and cold will 
be necessary to sustain cotton production in the 
midsouth U.S. Cultural practices such as earlier 
planting might be used to avoid flowering in mid 
to late summer, when high air temperatures occur. 
Doherty et al. (2003) simulated cotton response to 
climate change for the southeastern U.S. using the 
GOSSYM model integrated with general circulation 
models. Baseline weather from 1960 to 1995 and a 
reference [CO2] of 330 ppm were considered. Cli-
mate scenarios corresponded to a [CO2] of 540 ppm. 
In the absence of [CO2] effects and ignoring adap-
tation for planting date (i.e., changing the planting 
date from 1 May to 1 April), fiber yields decreased 
by 4% for a coarse-scale climate grid and by 16% for 
a fine-scale grid. Allowing for [CO2] and adaptation, 
fiber yields increased 30% with the coarse grid and 
18% with the fine grid. Although confirming that 
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increased [CO2] and adaptation have the potential 
to offset likely adverse effects of warming, the large 
effects of spatial scale emphasize the uncertainties 
inherent in simulation of climate change.

Using the Cotton2K model for irrigated cotton in 
Israel, Haim et al. (2008) reported that adaptation by 
planting two weeks earlier and increasing irrigation 
could offset the negative effects of warming under 
two climate change scenarios. Using CropSyst to 
model irrigated cotton in India’s Punjab region, But-
tar et al. (2012) confirmed that warming could reduce 
seed cotton yield through accelerated development 
and hence shorter growth duration.

Independent of potential impacts of climate 
change on cotton production, researchers also have 
used simulation models to quantify greenhouse gas 
fluxes from cotton systems and to simulate long term 
changes in soil C where cotton is grown. The EPIC 
model was used to simulate changes in soil organic 
C under different management scenarios (Causarano 
et al., 2007). Differences due to landscape position 
were correctly simulated, but the model needed 
refinement before the simulations were accurate 
enough to direct management practices at that scale. 
The EPIC model also was used to evaluate the ability 
of a soil conditioning index to estimate the impact of 
different cotton tillage systems and other variables 
on soil C content (Abrahamson et al., 2007, 2009). 
In general, the index provided the same directional 
change in C as EPIC (increase or decrease); how-
ever, the relationship was not linear. Del Grosso et 
al. (2006) used the DAYCENT model to estimate 
nitrous oxide emissions across the U.S. and included 
cotton systems (typically a cotton-corn rotation) but 
only reported net emissions. Similarly, DAYCENT 
was used to quantify changes in greenhouse gas 
fluxes due to conversion from conventional to alter-
native cropping systems (Chamberlain et al., 2011; 
De Gryze et al., 2010).

Precision Agriculture. The goal of precision ag-
riculture is to optimize field-level management based 
on several factors, such as soil physical properties, 
yield history, and economic benefit. Since the initial 
pioneering efforts in the late 1990s (McCauley, 1999; 
Paz et al., 1998, 1999), various strategies to analyze 
spatial and temporal yield variability and develop 
precision crop management plans using cropping 
system simulation models have been proposed 
(Batchelor et al., 2002; Booltink et al., 2001; Sadler 
et al., 2002; Thorp et al., 2008). These studies high-
lighted the importance of using models to account 

for soil heterogeneity across the field. McKinion et al. 
(2001) integrated the GOSSYM-COMAX DSS with 
a geographic information system (GIS) to determine 
N fertilization and irrigation management strategies 
that optimized cotton fiber yield spatially. Variation 
in soil properties was specified in the model using 
soil sample data at 88 locations across the study 
area on a 1-ha grid. They opined that this system 
has the potential to be used in automatic calculation 
of optimal irrigation rates considering within-field 
spatial variability. Using data from a cotton study 
in Arizona, Jones and Barnes (2000) conceptually 
demonstrated the integration of GIS, remote sensing 
images, cropping systems simulation, and a decision 
model to provide decision support for precision crop 
management while considering competing economic 
and environmental objectives. Basso et al. (2001) 
showed that, with a combination of crop modeling 
and remote sensing methods, management zones 
and causes for yield variability could be identified, 
which is a prerequisite for zone-specific manage-
ment prescriptions. Clouse (2006) used simulated 
annealing optimization to spatially calibrate the 
soil parameters of Cotton2K for sites in West Texas, 
and the calibrated model was used to compare site-
specific and uniform irrigation management strate-
gies. Simulated cotton fiber yields were higher with 
site-specific irrigation management, but the yield 
increases did not make site-specific irrigation more 
profitable. In China, Guo et al. (2008) developed 
a web-based DSS for cotton production systems, 
which integrated a crop simulation model into a GIS. 
McCarthy et al. (2011) reported the development of 
VARIwise, which incorporated the OZCOT model 
for evaluation of agronomic factors and engineering 
control strategies for variable-rate irrigation in cot-
ton. Recently, Thorp and Bronson (2013) developed 
an open-source GIS tool that could manage spatial 
simulations for any point-based crop model. They 
demonstrated the tool using both the AquaCrop and 
CROPGRO-Cotton models to simulate site-specific 
seed cotton yield in response to irrigation manage-
ment, N management, and soil texture variability for 
a 14-ha study area near Lamesa, TX.

Although not directly applied to cotton produc-
tion, several other studies have demonstrated impor-
tant simulation methodologies that would also have 
relevance for precision cotton management. For 
example, Paz et al. (2002) examined site-specific 
soybean water stress by adjusting root growth factors 
and tile drainage parameters in CROPGRO-Soybean 
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to minimize error between measured and simulated 
spatial soybean yield. Also, Paz et al. (2003) used 
CROPGRO-Soybean to analyze options for soybean 
variety selection and to develop prescription maps to 
achieve economic goals while considering weather 
history and soil variability. Thorp et al. (2006) 
developed a simulation methodology to determine 
precision N fertilization recommendations while 
considering the trade-off between maize production 
and loss of N to the environment. Thorp et al. (2007) 
also demonstrated a cross validation approach to 
evaluate site-specific maize yield simulations with 
the CERES-Maize model and to identify causes 
for spatial yield variability. Oliver et al. (2010) 
described the integration of farmer knowledge with 
several precision agriculture tools, including a crop 
simulation model, to devise practical and effective 
management plans for historically poor performing 
areas in the field. All of these simulation strategies 
would likely have similar applicability for cotton 
production systems.

Integration of Sensor Data with Models. De-
spite the many potential uses for cotton simulation 
models described above, a potential drawback is the 
need to adequately specify the values of numerous 
model parameters to produce consistently accurate 
simulation results. Building on the pioneering work 
of Maas (1988a,b; 1993a,b,c), efforts in the new cen-
tury have improved the accuracy of crop simulation 
models by incorporating reflectance measurements 
of the crop canopy during the growing season. A 
primary source of information for within-season 
crop model calibration is airborne and satellite re-
mote sensing imagery and ground-based proximal 
sensors. For example, using medium-resolution 
satellite imagery, Maas and Rajan (2008) estimated 
ground cover for a variety of field crops. To dem-
onstrate the utility of ground cover information for 
cotton growth model calibration, Ko et al. (2005) 
modified the GRAMI model for cotton and used 
a within-season calibration procedure to adjust 
model simulations using relatively simple input data 
derived from proximal sensing. Ko et al. (2006) re-
vised and tested GRAMI to simulate cotton growth 
and fiber yield of water-stressed cotton. The model 
simulated cotton fiber yield with root mean squared 
errors ranging from 28 to 100 kg ha-1, suggesting 
that the within-season calibration method could be 
used to model cotton growth under various water-
limiting conditions. Rajan et al. (2010) described 
how GRAMI could be used with infrequent satellite 

input data for simulating daily crop ground cover and 
estimating crop water use for irrigation scheduling. 
Sommer et al. (2008) calibrated the CropSyst model 
using within-season satellite-derived LAI of cotton 
grown in the Khorezm region of Uzbekistan. The 
high temporal resolution of the satellite imagery was 
useful for improving above ground biomass and LAI 
simulations with the model.

Remote sensing images also have been use-
ful in efforts to use crop models for crop yield 
forecasting. Bastiaanssen and Ali (2003) used data 
from the Advanced Very High Resolution Radiom-
eter (AVHRR) with Monteith’s biomass simulation 
model and the Surface Energy Balance Algorithm 
for Land (SEBAL) model to estimate regional crop 
yield for multiple crops, including cotton, in the In-
dus Basin in Pakistan. A limitation of the study was 
the spatial resolution of the images, which did not 
permit field-scale forecasts. Shi et al. (2007) used 
multi-temporal images from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) with an 
agro-meteorological model, based on Monteith’s 
biomass simulation model, to estimate seed cotton 
yield in the Khorezm region of Uzbekistan. The 
use of remote sensing data inputs reduced the need 
for field data input in their study. The difference 
between modeled seed cotton yield estimations and 
published government data was within 10%. Hebbar 
et al. (2008) used the Infocrop-cotton model along 
with data from the Indian Remote Sensing program’s 
Linear Imaging Self-Scanning (LISS-III) satellite for 
simulating seed cotton yield in major cotton grow-
ing states in India. The model accurately simulated 
water and N stress, total biomass, and seed cotton 
yield. The ready availability of multispectral imag-
ery at little or no cost, such as that from the Landsat 
series of satellites, ensures that remote sensing data 
will continue to be a viable source of information 
to guide crop model simulations and potentially 
improve model performance.

Economics. Economists use cotton simulation 
models to determine economically optimal resource 
use, analyze the risk associated with agricultural pro-
duction, and assess the socio-economic implications 
of agricultural policies. Process-based crop simula-
tion models are now regarded by economists as a 
better alternative to the traditional regression based 
models, because the former simulates the biological 
and physical process related to the plant growth with 
better precision (Bontemps et al., 2001). For example, 
Cammarano et al. (2012) used CROPGRO-Cotton to 
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determine profit-maximizing strategies for cotton un-
der deficit irrigation in Australia, and the long-term 
temporal seed cotton yield distribution generated 
by the model was used to determine the economic 
feasibility of deficit irrigation practices. Nair (2011) 
used cotton fiber yield simulations generated using 
Cotton2K and an economic model to determine the 
economically optimal strategies to allocate irriga-
tion water among different growth stages of cotton 
at different suboptimal levels of irrigation water 
availability. Cotton2K was also used to assess the 
profitability of partitioning a cotton field, irrigated 
by center pivot, into irrigated and rainfed portions 
(Nair et al., 2013). This study showed that the field 
partitioning increased both fiber yield and profitabil-
ity of deficit irrigated cotton. Reddy et al. (2002b) 
reviewed applications of the GOSSYM model for 
economic and policy decisions.

From an economist’s point of view, the year-to-
year variability in profit, which indicates production 
risk, plays an important role in a producer’s decision 
making. Bontemps et al. (2001) linked the data gener-
ated by EPIC to an economic model and showed that 
when irrigation water availability is too low to have 
risk-reducing impact, but high enough for normal 
crop growth, the farmers are responsive to changes 
in water price. Ritchie et al. (2004) used OZCOT to 
assess risk management strategies using seasonal 
climatic forecasting for cotton in Murray-Darling 
Basin in Australia. Although adjusting planted area 
in response to seasonal climatic forecasts led to sig-
nificant increases in returns, farmer responses to the 
forecasts depended on their attitude toward risk. The 
crop growth simulation model, APSIM, coupled with 
an economic model was used to analyze the benefits 
and risks of investing in recycled water in Australia 
(Brennan et al., 2008), and a case study was used to 
illustrate the combination of biological and economic 
models. The Cotton2K model was used along with an 
econometric model to assess the impact of a cotton 
producer’s attitude towards risk on optimal irrigation 
water allocation decisions for center-pivot irrigated 
cotton in the Texas High Plains (Nair, 2011). The re-
sults indicated that optimal irrigation water allocation 
has both profit increasing and risk reducing effects.

Cotton simulation models are also used to 
analyze the impact of agricultural policies and to 
assist in making whole-farm management decisions. 
A windows-based application of the EPIC model, 
CROPMAN, was used to assess the effectiveness 
of water conservation policies for the Ogallala 

Aquifer in the Texas High Plains (Das et al., 2010; 
Johnson et al., 2009). These studies compared the 
water saving potential and local economic impacts 
of water conservation policies, such as imposing 
pumping restrictions and charging a water tax. A 
multi-field configuration of APSIM named “APS-
Farm” was used to explore management alternatives 
and develop whole-farm management decisions in 
Australia (Power et al., 2011a). Kuhn et al. (2010) 
used EPIC along with an economic model to evalu-
ate the effect of tax exemptions on fertilizer use in 
Benin and reported that tax exemption on fertilizers 
increased crop productivity and decreased excessive 
expansion of cropped area. Wang and Nair (2013) 
developed a theoretical framework for determining 
economically optimal irrigation water allocations for 
cotton under deficit irrigation and used this economic 
model along with the fiber yield data generated using 
Cotton2K to analyze the water saving potential of the 
cost-share program aimed at improving adoption of 
high efficiency irrigation systems. They concluded 
that this program did not provide any incentive for 
the producers to conserve water.

Classroom Instruction. Cropping system 
simulation models have been used by instructors to 
teach principles of life sciences and environmental 
management (Boote et al., 1996; Graves et al., 2002; 
Reddy et al., 2002b). However, most models are not 
classroom-friendly and are not easily portable from 
one instructor or institution to another. Therefore, 
models as instructional aides are limited even though 
the potential benefits to students, instructors, and 
institutions exist (Graves et al., 2002).

Many graduate students and postgraduate re-
searchers at Mississippi State University and other 
institutions have contributed to various aspects of 
GOSSYM model development (Reddy et al., 2002b). 
Researchers in agricultural engineering, agronomy, 
climate change, computer science, economics, ento-
mology, extension education, meteorology, and soil 
and biological sciences have engaged in this effort. 
The GOSSYM model has been used as an instruc-
tional tool to teach students the basic principles of 
botany, climate impacts, and management options 
in cotton production, to enhance problem solving 
skills in the life sciences, and to provide a holistic 
understanding of cropping system processes. Two 
instructional methodologies have been used: one 
in which students improve the functionality of the 
models by adding new knowledge to the existing 
model code and another in which the model is used 
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for classroom instruction. One approach for class-
room instruction teaches a given cropping system 
concept by demonstrating how it is modeled. For 
example, students learn how cotton growth and 
development is affected by multiple stress factors 
and how these factors are summarized using the 
environmental productivity index to reduce pho-
tosynthesis (Reddy et al., 2008; www.spar.msstate.
edu/classes.html). Another approach for classroom 
instruction demonstrates how a model can be used 
to study management options and to understand crop 
development and yield responses to environmental 
variables, such as climate change. Students learn to 
implement cropping system simulation models to 
study the effects of alternate planting dates, future 
climate change, and alternate fertility or irrigation 
schedules on crop development and yield. Without 
a process-based model such as GOSSYM, it would 
be difficult to teach crop and climate interactions in 
a traditional setting. Students appreciate the utility 
of simulation models for understanding cropping 
system concepts and how management affects cotton 
production in real-world scenarios.

Instruction on the use of the DSSAT crop models 
has been provided during annual short-term training 
workshops. These training programs have attracted 
between 50 to 100 attendees internationally from 
private businesses, universities, and government 
agencies, demonstrating the interest in the models 
among a variety of people. Such workshops are 
currently the primary source of formal training for 
post-graduate agricultural professionals aiming to 
use crop models in their work.

Other Agronomic Considerations. To assist 
research in cotton management issues, OZCOT has 
been used to investigate opportunities for using high 
fruit retention transgenic cotton with changes in 
planting time to improve crop WUE (Braunack et al., 
2012) and to assess the risk of alternative manage-
ment strategies for early crop maturity (Richards et 
al., 2001). As part of the FARMSCAPE initiative, 
which was a participatory action research approach 
used to encourage the use of cropping system models 
in Australian commercial cotton production (Car-
berry et al., 2002b), OZCOT was implemented to 
assist dryland cotton growers in choosing summer 
crops (sorghum or cotton) and cotton row configura-
tions (solid planted versus skipped rows) to reduce 
risk of crop failure (Bange et al., 2005). Extending 
this effort by using the APSIM simulation framework 
(Keating et al., 2003) has enabled assessments of the 

production, economic, and environmental conse-
quences of different dryland crop rotation sequences 
involving cotton (Carberry et al., 2002b).

To estimate changes in soil organic C for differ-
ent cropping systems in West Africa, Tojo Soler et al. 
(2011) used CROPGRO-Cotton with other DSSAT 
crop modules to simulate eight crop rotations that in-
cluded cotton, sorghum, peanut, maize, and fallow. In 
agroforestry research, Zamora et al. (2009) used the 
CROPGRO-Cotton model to investigate light avail-
ability to cotton under a pecan alley cropping system. 
Finally, Ortiz et al. (2009) used CROPGRO-Cotton 
to assess the impacts of root-knot nematode parasit-
ism on biomass and seed cotton yield in Georgia.

FUTURE DIRECTIONS AND 
OPPORTUNITIES

In the last century, research efforts resulted in the 
development of several cropping system simulation 
models for cotton, including GOSSYM, Cotton2K, 
COTCO2, OZCOT, and CROPGRO-Cotton. At that 
time, research funding was available specifically for 
model development and testing. For example, GOS-
SYM development was initially funded within the 
USDA Agricultural Research Service (Baker et al., 
1983) and CROPGRO development originated with 
the IBSNAT Project (Uehara and Tsuji, 1998) funded 
by the U.S. Agency for International Development 
(USAID). Sources of funding for model development 
have largely disappeared. The Agricultural Model 
Intercomparison and Improvement Project (AgMIP) 
is a recent noteworthy effort to improve existing crop 
simulation models, although model developers are 
expected to provide their own resources for this ef-
fort. AgMIP is an international effort to link climate, 
crop, and economic models to address climate change 
impacts on world food security in both developed and 
developing countries (www.agmip.org). Two major 
themes of AgMIP that will advance the use of crop-
ping systems simulation models in the new century 
are 1) the comparison and improvement of existing 
crop models to identify simulation approaches that 
best estimate cropping system processes and 2) the 
development of multidisciplinary teams that unite re-
searchers in the areas of climate science, crop science, 
computer science, and economics. Multidisciplinary 
teamwork and efforts to compare cotton models, such 
as that exemplified in AgMIP, will increase the util-
ity of these models for addressing cotton production 
issues in the new century.
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A notable accomplishment reported herein is the 
development of the spatially-distributed GOSSYM 
model (Liang et al., 2012b), because large-scale 
applications of cropping system models are becom-
ing increasingly important to address the imminent 
challenge of global climate change. Policy makers, 
economists, and climate scientists are more interested 
in simulation results at regional scale, such as county-
level, state-level, or the 30-km grid used by Liang et al. 
(2012b). However, because existing cotton simulation 
models were developed from decades of experiments 
at the scale of individual agronomic plots, plants, or 
plant leaves, the implementation of the models at 
regional scale offers several challenges. Foremost is 
the challenge of collecting model input data over large 
areas with spatial resolution high enough to satisfy 
the original model scaling assumptions. Because 
current data collection methods are unable to provide 
such detailed information, the only option has been 
to conduct simulations at reduced spatial resolutions 
with knowledge that landscape heterogeneity can 
largely invalidate the original scaling assumptions 
of the model. The degree to which system processes 
measured and simulated at the point-scale is relevant 
at broader scales remains an open question. One solu-
tion lays in the development of better data collection 
methodologies, so model input requirements can be 
satisfied at an appropriate spatial scale. Until that 
goal is realized, generalization and simplification of 
existing models is necessary to provide appropriate 
simulation tools for large-scale analyses that are not 
focused within the borders of a given agronomic unit.

Satellite remote sensing has been proposed as 
a source of spatial data for model parameterization 
and calibration; however, remaining challenges are 
how to appropriately interface remotely sensed mea-
surements with the simulation models and whether 
remote sensing offers enough information to effec-
tively guide a given model. This issue is also likely 
related to the issue of model complexity versus gen-
erality. With the notable exception of GRAMI, most 
cropping system simulation models were developed 
independently from advancements in remote sensing, 
which complicates their union. Further development 
and perhaps generalization of existing models, while 
considering the types of information that can be 
obtained from remote and proximal sensing, will 
promote the union of the models with these sensing 
technologies. Conversely, model parameterization 
requirements can advise the development of novel 
sensors that provide better estimates of model input 

parameters. For example, sensors that measure leaf 
orientation or boll development might assist model 
parameterization efforts. Improving the union of 
models and sensor data will facilitate the regional-
scale modeling endeavors described above as well 
as precision agriculture applications at the field scale.

Although large-scale applications of cotton simu-
lation models are becoming increasingly important, 
the main utility of the models remains as a tool for 
guiding management decisions. In the last decade, the 
literature has demonstrated substantial efforts to use 
cotton simulation models for irrigation water manage-
ment in all major cotton-producing regions across the 
globe. The models were also used to address N fertil-
ization issues and to make crop management decisions 
in response to near-term climatological predictions or 
water supply constraints. Lascano and Booker (2013) 
discussed several factors that have contributed to the 
surge in use of mechanistic crop models as manage-
ment tools. Factors included advances in computer 
hardware and software, electronics, variable-rate 
application, and proliferation and availability of the 
input data required by the models. For example, soil 
data provided by the U.S. Department of Agriculture, 
elevation data provided by the U.S. Geological Survey, 
and weather data from weather networks provide the 
necessary inputs for model implementation through-
out most of the U.S. Cotton Belt. Despite these posi-
tive developments, a substantial gap persists between 
the use of cotton simulation models for research 
and for on-farm decision making (McCown, 2002b; 
McCown et al., 2002). Scientists have theorized 
(McCown, 2002a) and developed (McCown et al., 
2002) many agricultural DSSs to deliver scientific 
knowledge to farm managers. Unfortunately, many 
such DSSs remain unused (McCown, 2002b). Also, 
McCown et al. (2012) documented farmers’ tendency 
to reduce model simulation results to a set of intui-
tive management rules, thereby foregoing model use 
as an on-going decision aid. Lessons for successful 
on-farm implementation of scientific DSSs include 1) 
treatment of the DSS as a tool to assist the decision 
process rather than to by pass it, 2) the importance of 
positive social interaction between the DSS developer 
and the farmer, and 3) the potential for co-creation 
of DSSs that incorporate both practical and scientific 
knowledge (McCown, 2002b). Notable examples of 
successful interactions between scientists and farmers 
include the early efforts to use GOSSYM-COMAX 
for on-farm cotton management (McKinion et al., 
1989); the use of APSIM in the FARMSCAPE ini-
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tiative to examine the benefits of science-based soil 
sampling, climate forecasting, and simulation model-
ing applied to on-farm decision support (Carberry et 
al., 2002b); and an application of OZCOT within the 
HydroLOGIC irrigation management software for 
11 on-farm experiments in Australia (Richards et al., 
2008). Continued interaction among cotton growers 
and research scientists is warranted to facilitate the use 
of cotton models for on-farm decisions and to develop 
appropriate decision tools that implement the models 
to answer pertinent questions.

Applications of cotton simulation models in the 
broader assessment of environmental impacts are 
also increasing in importance. This review provides 
many examples of model use for analyzing losses 
of N fertilizer and other production inputs to the 
environment, quantifying greenhouse gas emissions 
from agricultural soils, and assessing the potential for 
soil C sequestration. However, there is currently a 
movement toward life-cycle assessment or cradle-to-
grave analysis for many consumer products, including 
textiles and food. These efforts originate both from 
policy mandates such as those in the European Union 
(Wolf et al., 2012) and from industry initiatives such 
as The Sustainability Consortium (www.sustain-
abilityconsortium.org). Cropping system simulation 
models are the only tool that can account for complex 
cropping system processes and estimate the impacts 
of crop management practices over a wide range of 
environmental conditions and geographic locations.

In the early days of cropping system simulation 
model development, the models were commonly 
regarded as stand-alone tools for crop growth simula-
tion, and computing technology at that time did not 
permit much more. Increasingly, the models are now 
implemented as a single component within broader 
software and hardware systems. For example, the 
use of cotton simulation models with optimization 
algorithms and advanced process control for irriga-
tion management (McCarthy et al., 2013); within 
GIS software for spatial simulation analyses (Thorp 
et al., 2013); or with other process models that 
simulate water availability (Ritchie et al., 2004), ir-
rigation hydraulics (Bautista et al., 2009), or climate 
forecasts (Liang et al., 2012b) will be increasingly 
important for optimizing management practices 
while more broadly considering the desired man-
agement outcomes. Hence, it is expected that the 
greatest benefit of cotton simulation models will be 
realized by integrating the models with the other 
software and hardware components, as required 

for whole system optimization. For example, cot-
ton simulation models could be integrated with 
equipment control systems (e.g., irrigation consoles 
and tract sprayer controllers), which use real-time 
telemetry data that describe environmental condi-
tions and crop status to automatically adjust crop 
inputs both spatially and temporally for optimum 
crop production. Simultaneously, models integrated 
with geospatial technologies on a large server could 
calculate cropping system responses regionally and 
provide field-scale control systems with information 
on crop input limitations or restrictions, considering 
potential environmental impacts, resource restraints, 
and climate predictions at the regional scale.

This broad vision for model implementation re-
quires the models to be succinct, well structured, and 
flexible enough for seamless integration into diverse 
software and hardware systems. It also necessitates 
improvements in model documentation, training 
courses, and educational materials, because the next 
generation of cotton modelers will likely come from 
diverse disciplines and might have limited knowl-
edge of the ecophysiology represented in the models. 
Efforts are needed to design models that are more 
foolproof, quickly learned, and easily implemented. 
This will increase confidence in the models, attract 
more users who find value in modeling endeavors, and 
ensure that future generations benefit from the model 
development efforts undertaken in the past decades.

CONCLUSIONS

Prior to conducting this review of literature, the 
consensus among several of the authors was that the 
development and application of cotton simulation 
models had somewhat languished since the early suc-
cesses with the GOSSYM model in the last century. 
With regard to model development, this assessment 
appears accurate. No sustained advancements in the 
development of simulation models specific to cot-
ton were noted in the new century. However, there 
has been a substantial increase in the application of 
cotton models since 2000. In fact, the main topics of 
early reports on cotton simulation modeling applica-
tions, including irrigation and fertilizer management, 
climate assessment, and model integration with 
remote sensing, have all been expounded to full sec-
tions herein, each describing several reports of new 
progress since the turn of the century. These contri-
butions have been largely disconnected however, an 
issue that this review aimed to remedy.
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An encouraging finding is the increased interest 
and use of cotton simulation models by non-agron-
omists and nontraditional crop modelers. Research-
ers in economics, engineering control, and climate 
forecasting recognize the utility of process-based 
cropping system simulation models for applications 
within their areas of expertise. Increasingly, cotton 
simulation models are being implemented beyond 
simple evaluations of agronomic experiments. As 
a result, a challenge for model developers is to 
address complexity issues with the models and to 
ensure that models of appropriate complexity are 
available for a given application. A related issue is 
to improve the ease of model implementation for 
nontraditional crop modelers.

Although improving model versatility for non-
agronomists is an important goal, a main thrust 
for cotton simulation modeling research and ap-
plication continues to be in the area of on-farm 
management decisions, including both strategic 
planning for allocation of limited resources and 
routine management of production inputs by grow-
ers. Thus, further efforts to develop and evaluate 
existing cotton simulation models are warranted 
to improve their ability to respond adequately 
to environmental conditions and simulate cotton 
growth, development, and yield at the field scale. 
No efforts to compare existing cotton simulation 
models were found in literature, so this would be 
advisable as a first effort to evaluate methodologies 
among existing cotton simulation models.
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