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ABSTRACT

Although cotton plant mapping has been valu-
able in understanding growth and development, 
variation in fruit distribution among plants is a sig-
nificant mapping challenge. Choosing a sample that 
is large enough to generate useful information, but 
small enough to minimize time and resources, can 
make plant mapping more accessible for evaluating 
cotton crop growth characteristics throughout the 
cotton belt. The purpose of this research was to iden-
tify the effects of sample size and main-stem node 
grouping on sample variability. Plants were sampled 
in 10-m sections from six cotton cultivars at five lo-
cations in Georgia in 2009 and one location in 2010. 
The relative errors associated with sample sizes of 
one to 50 plants, as well as the statistical power as-
sociated with each sample size, were computed. On 
average, 37 plants per cultivar among five cultivars 
were required to reach a statistical power of 0.90, 
with the required number based on the magnitude of 
difference between cultivars in the fraction of plants 
having a boll at a given fruiting site. Grouping of 
main-stem nodes and the use of moving weighted 
averages decreased the error on a node-by-node 
basis. The use of these methods resulted in the loss 
of some node-by-node information that might be of 
value in particular cases, but the number of plants 
required to generate the same statistical power and 
standard deviation was decreased from a mean of 
37 to a mean of 19 plants. These techniques should 
allow the use of smaller plant samples and make 
plant mapping more accessible.

The production and retention of cotton fruit 
throughout the plant canopy varies with cultivar 

and is sensitive to management, environmental 
conditions, and biological influences (Kerby et al., 
2010). Planting mapping of fruit locations by main-
stem node and sympodial fruiting position within 
the plant canopy is an important part of cotton 
research. The understanding of fruiting distribution 
has allowed researchers to decipher data observed 
in cotton yields and fiber quality more adequately.

Cotton fruiting occurs over a period of several 
weeks, with flowering occurring on vertical main-
stem nodes up the plant on a 2- to 3-d interval and on 
adjacent fruiting positions on the same node on a 3- to 
5-d interval (Bednarz and Nichols, 2005). Mapping 
might take several forms, but often consists of count-
ing the cotton fruit at each fruiting site: the individual 
node and fruiting position of each fruit on the plant.

Fruit on different parts of the plant are at different 
maturity stages during times of periodic stress, insect 
pressure, or other factors that might affect growth. Be-
cause most of the plants within a cohort are at similar 
growth stages at a given time, fruit production and 
shedding can follow identifiable patterns among plants 
in a sample. End-of-season monitoring can be linked 
to crop history to show where and when the plants 
produced most of their crop, as well as what might 
have negatively impacted yield (Kerby et al., 2010).

Cotton has been shown to have different fruit de-
velopment and distribution patterns based on several 
factors, including cultivar, plant density, and plant 
growth regulator (PGR) application (Bednarz et al., 
2000; Dumka, 2002; Dumka et al., 2004). Moisture 
deficit has also been shown to affect boll distribution, 
as shown by Pettigrew (Pettigrew, 2004a, 2004b) and 
Ritchie et al. (2009). Differences in yield distribution 
and fiber quality have been observed based on cultivar 
and genetic technology (Bauer et al., 2009; Mills et al., 
2008). All of these findings have helped expand the 
knowledge of cotton growth and developmental habits.

Current Plant Mapping Methods. Plant map-
ping can take the form of either in-season measure-
ments of the production and growth of fruit (Bednarz 
and Nichols, 2005; McClelland, 1916), or end-of-the 
season measurements of boll yield components, such 
as node-by-node boll fraction (the fraction of plants 
with a boll at a given fruiting site), yield, percent lint, 
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and fiber content and quality (Bauer et al., 2009; 
Bednarz and Nichols, 2005; Pettigrew, 2004b). Bauer 
et al. (2009) and Bednarz et al. (2006) both identi-
fied differences in fiber quality parameters within 
different regions of the plant.

One question that has arisen regarding the use 
of plant mapping is the number of plants required 
to provide adequate statistical power to separate 
differences in treatments while using labor and time 
resources efficiently. Within a representative sample 
composed of multiple plants, some nodes and fruit-
ing positions exhibit higher or lower fractions of fruit, 
but it is unusual for every plant within a sample to 
consistently have fruit on any single fruiting site.

Furthermore, competition between plants, as well 
as between fruiting sites on an individual plant, can af-
fect boll distribution (Boquet and Moser, 2003; Kerby 
and Buxton, 1981; Pettigrew, 1994). Plant mapping in 
any form is a time-consuming process, and additional 
measurements such as boll mass and lint percentage 
can limit the scope of the process to only a relatively 
few samples per year. Researchers have tried varying 
sample sizes, including plant areas such as 0.5 to 1.0 
m2 of row (Sadras et al., 1997), 1 m2 of row comprising 
about seven plants (Constable, 1991), row lengths of 1 m 
(Pettigrew, 2004b), 2 m (Cook and Kennedy, 2000), and 
3 m (Bednarz and Roberts, 2001; Bednarz and Nichols, 
2005; Mills et al., 2008) to plant counts of 10 (Vories 
and Glover, 2006) or 20 plants (Boquet and Moser, 
2003; Boquet et al., 1994). The variation in sample size 
between studies shows the balance that researchers try 
to make between having an appropriately large sample 
size and limiting the numbers of plants in a sample to 
save time or allow additional plots to be measured.

Statistical Power and Plant Mapping. The use 
of statistical power has been used successfully in bio-
logical research to determine the associated risks of 
overlooking real differences between treatments due 
to insufficient sample size (Thomas and Juanes, 1996). 
Statistical power is the probability of a significant 
population difference resulting in a statistically sig-
nificant sample difference, and measures the sample 
size required to maintain a significant result if the null 
hypothesis is false. Specifically, a test of statistical 
power estimates the Type II error: the risk of a real result 
being masked by a test that is not sensitive enough to 
detect treatment differences. An analysis of the statisti-
cal power of different subsample row lengths should 
give insight on the proper subsample size to minimize 
the risk of overlooking significant differences while 
limiting the number of plants that must be sampled.

Data Smoothing. In addition to determining vari-
ability and statistical probability on a node-by-node 
basis, it might be possible to decrease variability and 
therefore improve statistical power through the use 
of node grouping or smoothing techniques (Savitzky 
and Golay, 1964). Grouping nodes together decreases 
the effects of node-to-node variability in the sample 
by taking into account adjacent nodes. However, the 
grouping of nodes limits information to broad areas 
of the plant. This method is likely appropriate in ex-
periments resulting in small treatment effects on boll 
distribution where differences between individual 
nodes are subtle, but overall differences within a 
region of the plant may be significant.

Smoothing can also be used as a method to de-
crease variability, and is also widely used as a method 
of statistical “noise” removal in many facets of sci-
ence, including spectrometry (Demetriades-Shah et al., 
1990; Elvidge and Chen, 1995), speech recognition 
(Kulkarni and Colburn, 1998), and time series analysis 
(Chen et al., 2004). A smoothing function uses values 
from adjacent data points to decrease point-to-point 
variation over a series. The purpose of smoothing is 
to remove small scale variations and noise from a 
spectrum or time series, while preserving most of the 
useful features. In the case of boll distribution mea-
surements, decreasing node-to-node variability with a 
smoothing function should significantly decrease the 
error, and therefore, the number of plants that would 
be needed for a strong analysis.

Our objectives in this study were to measure the 
relative error associated with different subsample 
populations within a plot to give more clarity to 
the plant mapping process and test methods of de-
creasing the associated error without increasing the 
number of plants being sampled. With this additional 
information, the use of plant mapping techniques can 
be expanded without increasing the time required.

MATERIALS AND METHODS

Nonirrigated county variety trial locations in 
Burke, Colquitt, Coffee, and Jefferson counties in 
Georgia, and an irrigated trial in Coffee County were 
used as locations for data collection in 2009. The 
trials were conducted under the direction of county 
extension agents and extension specialists throughout 
South Georgia and East Georgia. At each location, 10 
m of linear row were selected in each of six cultivars: 
Delta & Pineland 555 BR (DP555), Delta & Pineland 
0949 B2RF (DP0949), Delta & Pineland 0935 B2RF 
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(DP0935), Stoneville 5458 B2RF (ST5458), Fiber-
Max 1740 B2RF (FM1740), and Phytogen 375 WRF 
(PHY375). These cultivars were chosen for their wide-
spread use in Georgia and their unique fruiting habits.

Data Collection. Plant heights and spaces between 
plants were measured for each individual plant within 
the 10 m of row, and all plants were mapped that were 
at least 45 cm tall and had at least one viable fruit. Plant 
mapping consisted of counting all harvestable fruit 
by fruiting site on both vegetative and reproductive 
branches on each individual plant. Bolls produced by 
vegetative branches were summed across the entire 
plant and the main-stem node and sympodial fruiting 
position were recorded for each boll produced on a 
fruiting branch. Total main-stem nodes for each plant 
were also measured. Plant density ranged from five to 
eight plants per square meter and varied by location and 
cultivar. Data were collected between 2 and 10 d prior 
to harvest, and at least 1 wk after defoliation. Harvest 
data included plot length and seed cotton weight for 
the entire plot, and 100 kg subsamples were ginned at 
the University of Georgia Microgin.

Analysis. After mapping was completed, the ef-
fects of sample size were analyzed by grouping every 
possible range of 1 m, 1.5 m, 2 m, and 3 m of plants 
in a linear row as individual samples and measuring 
the relative error from the means of each grouping 
size for each node and fruiting position.

The effects of using basic selection procedures 
to determine fruit distribution on a plant-by-plant 
basis were also tested with samples of 5, 10, 15, and 
20 plants. Plants with apical meristem damage below 
node 15 that caused loss of apical dominance, plants 
that were more than one standard deviation shorter 
than the cultivar mean at each location, and individual 
plants with a cumulative gap between adjacent plants 
of greater than 40 cm were eliminated from the analy-
sis. This method simulated basic decision making in 
a trial situation to eliminate nonrepresentative plants 
and potentially give a more precise estimate without 
an increase in the amount of sampling. Because the 
purpose of the study was to determine the relative 
uncertainty of different sample sizes, the standard 
deviation generated with each sample size and method 
was used as a basis for measuring relative error.

The error ratio was calculated by measuring the 
standard deviation at all existing plant boll populations 
for each sample size (sn plants), regressing the error to 
the error for one-plant samples (s1 plant), forcing the 
intercept to 0, and measuring the slope, or ratio, as sn 

plants / s1 plant. This allowed comparison over the entire 

range of boll fractions from the samples, even though 
the standard deviation varied based on boll fraction 
between nodes and cultivars. The same calculation 
was performed with smoothed data at the same plant 
sample sizes, and the error ratio was calculated based 
on the unsmoothed s1 plant to show the relative decrease 
in error compared to unsmoothed data.

Power analysis was also performed in SAS 9.2 
(SAS Institute, Inc., Cary, NC) using PROC POWER 
to measure the number of samples necessary to have 
a reasonable certainty (statistical power of 0.9) of 
differences by node between cultivars in the five 
environments. The standard deviations of the full 
10-m plot lengths were used as the standard deviation 
for the power analysis.

RESULTS AND DISCUSSION

Plant Number and Relative Error. Standard 
deviation was closely related to the percentage of 
plants with bolls at a specific node and position (Fig. 
1a) over a wide range of sample sizes. Counting bolls 
on a plant-by-plant basis results in a binary dataset: 
each plant either has or does not have a boll at a 
specific node and position.

As shown in Fig. 1a, the relationship between 
measured standard deviations and boll fraction fol-
lowed a very predictable model. The standard devia-
tion lines by sample size in Fig. 1a were derived from a 
10,000-sample binary dataset, but none of the standard 
deviation measurements by location varied from the 
single-plant standard deviation line, even though bolls 
were not necessarily randomly distributed among 
the plants in the samples. Grouping plants together 
resulted in variations in the standard deviation by 
boll fraction, due to the increase in the sample size 
compared to the population size, the decrease in the 
number of samples, and the effects of nonrandom 
distribution of bolls within the population (Fig. 1b).

The accumulation of additional plants within a sam-
ple approximates a continuous dataset as sample popula-
tion increases. At high and low proportions of plants with 
fruit at a given node and position, the standard deviations 
were low even at low sample populations, because there 
were fewer samples that varied from the mean. However, 
as the ratio of plants with a boll approached 0.5, the 
standard deviation within a group of individual plants 
increased to almost 0.5. Increasing sample size decreased 
the standard deviation significantly (Fig. 1a); an increase 
from one plant to five plants in a sample decreased the 
overall standard deviation by 56% (Fig. 2).
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The decrease in the s1 plant / sn plants ratio with the 
addition of plants was nonlinear, becoming less 
pronounced as plant number increased (Fig. 2). 
Measuring five plants instead of one decreased the 
standard deviation by 56%, and the use of 10 plants 
decreased the standard deviation by 70%. The addi-
tion of plants into a sample greater than 10 plants had 
increasingly smaller effects on standard deviation: 20 
plants decreased the standard deviation by 79%, 50 
plants decreased it by 87%, and 100 plants by 91%.

Power analysis for cultivar separation for first 
position fruit at each node showed the number of 
samples required for a statistical power of 0.9 (10% or 
less Type II error) to range from 9 to 141 with a mean 
of 41-plant samples and a median of 32-plant samples 
(Table 1). Nodes and locations with smaller ranges of 
differences between cultivars required higher numbers 
of samples to reach a statistical power of 0.9, with 
particularly high numbers occurring when all pairwise 
differences in the boll fraction between cultivars at a 
specific node were less than 0.07.

The standard deviation versus sample size com-
parisons for both plot-length measurements and plant-
number measurements resulted in nearly identical 
relationships, even though stunted plants, damaged 
plants, and plants with large gaps around them were 
removed from the plant-number measurements and 
not from plot-length measurements (Fig. 3). However, 
the seeming lack of effect by removing nonstandard 
plants might be misleading. Standard deviation is 
measured from the population at large, and changes in 
fruiting at a given fruiting site for a single plant affect 
both the overall fruit proportion and the associated 
standard deviation. Measurement of standard devia-
tion does not directly take into account the effects 
on fruit proportion, so nonstandard plants have no 
different effect on boll fraction at a specific fruiting 
site than any other plant. However, mapping unusual 
plants can increase or decrease the measured boll frac-
tion outside of the natural range among typical plants.

Grouping of Adjacent Nodes and Smoothing. 
The grouping of adjacent nodes was shown to decrease 
measurement error, as measured by standard deviation, 
and decrease the number of plants required to reach a 
given standard deviation (Fig. 4). Combining groups 
of two nodes resulted in a small decrease in error for 
all measurement lengths, and combining groups of four 
nodes decreased measurement error substantially at all 
measurement lengths. However, some of the ability to 
assess growth habits was lost by combining additional 
nodes into zones. For the four-node groupings, mea-
surements of unique values were decreased from 19 to 5.

Figure 1. Relationship between fraction of plants with bolls 
and standard deviation (a) for five sample sizes with a 
random distribution of plants with and without bolls 
and (b) with 10-plant samples with data smoothing and 
20-plant samples without data smoothing.
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Figure 2. Relative standard deviation (sn plants / s1 plant unsmoothed) 
based on the number of plants in a plant mapping sample 
compared to that of a single plant. The black line represents 
measurements taken from individual nodes with no 
smoothing. The gray line represents a five-node weighted 
average moving window smoothing function. Error bars 
represent the standard error of the individual sn plants / s1 plant 

unsmoothed ratios for each number of plants. The horizontal 
lines indicate the relative error at 30 and 50 plants for the 
unsmoothed data.
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The use of a moving average was tested and 
found to decrease standard deviation while main-
taining some of the node-to-node variability (Fig. 4). 
The characteristics of a moving average with both 
a numerical mean (equivalent to grouping adjacent 
nodes with a moving window for each node) and a 
weighted mean were found to have similar effects on 
the data, but with slight differences. The numerical 
means resulted in slightly lower standard deviations 
on a node-by-node basis, but the deviations from the 
mean of the unsmoothed data were larger than with 

the weighted mean method (data not shown), sug-
gesting an increased loss of resolution due to the nu-
merical mean. Because the differences between the 
numerical mean and the weighted mean were small, 
the weighted mean was used for additional analysis 
to decrease variability while minimizing variations 
from the unsmoothed data. Using a weighted mean 
decreased the number of plants required per sample 
to give a significant result between cultivars (Table 
1), generally decreasing the sample size require-
ments in half.

Figure 3. Mean boll number per plant standard deviation versus measurement distance by first position node with no zones, 
two-node zones, and four-node zones. A reference line is added for comparison of the relative error of each zone method 
compared to a 3-m sample with no zones.

Table 1. Power analysis for cultivar mean separation at all locations. Sample size represents the plant sample size required 
to obtain a statistical power of 0.9 for first position boll differences between cultivars

No Smoothing Weighted Smoothing

Environment Environment

node 1z 2 3 4 5 Mean node 1 2 3 4 5 Mean

Required Sample Size Required Sample Size

7 32 81 22 17 30 36 7 16 20 12 11 15 15

8 13 34 17 20 38 24 8 10 11 9 9 13 10

9 17 27 15 22 20 20 9 8 8 9 9 13 9

10 17 21 32 25 49 29 10 8 7 13 11 28 13

11 23 18 34 38 141 51 11 11 8 18 14 90 28

12 28 26 61 59 31 41 12 20 11 30 19 28 22

13 80 62 38 41 60 56 13 55 27 30 20 22 31

14 32 104 69 63 57 65 14 18 55 22 24 21 28

15 19 54 57 92 85 61 15 10 29 18 70 25 30

16 17 24 40 114 54 50 16 8 16 15 82 24 29

17 22 18 39 52 82 43 17 8 11 14 33 27 19

18 19 18 23 63 87 42 18 7 11 13 27 35 19

19 13 20 27 47 27 19 7 12 15 20 14

20 9 31 38 17 24 20 7 15 20 11 13

21 32 81 22 20 39 21 16 20 12 9 14

Mean 25 41 36 46 61 41 Mean 14 17 17 25 28 20
z Environments were Burke (1), Colquitt (2), Coffee Dryland (3), Coffee Irrigated (4), and Jefferson (5)
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The use of the five-node smoothing procedure 
resulted in lower numbers of plants required to 
reach low s1 plant / sn plants ratios (Fig. 2). The s1 plant 
/ sn plants ratio of a group of 10-plant samples with 
smoothed data was almost identical to the error 
ratio obtained with a group of 30-plant samples 
and no smoothing. The s1 plant / sn plants ratio with 
50-plant samples and no smoothing could be 

duplicated with 17-plant samples and smooth-
ing. Similarly, the use of a 10-plant sample with 
smoothing resulted in an almost identical standard 
deviation by boll fraction as the use of a 20-plant 
sample with no smoothing (Fig. 1b).

The effects of smoothing on different plant 
sample sizes are shown in Fig. 5. For a single plant, 
the acute differences between present and absent 
bolls were muted by the smoothing, but the distri-
bution did not resemble the overall boll distribution. 
However, with five plants in a sample, the smoothed 
data already resembled the data with 50 plants in a 
sample. Most of the plants at the beginning of the 
measurement row did not have bolls at node 12, 
whereas most of the plants near the end of the row did 
have bolls at node 12. Therefore, lower populations 
had significant deviations from the 50-plant sample, 
whether smoothing was applied or not. However, 
the differences were spread out over a broader node 
region when the data were smoothed, so the differ-
ences were less apparent.

Figure 4. Means and standard deviations at individual nodes, 
with two- and four-node groupings, and with a five-node 
weighted average for all nodes at 1 m, 2 m, and 3 m spacing 
using data from the DP0935 plot at location 2. For node 
groupings, values are calculated at the midpoint of each 
grouping. Ticks represent 0.2 fruit per plant, and node 
groupings are offset by 0.25 to allow comparisons.
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Figure 5. Effects of smoothing on first position boll 
distribution in sample sizes ranging from 1 to 50 plants. 
Boll fraction data are offset by 0.5 to allow comparisons. 
The dotted grey line represents the 50-plant sample for the 
corresponding method.

In research where heavy emphasis is placed on 
boll fraction at a specific fruiting site, smoothing the 
data might hide some of the effects. However, when 
overall distribution is of interest, smoothing results in 
cleaner data. As shown in Fig. 6, use of a weighted 
average can make overall boll fraction trends much 
more distinct, both for first- and second-position fruit. 
Boll fraction trends between nodes and differences 
between cultivars were visually apparent even in 
cases where there was overlapping boll distribution 
between cultivars.
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Sequential Sampling and Plant Smoothing. 
One suggested method of decreasing the amount 
of time measuring samples is the use of sequential 
sampling methods. Sequential sampling methods 
have been used for more than 50 y in insect scout-
ing (Waters, 1955; Morris 1960), and are based 
on the concept that when there are either high 
or low populations of an item of interest, fewer 
samples are required to accurately estimate the 
population. A similar level of confidence can be 
obtained from a few plants if nearly every plant 
has a boll present at a given fruiting site, as with a 
larger sample where the plants are evenly divided 
between having and not having a boll at a given 
fruiting site.

Counting bolls would certainly follow this con-
ceptual model, but there are at least three factors that 
should be considered when using this method in plant 
mapping. These factors include whether more than 
one fruiting site is of interest in the study, the effects 
of adjacent fruiting sites on the site of interest, and 
whether smoothing will be applied.

Unless only one fruiting site is of interest in the 
study, each fruiting site encountered will have a dif-
ferent boll complement across a sample of multiple 

plants. Therefore, a simple measure of the number 
of plants required for a measurement is complicated 
by the differences between boll fractions at different 
fruiting sites. Because many of the differences in 
fruiting distribution between plants occur on parts 
of the plant where fruit retention is not high, there is 
a risk of choosing too few plants to ascertain differ-
ences if sampling is limited by the number of plants 
measured due to high boll retention at another part 
of the plant.

The second consideration is the effect of ad-
jacent fruiting sites on boll distribution. Kerby 
and Buxton (1981) determined that when a fruit 
is lost, adjacent fruiting sites are more likely to 
retain bolls. Plant-to-plant variability can result in 
compensation on different fruiting sites, so a focus 
on an individual fruiting site will sometimes over-
look the effects of adjacent sites. Using smoothing 
methods can reduce the effects of site-to-site vari-
ability, as well as take into account the effects of 
adjacent fruiting sites. However, smoothing also 
makes determination of the proper number of 
plants to measure difficult, because an estimate 
of the boll fraction is not tied completely to any 
single fruiting site.
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CONCLUSIONS

The question of how many plants to sample for 
an accurate representation of boll distribution does 
not have a simple answer, because variance at each 
fruiting site is directly related to boll fraction, and 
each fruiting site has its own boll fraction. Further-
more, the very factors that plant mapping measures, 
such as cultivar, irrigation, and chemical application 
effects, influence growth habits and make prior de-
termination of treatment effects difficult over a range 
of multiple fruiting sites. Because many of the dif-
ferences due to these factors are observed in regions 
of the plant with low-to-medium boll fractions, it is 
advisable to determine the number of plants required 
based on the highest standard deviation for a sample 
with a given number of plants. However, the use 
of smoothing can decrease the number of samples 
required to reach a set standard deviation, regardless 
of the initial boll fraction.

In our research, increasing the number of plants 
in a sample decreased the standard deviation, with 
sample sizes of 10 plants or more resulting in stan-
dard deviations that became marginally lower with 
the addition of each additional plant. Grouping nodes 
or subjecting the data to a moving average decreased 
variance within a sample, in most cases decreasing 
the number of plants required to reach a critical 
statistical power by half. Although sample sizes of 
40 plants were necessary in many cases to reach a 
statistical power of 0.9 without moving averages, 
the use of multiple replicates can be used to reach 
this number in cases where plant growth is similar 
between replicates.

There is a risk with moving averages that some 
of the underlying individual node data might be lost, 
particularly in cases where outside factors might af-
fect fruit production or retention for a short period 
of time. Some outside factors that can affect fruit 
retention over a short period of time include insect 
damage, periodic drought stress, and periods of 
temperature extremes (Bednarz and Roberts, 2001; 
Bednarz and Nichols, 2005; Burke, 2003). Therefore, 
different trends might be observed in analysis by 
individual node than are observed when the nodes 
are subjected to smoothing.

Yield distribution measurements offer the poten-
tial of significant insights into cotton development 
and yield potential, which might have been over-
looked due to the time required to perform mapping 
and the complexity of analyzing a crop that has 

multiple nodes and fruiting positions concurrently 
producing and shedding fruit. Smoothing might give 
additional insights into interactions between fruiting 
positions by decreasing node-by-node variation and 
clarifying patterns that might otherwise be overshad-
owed by noise.

A suitable sample size will depend upon both 
the overall boll fraction and upon variability within a 
sample. Additionally, variability between replicates can 
affect necessary sample size. However, in cases where 
boll distribution is significantly different between treat-
ments, a sample of 30 to 40 plants should be enough to 
see this difference. If boll distribution does not differ 
substantially between replicates, sample sizes that re-
sult in the sampling of 8 to 10 plants within a replicate 
should suffice. Using smoothing functions can further 
decrease sample size, with the required sample size 
being decreased by half in our testing.
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