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ABSTRACT

By scanning a fiber beard and generating a 
fibrogram, certain cotton fiber length param-
eters can be obtained rapidly. This is the length 
measurement method used by the High Volume 
Instrument (HVITM). The objective of this study 
is to infer fiber length distribution from beard 
test data. Part 1 of this study deals with the math-
ematical functions describing length distributions 
related to the beard method. Eight cottons with 
a wide range of fiber length were selected and 
tested on the Advanced Fiber Information Sys-
tem (AFISTM). The measured fiber length data 
are used for finding the underlying theoretical 
length distributions. Fiber length distributions by 
number and by weight are discussed separately, 
and in both cases a mix of two Weibull distribu-
tions shows a good fit to the data. Kolmogorov-
Smirnov goodness-of-fit tests were conducted to 
confirm the findings. Various length parameters 
such as Mean Length (ML) and Upper Half Mean 
Length (UHML) are compared between the origi-
nal distribution from the experimental data and 
the fitted distributions. A subsequent paper will 
discuss the inference of fiber length distributions 
from the beard testing method.

Fiber length is considered the most important 
property of cotton in marketing and yarn 

processing. In past decades, the cotton industry and 
researchers have strived to develop efficient methods 
to measure the length parameters of cotton fiber. 
These parameters include Mean Length (ML), Upper 
Half Means Length (UHML), Short Fiber Content 

(SFC), and Uniformity Index (UI). Measuring a 
fiber beard instead of individual fibers provides a 
rapid account for those fiber length parameters, for 
example, the widely used High Volume Instrument 
(HVI™) system (Suh and Sasser 1996). In HVI 
testing, the specimen fibers are picked up by the 
needles of a comb/clamp through holes of the HVI 
Fibrosampler. The collected specimen fibers are in 
the form of a tapered beard. The beard is brushed and 
combed to remove loose fibers and fiber crimp. By 
scanning light attenuation at each length (from the 
tip of the longest fiber in the beard to the baseline of 
the clamp), the instrument determines the fiber mass 
at each length of the beard. The mass-length curve 
obtained from measuring this tapered beard is called 
a fibrogram. The original theory of the fibrogram as 
developed by Hertel (Hertel 1936, 1940) has served 
as the basis of subsequent cotton length measurement 
methods based on such tapered fiber beards.

Following Hertel’s pioneering work, various 
developments have been made. Krowicki et al. gen-
erated fiber length distributions in discrete form from 
cotton fiber fibrograms. Those generated distribu-
tions were presented as graphical bar charts, not as 
mathematic functions (Krowicki et al. 1996). Woo 
provided a comprehensive appraisal and developed 
a series of equations for computing different fiber 
length parameters from fibrograms (Woo, 1967).

Early investigations also included Prier and 
Sasser’s discussion on three different theoretical fiber 
length distribution density functions: a uniform den-
sity and two triangular densities. They claimed that 
a triangular density could be used to describe short 
fiber lengths, another triangular density could be 
used for long fiber lengths, and the uniform density 
could be used for middle fiber lengths. They further 
stated that a mixture of these three densities could 
closely match any set of measured data. However, 
they did not provide a method to mix the densities. 
Instead, they concluded that it was not feasible to 
obtain an explicit expression for the probability 
density function of the whole fiber length (Prier and 
Sasser 1971).
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Zeidman et al. discussed the range and shape of 
experimental length distributions and their relation-
ships to length parameters. They concluded that one 
single parameter could not sufficiently characterize 
the entire fiber length distribution. More statistical 
measures, such as mode, dispersion, and shape are 
needed for distribution (Zeidman et al. 1991).

Krifa developed data that defined the modality 
of fiber length distribution and relationships between 
modality and other cotton properties such as maturity 
and strength (Krifa 2006). In later reports, a mixed 
Weibull distribution was used to describe cotton fiber 
length and parameters of the mixed Weibull function 
were discussed regarding the changing of modality 
during processes (Krifa 2007, 2008). Robert (2005) 
studied fiber breakage and its relation to length dis-
tribution, short fiber, and uniformity. Other efforts 
focused on: estimation of statistics of fiber length 
distribution by number and by weight (Cui et al. 
1998); the impact of beard sampling method on the 
fiber length distribution and the fibrogram from HVI 
(Chu and Riley 1997, Cai et al. 2009).

The goal of this paper is to study fiber length 
distributions of fiber beards obtained from the HVI 
fibrosampler. The relationship between these distri-
butions and the true fiber length distributions will be 
investigated. The true fiber length distribution will 
be determined with AFIS. The ultimate objective of 
this research is to infer fiber length distribution from 
testing a fiber beard instead of testing individual fibers 
which is much slower and more expensive. If the 
distribution functions are known, then all the length 
parameters can be calculated from it. Since every bale 
of U.S. cotton is classed by HVI, which employs the 
beard method, the availability of length distribution 
from the beard test method will expand the utiliza-
tion of the classing results. In addition, it will help in 
understanding the difference of measurement results 
between HVI and AFIS, which have been reported by 
earlier research (Cui 1997). To achieve the objective, 
mathematical functions need to be established that 
describe the underlying population distributions of 
the fiber lengths related to HVI measurements.

Determining the length distribution or a mixture 
of distributions requires quite a number of parameters, 
and the parameters could be in nonlinear forms, which 
makes the estimation of the distribution and matching 
difficult. This paper is part of a series of papers; it 
focuses on finding and validating the distribution func-
tions dealing with three different types of fiber length 
distribution that are related to the beard testing method.

MATERIALS AND METHODS

Eight cottons with different length characteristics 
were selected for this study. The mean lengths by num-
ber of these cottons ranged from 1.65 cm to 2.29 cm. 
Four types of length distributions that are related to 
beard testing were studied: 1) the length distribution of 
the original sample, 2) the length distribution of fibers 
sampled by the HVI Fibrosampler clamp, 3) the length 
distribution of fibers projecting from the clamp, which 
is the portion that is actually “seen” and measured 
by the instrument using a beard method, and 4) the 
length distribution of the hidden portion of fibers held 
in the clamp (invisible for an instrument to measure 
using a beard method). The samples for obtaining the 
original length distribution were randomly selected 
by hand in small pinches from the sample population. 
The HVI Fibrosampler was used to prepare samples 
for other length distributions. Beards were made by 
use of the FibroSampler, combed, and brushed to 
remove loose fibers as is done in HVI length testing 
with strength testing disabled. The fibers were taken 
off the HVI clamp for later AFIS testing to determine 
length distributions of the fibers sampled by the clamp. 
More beards were prepared in the same way, but the 
projecting fibers were cut off along the baseline of 
the HVI clamp. The projecting portion and the hidden 
portion were collected separately. Figure 1 shows an 
HVI beard, the projecting fibers spray-dyed to show 
the hidden portion. Up to 50 beards were needed to 
collect enough specimen fibers for AFIS testing for 
each distribution. The collected fibers were gently and 
thoroughly opened to form thin fiber slivers which 
were tested on AFIS. For each distribution of each 
sample, data of at least 35,000 individual fibers was 
taken. The measurement results (frequency-length 
relationship) of the above four types of lengths were 
used to construct the probability density functions 
(PDF) for fiber length distributions by number and 
by weight. In this paper the first three types of length 
distributions are discussed. Their inferences will be 
discussed in a subsequent paper.

Figure 1. Projecting and hidden portions of a beard from 
the HVI clamp
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Non-linear regression models were constructed 
with different theoretical distributions such as a 
normal distribution, and then the Gauss-Newton 
algorithm and least squares principle were used 
to solve the models and search for the PDFs that 
match the PDFs of the AFIS measured data. The 
statistical software SAS® was used for computations. 
Computation results showed that a mixture of two 
two-parameter Weibull distributions fits the data very 
well. That is, each sample can be characterized by 
a mixture of Weibull distributions. Each mixed dis-
tribution has five parameters, which are determined 
directly using SAS.

RESULTS AND DISCUSSION

Theoretical Distribution of Fiber Length. 
Let X1, X2, …, Xn denote a random sample from a 
population with a cumulative distribution function 
(CDF) F(x), and let Fn(x) = (the number of Xi≤ x/n) 
denote the empirical cumulative distribution func-
tion (ECDF) of the random sample. The ECDF is the 
proportion of observations less than or equal to x. It 
has been shown that the ECDF is the non-parametric 
maximum likelihood estimate of F: when the sample 
size n goes to infinity, the ECDF converges to the 
true CDF F (Schorack and Wellner, 1986). That 
is, the probability of )()(lim xFxFnn ∞→  equals 
one. In other words, since the sample sizes of the 
data sets used in this paper are considerably large 
(>30,000), the ECDFs based upon these data sets can 
be considered as the underlying population CDFs 
of corresponding data sets. These ECDFs were the 
targets of fitting of the distribution functions sought.

The least squares principle was used to deter-
mine the models. The probability density function 
(PDF) g*(x) is a least squares (LS) estimate of PDF 

f*(x) if ∫
∞

−
0

2* )]()([ dxxfxg  is minimized at g*(x) 

among all choices of g(x). To find a distribution to 
fit the cotton length data, first divide the interval [0, 
3] (inch) into 30 subintervals of equal length. The 
interval [0, 3] is selected because it practically cov-
ers the entire possible length of cotton fibers: 0 to 3 
inches (0 to 7.62 cm). Then count the frequencies 
h(x), i.e., the number of fibers with length falling 
into a subinterval. That is, h(x) equals the number 
of fibers with length falling into the subinterval 
covering x. This h(x) is the PDF of the cotton fiber 
length by number and is used as the underlying 
PDF of the experiment data. It is actually the f*(x) 

in the LS estimation process mentioned above. To 
find the LS estimate g*(x) of h(x), various distribu-
tions were tried including normal, lognormal, beta, 
Weibull, mixture of normal distributions, etc., and 
it was determined that a mixture of two Weibull 
distributions can fit the data very well. The PDF of 
a two-parameter Weibull distribution is given by

λθλλθθλ xexxf −− 1),;( ,  x>0,  λ>0,   θ >0	 (1)

where λ is the shape parameter and θ is the scale 
parameter. The CDF is given by

∫ −−
x

xedttfxF
0

1),;(),;(
λθθλθλ ,  x>0	 (2)

The PDF of a mixture of two Weibull PDFs is given 
by

),;(),,,,;( 1112211 θλαθλθλα xfxf
),;()1( 222 θλα xf−

 	 (3)

where 0<a<1 and ),;( iii xf θλ  is the PDF of a Weibull 
distribution, i = 1, 2. So, the PDF of the mixture 
of two Weibull PDFs contains five parameters: a, 
λ1, θ1, λ2, θ2. Similarly, the CDF of the mixture is 

),,;()1(),;(),,,,;( 2221112211 θλαθλαθλθλα xFxFxF −  
where ),;( iii xF θλ  is the CDF of ),;( iii xf θλ , i = 1, 2. 
The value of α determines the amount of contribution 
of a Weibull distribution to the mixed distribution. For 
instance, if α is close to unity, then PDF1, 1 1 1( ; , )f x λ θ
, has a significantly larger contribution to the mixed 
distribution than does PDF2, 2 22( ; , )f x λ θ . To simplify 
notations, we use f(x) for ),,,,;( 2211 θλθλαxf  and 
F(x) for ),,,,;( 2211 θλθλαxF . As mentioned earlier, 
due to the large sample size, this empirical PDF h(x) 
can approximate the underlying population PDF 
of the data. Therefore, the LS estimate g*(x) =f(x), 
mixture of Weibull distributions, can be used as the 
population PDF by number. Once the functional 
form of the population PDF is obtained, various 
cotton length parameters can be computed.

The Kolmogorov-Smirnov goodness-of-fit test 
was performed to verify that the mixture of two 
Weibull distributions fits the data. This test can be 
explained as the following. Let the hypothesis be 

“the data follows distribution G(x)”, where G(x) is 
a completely specified CDF. Let Fn(x) denote the 
ECDF of a data. Define

)()(sup xGxFnD n
x

n −
∞∞−

	 (4)

It is shown (Mood, et al. 1974) that when the 
hypothesis is true and the sample size n is large, Dn 
is approximately distributed as D(x), where
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ing the assumption of independency between fiber 
length and fiber linear density, the frequency function 
by weight is given by xxxhxhw /)()(   (Zeidman et 
al., 1991). A mixture of two Weibull distributions is 
used to fit hw(x). Kolmogorov-Smirnov goodness-
of-fit test is also performed for the length by-weight 
and the same conclusions were obtained as for the 
length by number.

Table 1 and Table 2 give, respectively, param-
eters of the estimated mixture distributions by num-
ber and by weight for the eight different cottons. (λ1, 
θ1) are the parameters of the Weibull distribution on 
the left (labeled pdf1 in figures) of the two Weibull 
distributions in the mixture, which mainly represents 
shorter fibers, and the one on the right determined 
by (λ2, θ2) represents longer fibers (labeled pdf2 in 
figures). Figure 2 shows the PDFs (by number) of 
the four types of length distributions as mentioned 
in the Materials and Method section of one cotton 
sample. For each of the eight cottons, graphical com-
parisons between the PDF of the estimated mixture 
distributions and the PDF of data are performed. 
However, for simplicity, only the graphs of the 
PDF’s by number and by weight for Sample ID 34 
and 38 (Figures 3-14 in the appendix) are presented. 
Table 3 presents numerical comparisons of some 
quality parameters of all eight samples. In addition, 
the approach described in this section was used to 
fit another 28 cottons with micronaire ranging from 
2.92 to 5.52. The mixture of Weibull distributions 
also gave satisfactory results.

Fiber Length Parameters from the Mixture of 
Weibull Distributions. In this section, comparisons 
between the parameters obtained from the original 
data and that obtained from the estimated mixture 
distribution are presented.

The mean and the variance of a Weibull dis-
tribution with parameters λ and θ are, respectively, 
given by

λθλµ /1)/11( −Γ 	 (6)

and
λθλλσ /222 )]/11()/21([ −Γ−Γ 	 (7)

where ∫
∞

−−Γ
0

1)( dxex xββ  denotes the gamma 

function. Hence the mean and the variance of a 
mixed Weibull distribution are, respectively,

21 )1( µααµµ −mix 	 (8)

and

222

1

1)1(21)( xi

i

i exD −
∞



−∑ −− ,  x>0	 (5)
It is clear that if the hypothesis is false, then Dn 

tends to be large; hence for a given significance level 
α, one would reject the hypothesis if Dn is greater 
than the critical value dα, where dα is determined so 
that D(dα)=1- α. For example, when α =0.10, dα ≈ 
1.22, and when α =0.05, dα ≈ 1.44. In our computa-
tions, the Kolmogorov-Smirnov goodness-of-fit test 
is performed in the following steps:

Step1. Since in practice it is common that 
the sample size is usually around 2000 to 3000, 
we randomly re-sample n=2500 individual fibers 
from a data set.

Step2. Fit a mixture of two Weibull distribu-
tions to the re-sampled data set. This fitted mix-
ture CDF is G(x), and the ECDF of the re-sampled 
data is Fn(x) in Equation 4.

Step3. Use α =0.10. Compare Dn with dα 
=1.22. If Dn is less than 1.22, the Kolmogorov-
Smirnov statistic is not significant, and then the 
hypothesis that these 2500 re-sampled data points 
follow a mixture of two Weibull distributions is 
accepted.

Step4. Repeat Steps 1-3 500 times and record 
the number of times that the hypothesis is ac-
cepted. In all the eight sets of fibers, acceptance 
was higher than 95% of the 500 tests for each set.
The test was performed for original, comb-

sampled, and projecting fibers of all eight cottons, 
and the hypothesis is accepted in all cases with a 
p-value greater than 0.10. Therefore, it can be con-
cluded that the fiber length distribution by number 
can be described using a mixture distribution of two 
Weibull distributions.

The previous discussion concerns the fiber 
length distribution by number. The shorter fibers may 
have a large number portion, but not a large weight 
portion. Therefore, in practice, the cotton fiber length 
distribution by weight is more commonly used than 
the distribution by number. Fiber length distribution 
by weight was then considered. The fiber length has 
a very weak correlation with the fiber linear density, 
and an assumption has been widely used that the 
fiber length and fiber linear density are independent 
(Zeidman et al. 1991, Cui et al. 1998). Experimen-
tal data also support this assumption. For the eight 
cotton samples discussed in this paper, the average 
correlation between individual fiber length and fine-
ness is only 0.155. As previously defined, let h(x) 
denote the frequency function of a data set. Further, 
let x denote the sample mean of the data set. By us-
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where µi and σi2 denote, respectively, the mean 
and the variance of a Weibull distribution with 
parameters λi and θi, i=1, 2.

The mean fiber length can be obtained by 

∫ −
L

duuF
0

)](1[µ , where L is the maximum fiber 

length in the distribution. The fibrogram is a curve 

defined by ∫ −
L

x

duuFxB )](1[1)(
µ

 (Zeidman et al., 

1991). The UHML is the mean length of fibers longer 
than the median value of the weight distribution of 
fibers. Let M denote the weight median value. Then 

M is such that ∫ 
M

duuuf
0 2

)( µ . It is known that the 

UHML is the x-intercept of the tangent line to the 
fibrogram B(x) passing through y-intercept 0.5 and 
can be obtained by

)(1

)(

MF

duuuf
UHML

L

M

−

∫

	 (10)

The LHML is given by

)(

)(
0

MF

duuuf
LHML

M

∫
 	 (11)

The SFC by number is the number proportion 
of fibers shorter than 0.5 inches in the cotton. When 
using the fitted distribution the SFC by length equals 
simply ),;5.0()1(),;5.0( 222111 θλαθλα FF − .  The 
SFC by weight can be defined similarly.

Plugging the fitted mixed Weibull distribution into 
these formulas, the estimated mean length, UHML, 
LHML, SFC and CV are given in Table 3. For each 
type of distribution, there are two rows of values in 
Table 3: the top row (“Data”) is from the experimental 
data and the second row (“Weibull”) is from the fitted 
distribution. It can be seen from Table 3 that the fiber 
length parameters obtained from the experimental data 
and those obtained from the mixed Weibull distribution 
match very well, especially if we consider the natural 
non-uniformity of cotton length, the third decimal of 
the data usually does not have statistical significance. 
The R2 between model predicted values and measured 
values is very high, for example, both the R2 of Mean 
Length by number and the R2 of Short Fiber Content by 
number are >0.99, indicating an excellent fit of the mix-
ture of the Weibull distributions to the measured data.

Table 1. Estimation of Mixture Distribution Parameters 
(by Number)

ID Type α λ1 θ1 λ2 θ2

30
Original 0.229 2.114 1.336 3.481 0.073
Sampled 0.502 1.980 0.390 4.283 0.032

Projecting 0.946 2.325 0.465 3.383 5.640

31
Original 0.840 3.667 0.060 2.197 1.879
Sampled 0.166 2.143 1.204 3.752 0.055

Projecting 0.039 3.129 4.471 2.367 0.407

33
Original 0.301 1.881 0.910 4.042 0.026
Sampled 0.714 4.006 0.027 1.958 0.614

Projecting 0.031 3.055 4.033 2.335 0.342

34
Original 0.508 5.178 .006 1.841 0.338
Sampled 0.525 5.032 .007 2.076 0.277

Projecting 0.060 2.960 3.082 2.449 0.292

35
Original 0.515 4.931 .007 1.921 0.332
Sampled 0.468 4.924 .008 2.014 0.303

Projecting 0.934 2.358 0.296 2.723 2.149

36
Original 0.554 4.971 .005 1.674 0.416
Sampled 0.591 4.612 .009 1.995 0.340

Projecting 0.090 2.370 1.634 2.369 0.280

37
Original 0.623 4.632 .007 1.738 0.491
Sampled 0.558 4.884 .005 2.034 0.275

Projecting 0.057 2.527 1.820 2.302 0.276

38
Original 0.645 5.151 .003 1.779 0.502
Sampled 0.546 5.396 .002 1.942 0.278

Projecting 0.099 2.245 1.404 2.488 0.206

Table 2. Estimation of Mixture Distribution Parameters 
(by Weight)

ID Type α λ1 θ1 λ2 θ2

30
Original 0.531 4.828 0.017 2.356 0.181
Sampled 0.481 5.017 0.014 2.731 0.124

Projecting 0.820 2.751 0.224 2.640 0.387

31
Original 0.706 4.782 0.018 2.116 0.196
Sampled 0.728 4.606 0.021 2.248 0.180

Projecting 0.721 2.828 0.218 2.899 0.206

33
Original 0.618 5.188 0.006 2.252 0.175
Sampled 0.666 4.817 0.009 2.532 0.143

Projecting 0.842 2.863 0.147 3.145 0.261

34
Original 0.607 5.653 0.003 2.373 0.123
Sampled 0.181 2.748 0.224 5.127 0.006

Projecting 0.998 2.891 0.152 5.482 5.723

35
Original 0.524 5.846 0.002 2.632 0.096
Sampled 0.550 2.770 0.087 5.902 0.003

Projecting 0.998 2.758 0.151 419.980 9.9E-9

36
Original 0.430 2.456 0.104 6.087 0.001
Sampled 0.512 5.846 0.002 2.835 0.075

Projecting 0.996 2.776 0.148 8.161 0.480

37
Original 0.386 2.358 0.114 5.682 0.002
Sampled 0.539 5.960 0.001 2.836 0.070

Projecting 0.999 2.750 0.137 107.020 145.996

38
Original 0.342 2.295 0.116 6.182 0.001
Sampled 0.575 6.410 0.001 2.723 0.073

Projecting 0.998 2.872 0.110 11.964 10E-7
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Table 3. Estimation of Some Length Quality Parameters by Number

ID Type Source Mean (cm) UHML (cm) LHML (cm) CV SFC UI (%)

30

Original
Data 1.666 2.497 1.250 0.453 0.318 80.42

Weibull 1.647 2.466 1.237 0.448 0.323 80.25

Sampled
Data 1.740 2.511 1.331 0.415 0.271 81.23

Weibull 1.728 2.502 1.322 0.425 0.276 81.32

Projecting
Data 1.210 1.892 0.889 0.480 0.577 78.68

Weibull 1.194 1.863 0.879 0.478 0.579 78.74

31

Original
Data 1.754 2.531 1.342 0.423 0.261 81.67

Weibull 1.738 2.504 1.331 0.418 0.266 81.56

Sampled
Data 1.782 2.525 1.377 0.401 0.245 81.91

Weibull 1.767 2.499 1.366 0.396 0.249 81.79

Projecting
Data 1.271 1.951 0.942 0.464 0.530 79.17

Weibull 1.267 1.949 0.938 0.466 0.531 79.07

33

Original
Data 1.873 2.807 1.405 0.458 0.267 80.74

Weibull 1.845 2.764 1.384 0.456 0.275 80.64

Sampled
Data 1.937 2.786 1.484 0.414 0.221 81.42

Weibull 1.920 2.764 1.471 0.413 0.227 81.34

Projecting
Data 1.385 2.137 1.025 0.468 0.465 79.04

Weibull 1.377 2.125 1.018 0.469 0.467 79.04

34

Original
Data 2.041 2.928 1.567 0.419 0.208 81.94

Weibull 2.043 2.943 1.565 0.422 0.211 81.76

Sampled
Data 2.071 2.907 1.608 0.392 0.182 82.21

Weibull 2.074 2.915 1.609 0.392 0.186 82.06

Projecting
Data 1.424 2.184 1.057 0.464 0.440 79.28

Weibull 1.415 2.170 1.049 0.463 0.443 79.14

35

Original
Data 2.058 2.967 1.575 0.419 0.206 81.54

Weibull 2.056 2.971 1.572 0.420 0.210 81.42

Sampled
Data 1.999 2.881 1.530 0.415 0.214 81.35

Weibull 1.997 2.889 1.526 0.418 0.218 81.22

Projecting
Data 1.439 2.237 1.061 0.476 0.440 78.89

Weibull 1.431 2.229 1.054 0.476 0.444 78.79

36

Original
Data 2.145 3.132 1.631 0.436 0.208 81.53

Weibull 2.149 3.167 1.626 0.447 0.215 81.40

Sampled
Data 2.151 3.074 1.654 0.408 0.185 81.63

Weibull 2.122 3.028 1.634 0.406 0.188 81.62

Projecting
Data 1.456 2.272 1.071 0.479 0.435 78.82

Weibull 1.445 2.262 1.062 0.481 0.439 78.67

37

Original
Data 2.176 3.194 1.650 0.441 0.205 81.42

Weibull 2.168 3.189 1.642 0.442 0.211 81.30

Sampled
Data 2.255 3.203 1.740 0.403 0.165 81.87

Weibull 2.253 3.201 1.738 0.402 0.168 81.75

Projecting
Data 1.508 2.358 1.108 0.482 0.411 78.77

Weibull 1.501 2.352 1.103 0.482 0.414 78.69

38

Original
Data 2.284 3.301 1.746 0.432 0.192 82.07

Weibull 2.298 3.335 1.753 0.435 0.197 81.96

Sampled
Data 2.324 3.293 1.796 0.404 0.164 82.11

Weibull 2.371 3.388 1.824 0.412 0.166 81.89

Projecting
Data 1.588 2.447 1.176 0.466 0.368 79.02

Weibull 1.584 2.447 1.171 0.469 0.371 79.01
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Figure 2. PDFs (by number) of the original sample, fibers 
picked by the HVI clamp, projecting portion of fibers, 
and the hidden portion of fibers.

Figure 3. Probability density functions (by number) of ID 
34 original fibers

Figure 4. Probability density functions (by number) of ID 
34 HVI sampled fibers

Figure 5. Probability density functions (by number) of ID 
34 projecting fibers

Figure 6. Probability density functions (by number) of ID 
38 original fibers

Figure 7. Probability density functions (by number) of ID 
38 HVI sampled fibers

Figure 8. Probability density functions (by number) of ID 
38 projecting fibers

Figure 9. Probability density functions by weight of ID 34 
original fibers
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Figure 10. Probability density functions (by weight) of ID 
34 HVI sampled fibers

Figure 11. Probability density functions (by weight) of ID 
34 projecting fibers

Figure 12. Probability density functions (by weight) of ID 
38 original fibers

Figure 13. Probability density functions (by weight) of ID 
38 HVI sampled fibers

Figure 14. Probability density functions (by weight) of ID 
38 projecting fibers

CONCLUSIONS

The theoretical distribution functions that can 
describe the underlying distributions of three types of 
fiber lengths that are related to HVI measurements were 
studied: the lengths of the original fiber population; the 
fibers picked by the HVI fibrosampler, and of the beard’s 
projecting portion that is actually scanned by HVI.

Non-linear regressions were conducted based on 
length data measured using AFIS from eight cottons. A 
mixture of two Weibull distributions fits the data very 
well. Kolmogorov-Smirnov goodness-of-fit test con-
firms that a mixed Weibull distribution can be used as 
the underlying distribution of fiber length. The length 
parameters, such as ML and UHML, calculated from 
the mixture of Weibull distribution also matched those 
calculated from the actual test data extremely well.

Since the distribution of fiber length can be 
described as a mixture of two Weibull distributions 
which in turn is determined by five parameters, the 
relationship between the length distribution of pro-
jecting fibers and that of the original fibers can be 
investigated by exploring the relationship between the 
five parameters of the mixture Weibull distributions of 
them, which will be discussed in a subsequent paper.
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