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ABSTRACT

The concept of precision agriculture is based 
on the ability to improve the management of 
production factors using site-specific informa-
tion. The optimal configuration of management 
zones for more precise management of farm 
inputs is one of the most important components 
in precision farming. The objective of this study 
is to develop a management zone delineation 
procedure based on a spatial statistics approach 
and evaluate its economic impact for Texas cot-
ton production. Using an optimization model that 
utilizes a yield response function estimated from 
field experiment data through spatial economet-
ric methods, we evaluate the economics of the 
management zone delineation procedure. We 
found that applying variable N rates based on 
the management zones delineated would result 
in higher cotton yields and higher net returns, 
relative to a uniform rate application based on 
field information and a variable rate application 
based on landscape position. This is indicative 
of the potential economic value of using a spatial 
statistics approach to management zone delinea-
tion in cotton production.

Precision agriculture (PA) refers to the use of 
different site-specific technologies in production 

agriculture, such as Global Positioning Systems 
(GPS), computer-controlled variable rate application 
technologies (CVRT), and geo-referenced yield 
maps. These technologies are typically used to obtain 
information about yield and/or soil characteristics at 
different points in a field to establish more efficient 

management strategies that explicitly consider 
heterogeneity among the different locations within 
a field. PA is based on the premise that management 
of production factors can be improved (and 
profitability potentially enhanced) when producers 
take advantage of site-specific information and 
variable rate application technologies (Hurley, Oishi 
and Malzer, 2005).

For precision fertilizer application in particu-
lar, one would ideally want to collect dense data 
about soil attributes in order to variably apply this 
input based on the continuous variation of the at-
tributes in the field. However, producers typically 
have sparse soil attribute data due to the prohibi-
tive expense of collecting dense soil data. Note 
that soil attribute data are usually collected using 
chemically analyzed soil samples that are randomly 
chosen over the whole field. Although there has 
been progress in developing soil sensors (e.g. pH 
sensors) for collecting denser soil attribute data 
(Griffin et al., 2004), most of the soil characteristic 
data needed for more precise fertilizer application 
are still typically collected using soil samples (e.g. 
collecting soil nitrogen (N) data). Hence, the sparse 
data environment makes it appealing to simply 
identify and delineate discrete management zones 
that can be variably and more precisely managed. 
Management zones are defined as geographical 
areas that can be treated as homogenous, so that in-
put application and decision making can be treated 
separately for each zone.

In light of the sparse data environment that 
producers are typically faced with, optimally 
configuring management zones for more precise 
management of farm inputs becomes a very impor-
tant issue in precision farming. The profitability of 
precision technologies in this case will depend on 
the producer’s ability to divide his/her field into 
appropriate management zones that are based on 
sparse soil characteristic data. If fields can be di-
vided into appropriate management zones even in 
sparse data environments, then the use of variable 
rate input technology could be implemented more 
efficiently and returns from this precision applica-
tion may be enhanced.
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A number of studies examine the use of yield 
and soil properties to visually establish management 
zones (Fridgen et al., 2000, Franzen et. al., 2000; 
Fleming et. al., 2000; Nolan et. al., 2000, Basnet, B., 
et. al., 2003, Diker et al. 2003).1 But in recent years, 
there have been studies that explored more rigorous 
statistical methods to delineate management zones 
based on spatial precision agriculture data. These 
types of studies have usually relied on traditional 
clustering or fuzzy clustering techniques which 
look for the identification of naturally occurring 
clusters in the data through algorithms (Stafford et. 
al., 1998; Fridgen et. al., 2000, Ping et al., 2005). 
However, studies that use clustering techniques 
typically do not take into account the underlying 
spatial autocorrelation in the yield or soil data when 
delineating management zones (with the exception 
of Ping et al. (2005)).

While cluster analysis allows one to arrange the 
data into different classes according to similarity 
measures (taking into account a particular variable 
or several variables), taking spatial autocorrelation 
into account will make the management zone con-
figuration based not only on the information about 
a particular characteristic but also their location in 
space. The ‘First Law of Geography’ suggests that 
everything is related to everything else but things that 
are near are going to have a higher level of similarity 
than things that are distant in space (Tobler, 1979). 
Hence, consideration of spatial autocorrelation 
in management zone delineation procedures may 
provide better insight into the spatial patterns of the 
field and more effectively suggest zones for use as 
management units. A management zone delineation 
procedure that takes spatial autocorrelation into ac-
count is a fairly new method that still needs to be 
further developed in a precision farming context. In 
this regard, advances in spatial statistics allow us to 
develop this type of delineation approach in order 
to address this gap in the literature.

Aside from developing a new management zone 
delineation procedure that considers spatial auto-
correlation, another important issue that needs to 
be examined is the economic implications of using 
this type of management zone delineation procedure. 

Although there have been numerous studies that 
have looked at various economic aspects of preci-
sion agriculture2, there have only been a few studies 
that explicitly addressed the economics of alterna-
tive management zone delineation procedures (See, 
for example, Thrikawala et. al. (1998); Basin, et al. 
(2003); and Dillon et al. (2003)). Thus, this paper not 
only develops a practical spatial method to delineate 
management zones in cotton production, but it also 
contributes to the emerging literature on the econom-
ics of management zone delineation procedures in 
precision agriculture.

The objective of this paper is to develop, and 
economically evaluate different management zone 
delineation procedures that can be used for precision 
nitrogen (N) fertilizer application in Texas cotton 
production. In particular, a univariate management 
zone delineation procedure based on a spatial statistics 
technique (called Exploratory Spatial Data Analysis 
(ESDA)) is developed and evaluated. The economic 
returns to a variable rate N application based on this 
delineation technique is then compared to a traditional 
uniform rate application and a variable rate application 
based on a management zone delineation procedure 
using landscape position. In order to appropriately 
assess the economics of these different N applica-
tion procedures, spatial econometric techniques in 
yield response estimation were carefully applied, and 
its importance in this context was also shown. (See 
Anselin, Bongiovanni, and Lowenberg-DeBoer, 2004 
for more discussion of this issue)3.

The remainder of this article is organized as 
follows. The next section describes the field experi-
mental design and the procedures used for collecting/
standardizing the spatial data. The empirical method-
ology for developing the ‘spatial’ management zone 
delineation procedure and the economic analysis is 
discussed in the third section. Results and conclud-
ing comments are presented in the fourth and fifth 
sections, respectively.

1 Some examples of yield and soil properties that have been 
used to visually establish management zones are (among 
others): variability of yield within landscape and elevation 
positions, soil color, texture and electrical conductivity.

2 See Lambert and Lowenberg-DeBoer (2000) and Griffin 
et al. (2004) for an extensive review of the literature on the 
economics/profitability of precision agriculture technologies 
as applied to different crops.
3 Note that Anselin, Bongiovanni, and Lowenberg-DeBoer 
(2004) discuss these issues in the context of management 
zones delineated using landscape position, which is why we 
chose to compare our delineation approach to a delineation 
procedure based on landscape position, as well as a blanket or 
uniform rate approach with no zone delineation.
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Description of the Data

Experimental Design of the Field. The data 
used in this article are based on an agronomic cot-
ton experiment designed to study nitrogen (N) use 
for cotton production in the Southern High Plains of 
Texas (Lamesa, TX) during the 2002 growing season. 
The study area is located 60 miles south of Lubbock, 
TX and the total area is about 35 acres under 119 
acres of a center pivot irrigation system. The experi-
ment is a randomized complete block design with 
three replicates and each replicate was within a center 
pivot irrigation span. There were three N treatments 

– variable-rate N, blanket-rate N, and zero N. The 
fertilizer N rate for both variable and blanket N rate 
was calculated using the N supply requirement of 
120 lb/acre for a yield goal of approximately 981 lb 
lint/acre (See Zhang et al. (1998) for the agronomic 
basis of this recommendation). The blanket rate of 
N fertilizer was based on the 0-2 foot soil NO3 – N 
content of the blanket-N plots. Inverse distance 
interpolation of all the original soil sample values 
(0-2 foot NO3 – N) was used to create variable-rate 
application maps. Irrigation levels were 63%, 74%, 
and 84% of the estimated evapo-transpiration re-
placement. The three N treatments were replicated 
under each irrigation level, (See Figure 1). 4

The site-specific soil characteristics data were 
originally collected as point data. In March 2002, 
soil samples were collected on 135 Differential 
Global Positioning System (DGPS) referenced 
points. The samples were then sent to a laboratory 
for chemical analysis. The results of this chemical 
analysis provided the necessary point data about 
the different soil characteristics in the field. For this 
study the information for extractable NO3 – N at two 
foot depth was used as the basis for estimating the 
amount of N in the soil.

The yield data used in this study are from a dense 
data set collected from a yield monitor (5592 points). 
A John Deere 7445 four-row stripper harvester 
equipped with a Micro-Trak optical yield monitoring 
system (Micro- Trak, Eagle Lake, MN) was used to 
harvest seed cotton in the field. These seed cotton 
weights were adjusted and a single percentage turn-
out of lint content from a local commercial gin was 
used to calculate lbs of lint per acre as our measure 
of yield (Bronson, et al 2006). A dense applied N data 
set was also utilized in this study, which came from 
the precision N applicator used for the experiment. 
The dense applied N data also had the same number 
of points as with the dense yield data from the yield 
monitor (5592 points).

At this point it is important to note that the yield 
data used in this study were adjusted based on the 
water treatments/irrigation levels applied in the ex-
periments (i.e. high (84%), medium (74%) and low 
(63%) water treatments). A coefficient was added 
(subtracted) for the low water treatment (for the high 
water treatment) that takes out the effect of water 
on yield. The coefficient used for this procedure 
is based on an analysis of covariance adjustment 
(see Bronson et al., 2006 for details). By using this 
adjustment procedure, the effect of N on yields per 
acre was better isolated.5

Interpolation Procedures. Since data are 
available at different spatial scales (e.g. some 
are dense point data, like the yield and applied N 

Variable - N

Zero - NBlanket - N

Variable - N

Zero - NBlanket - N

Variable - N

Zero - NBlanket - N

Low
Water

Base
Water

High
Water

Applied N (lb/acre)

0 –40.14

40.14 –80.28

80.28 –120.42

4 Although there are only three N-treatments, there is 
significant variability in the N-rates applied for the whole 
field, which allows this experimental data to be used for yield 
response estimation. First, there is variability in the variable 
rate treatment plots because of the different rates applied 
for each point in that particular treatment plot (V in Figure 
1). Second, there is also variability across the blanket rate 
replicated plots because application rates differ depending on 
the average soil NO3-N for each blanket rate treatment plot.

Figure 1. Design of Nitrogen Fertilizer Experiment, 2002, 
Lamesa, Texas

5 Another approach to control for water treatment effect 
is to include water levels in the yield response estimation. 
However, we opted to do the adjustment described here 
because it allows for estimation of a parsimonious yield 
response function that facilitates the economic evaluation. 
We believe that this adjustment is an acceptable approach in 
the agronomic literature (See Bronson et al., 2006) to control 
for water treatments and we have found no study that clearly 
invalidates this approach.
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The kriging interpolation method was chosen 
over other interpolation methods because it is an 
approach that offers minimum error variance (Siska 
and Hung, 2001). In addition, kriging generates 
information from a linear combination of the actual 
information (which is similar to the other interpo-
lation methods), but it also takes into account the 
spatial autocorrelation patterns inherent to the data. 
However, Anselin (2001) indicated that any interpo-
lation method may introduce exaggerated spatial pat-
terns that affect inference from the data. Further, the 
Purdue Site Specific Management Center (SSMC) 
expressed concerns with the common practice of 
using interpolated data to deal with differences in 
spatial resolution or scale because it can potentially 
lead to wrong decisions. As with Anselin (2001), the 
Purdue SSMC group points out that these interpola-
tion procedures might introduce spatial patterns that 
do not exist in the original data (Erickson, 2005; 
Griffin, Brown, and, Lowenberg-DeBoer, 2005).

However, there does not seem to be any consen-
sus in the literature as to whether or not the use of 
interpolated data is indeed not valid. For example, 
even in light of the potential problems with this 
approach, Anselin (2001) himself mentioned that 
kriging is still one method that may result in unbi-
ased predictors, although this may only be true under 
certain assumptions (see p. 706 in Anselin, 2001).

Further note that the use of interpolated data 
in spatial economic analysis is an especially im-
portant issue when interpolating grid data from 
sparse point data (i.e. “interpolating up”) because 
one is interpolating more grid data from less point 
data (i.e. in our case, generating 215 grid data from 
135 soil NO3 – N point data).7 Measurement errors 
and exaggerated spatial patterns are more likely 

data, while some are sparse point data, like the 
soil NO3 – N), an interpolation method is used to 
create a consistent spatial data set for all pertinent 
variables. Interpolation is typically used when it 
is expensive to collect more data points on the 
soil characteristics of interest, which is the case 
for our experiment (e.g. collecting dense data on 
soil NO3 – N).

The kriging interpolation method was used to 
convert the dense data and the sparse 135 DGPS 
data into consistent grids with a size of 28m x 
28m. A 28 x 28 m design was chosen over other 
grid sizes (8 x 8 m, 16 x 16 m and 24 x 24 m) after 
checking by visual inspection that this grid size 
generated enough information between the DGPS 
referenced points and that the resulting grid pat-
tern closely follows the actual patterns presented 
in the point data (see Figure 2).6 For the case of 
the dense data sets (e.g. yield and applied N data), 
the interpolation procedure spatially averages the 
data using different weights for the points used 
(according to the spatial autocorrelation patterns) 
to convert it in to a regular grid layout. Therefore, 
the interpolation procedure for a dense data set is 
akin to spatially averaging the data by assigning 
different weights to different points. This interpola-
tion and conversion approach allows us to produce 
a uniform spatial design of 215 grids and made it 
possible to create a continuous map with the same 
grid size for each variable of interest (i.e. yield, 
applied N, and NO3 – N values).

6 Although we used a simple procedure for choosing the grid 
size, our visual approach was guided by recommendations from 
the agronomist in our project team so that the spatial pattern 
of the DGPS data remains consistent in the grid configuration. 
We believe that there is no single widely-accepted approach 
for choosing grid size in the agricultural economics literature 
(See Hertz, and Hibbard, 1993 and Bongiovanni and 
Lowenberg-DeBoer, 2000). In addition, given that this is not 
the focus of this paper, we opted for a more straightforward but 
agronomically consistent approach in choosing the grid size. 
Further analysis of the implications of using alternative grid 
sizes may be an interesting topic for future research.
7 This issue is akin to the “zonation effect” of the Modified 
Areal Unit Problem (MAUP). See Armheim (1995).

Figure 2.  Sparse data vs. Grid Design, 2002, Lamesa, 
Texas
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in this type of scenario (Anselin, 2001). Spatially 
averaging or interpolating from a dense data to 
a sparser grid data (i.e. in our case, using 5592 
dense yield/applied N points to generate 215 grids) 
is typically a less contentious issue since one is 

“interpolating down” and a similar approach has 
been used in a number of studies already (See, for 
example, Anselin, Bongiovanni and Lowenberg-
DeBoer (2004)).

In light of the concerns regarding the use of 
interpolated data for economic analysis in preci-
sion agriculture, cross validation techniques and 
variogram analysis were used to assess how well 
the interpolated data coincide with the actual point 
data. These analytical approaches are the most com-
mon approaches used in the literature for validating 
interpolated data sets (See Isaaks, and Srivastava, 
1989; Chiles and Delfiner, 1999; Barnes, 2004; Mu-
eller, 2004; Panagopoulos et al., 2006). Results of 
the cross validation and variogram analyses suggest 
that, in general, the interpolated grid data based on 
the kriging approach accurately approximates the 
actual data8. In the interest of space, the detailed 
cross validation scatterplots and variogram graphs 
used in the analysis are not presented here but are 
available from the authors upon request.

Empirical Methodology and 
Estimation Procedures

General Description of the ESDA Approach. 
A spatial statistics approach called Exploratory 
Spatial Data Analysis (ESDA) was used as the 
main procedure for establishing management 
zones. ESDA is a method that combines different 
techniques to visualize spatial distributions, identify 
patterns of different locations, and identify patterns 
of association between these locations. This method 
is based on the concept of spatial autocorrelation 
(or spatial dependence), which is the relationship 
between spatial units, and makes use of the concept 
of distance between locations. Positive spatial au-
tocorrelation is the idea that locations or grids with 
similar values of a specific characteristic are near in 
space. This means that, in the presence of positive 

spatial autocorrelation, certain grids located close 
to each other share similar characteristics (Messner 
and Anselin, 2002, p. 10). On the other hand, pat-
terns where neighbors of a grid have the opposite 
characteristics are defined as having negative spa-
tial autocorrelation (Lambert, Lowenberg-Deboer, 
and Bongiovanni, 2004).

The step-by-step procedure for establishing the 
ESDA approach to management zone delineation 
can be briefly described as follows: (1) Define the 

‘neighborhood’ structure of each grid; (2) Establish 
a ‘weight matrix’ for the ‘neighborhood’ structure 
defined; (3) Test for the presence of spatial auto-
correlation; (4) Graphically visualize the spatial 
correlation structure (if step (3) indicates that 
there is spatial autocorrelation); and (5) Establish 
the management zones. The first step is to define 
the ‘neighbors’ of each grid. This allows one to as-
sess if there are any spatial relationships between 
these grids, which can then serve as the basis for 
management zones. Since our data is arranged as 
a grid structure, typically either a “rook” structure 
(four neighbors to each cell, north, south, east and 
west) or a “queen” structure (eight neighbor to 
each cell) is used as the criterion for defining the 
neighborhood structure (Anselin, Bongiovanni, and 
Lowenberg-Deboer , 2004).9

Once the neighborhood structure was defined , the 
contiguity relations of each grid within a neighbor-
hood must be formally characterized using a spatial 
weights matrix (Bivand, 1998). A spatial weights 
matrix (W) is an N x N (where N is the number of 
observations), positive definite matrix with elements 
wij, where wij correspond to a pair of observations at 
locations i and j. By convention the diagonal elements 
of the weight matrix are set to be zero, implying that 
each location is not a neighbor of itself. Non-zero 
elements (wij =1) means that locations i and j are 
neighbors. Typically, the spatial weights matrices 
are also row-standardized to facilitate comparison of 
spatial characteristics across rows.

The Moran’s I statistic, which is a function of 
the spatial weights matrix, is then used to test for 

8 For example, the variogram analysis of the soil NO3 – N data 
shows a goodness-of-fit measure (R2) of 0.88, which indicates 
a fairly accurate representation of the data even if the soil NO3 
– N in this study was interpolated based on sparse point data.

9 As suggested by one reviewer, a more “universal” definition 
of a rook structure is when the neighbors of a grid (or a cell/
polygon) only share a border of non-zero length. The queen 
structure, on the other hand, is when the neighbors of a cell can 
be defined as those that shares a border (including vertices). 
However, the definitions of the rook and queen structures are 
consistent with the square grid structure in our interpolated data.
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the presence of spatial autocorrelation (Anselin, 
1988). Specifically, the global Moran’s I statistic is 
calculated as follows:

(1)   
xx

Wxx
S
nI
O '

'
 ,

where n  i s  the number  of  observat ions;
0 1 1

n n
iji j

S w
 

  ; W is the spatial weight matrix; 
and x is the vector containing the variable of interest. 
The null hypothesis of the test is that there is no 
association between the value observed at a location 
and the values observed at the neighboring sites. The 
alternative is that the values of the neighboring sites 
are statistically similar.

Application of the ESDA Approach in Delineat-
ing Management Zones for Nitrogen. NO3 – N in the 
soil was used as our variable of interest in the Moran’s 
I specification, given that nitrogen is one of the main 
limitations for cotton production in the Southern High 
Plains of Texas and this variable has historically been 
used to establish N application rates in the area. A 
common practice in the this area is to establish the N 
rate applications given the pre-plant soil NO3 – N tests 
at 0 to 2 foot depths (Bronson, et al. 2006). Given this 
common practice extractable soil NO3 – N informa-
tion was used as the criteria to design the management 
zones under the ESDA approach. Also, this approach 
will allow for comparison of these results with the uni-
form rate N approach where the NO3 – N was used as 
a guide to decide the single N rate to apply uniformly 
across the field. This study makes a contribution to 
the literature in this regard because this study is the 
first (as far as we know) to economically evaluate a 
management zone delineation procedure based on a 
spatial autocorrelation statistic specifically calculated 
from soil nitrate levels.

Using soil nitrate as the variable of interest, the 
computed global Moran’s I statistic, based on the 

“rook” and “queen” neighborhood structures and 
weights matrix defined above, are 0.796 and 0.795 
respectively, both with p-value of <0.01. This indicates 
that null hypothesis is rejected and that there is spatial 
autocorrelation in the data, for both “rook”, and “queen” 
neighborhood structures. Based on this result, a Moran 
scatterplot is created and three management zones 
based on this scatterplot is then determined (Figure 
3).10 Note that the design of the management zones 
does not vary with the choice of neighborhood structure. 
There are three management zones established based 
on this procedure. Management zone High - High 
(MZ H-H) represents high nitrate areas (i.e. grids with 

high nitrate levels have “neighbors” also with high 
nitrate levels). Management zone Low - Low (MZ 
L-L) represents low nitrate areas (i.e. grids with low 
nitrate levels have “neighbors” with low nitrate levels). 
Lastly, management zone High - Low - High (H-L-H) 
represents the area with a mix of high and low nitrate 
levels (i.e. grids with low nitrate levels have “neighbors” 
with high nitrate levels, and vice-versa). The delineated 
management zones could then be utilized to implement 
a variable rate nitrogen application program.

Figure 3. Delineated Management Zones based on NO3 - N 
from the ESDA Procedure, 2002, Lamesa, Texas

10 For readers familiar with the Moran scatterplot, the 
management zones are based on the quadrants in the scatterplot. 
For example, one management zone can be defined for the grids 
in the upper right quadrant of the scatterplot because these are 
the grids with neighbors that have similar high values. As can be 
seen in the proceeding discussion, the management zone based 
on the cells in the upper right quadrant have neighbors with 
high N values (i.e. clustering of high N values) and we define 
this as the High-High management zone. Similar arguments 
can be used for establishing a management zone based on the 
grids in the lower left quadrant of the Moran scatterplot (i.e. 
clustering of grids with low N values that make this the Low-
Low management zone) and the cells in the remaining quadrants 
(i.e. grids with clustering of opposite high-low or low-high N 
values). In the interest of space, the Moran scatterplot is not 
reported here, but is available from the authors upon request.

Management zones

MZ High - High

MZ Low - Low

MZ High - Low - High

Yield Response Estimation Methods: Spatial 
Econometric Approaches. To economically evaluate 
a variable rate fertilization program that is based on the 
management zone delineation procedure developed 
above, one must first properly estimate a yield response 
function for each management zone in the field. Initially 
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this yield response function can be estimated using 
standard ordinary least squares (OLS) regression with 
parameters varying based on the specified management 
zones. However, recent studies have indicated that 
spatial econometric methods may be more appropriate 
when estimating a yield response function with vary-
ing parameters for each management zone, especially 
when spatial precision agriculture data is utilized in 
the estimation procedure (See, among others, Anselin, 
Bongiovanni, and Lowenberg-Deboer, 2004; Lambert 
and Lowenberg-Deboer, 2000; Lambert, Lowenberg-
Deboer, and Bongiovanni, 2004; Liu, Swinton, and 
Miller, 2006). In this article, spatial econometric 
methods are primarily used (or what some call, more 
specifically, as spatial process models) to estimate 
the yield response function (discussed more formally 
below). But OLS was also used to serve as a basis 
of comparison which allows one to see the potential 
inference errors when spatial econometric techniques 
are not utilized in the economic analysis.

Consistent with previous studies, a yield response 
function with a quadratic specification was estimated:

(2)    Yieldi = αi + βiNi + γiNi2 + εi,
where Yieldi is the cotton yield, Ni is the total N available 
to the plant (applied N + N available in the soil), αi 
and βi are parameters to be estimated, and i indexes 
the management zone. Note that for uniform rate N 
application techniques, it is assumed that the yield 
response is homogenous over the whole field and, 
therefore, equation (2) is estimated where the parameters 
α and β are assumed to be the same for the whole field 
(i.e. parameters are not varying). That is, equation (2) 
was estimated without taking into consideration the 
subscript i for all the parameters (i.e. or alternatively, 
it can be assumed that i = 1 in this case).

In contrast, for variable rate N application tech-
niques, one assumes that there is heterogeneity in the 
yield response for each management zone i (where 
i = 1, … n) in the field. Hence, the yield response 
equation in (2) is estimated with varying parameters 
(αi and βi) for each management zone i. In this case, 
a spatial switching regression or a “spatial regimes” 
approach is utilized (See Anselin 1988) that jointly 
estimates the different parameters for the different 
zones defined in the previous sub-section. This 
model is represented in matrix form as:

(3) 
































































−−

−

−

−−

−

−

−−

−

−

−−

−

−

HLH

LL

HH

HLH

LL

HH

HLH

LL

HH

HLH

LL

HH

x
x

x

y
y
y

µ
µ
µ

β
β
β

00
00
00

where y, x, and μ are the yield, vector of covariates (N 
and N2 in this case), and unobserved error, respectively, 
for each management zone – H-H, L-L, and H-L-H; 
and β’s are parameter vectors of the yield response 
function to be estimated for each management zone.

A check for the stability of the coefficients 
across management zones was performed by using 
a standard Chow test. The null hypothesis of this 
test is represented as follows: βH–H = βL–L = H–L–H . If 
one fails to reject the null hypothesis, the response 
function for each management zone is the same; 
therefore, uniform rate approach estimation is ap-
propriate. On the other hand, the rejection of this 
hypothesis demonstrates a need to divide the field 
into management zones because the response to N 
is different for each management zone.

From the estimated regression of the yield 
response function, the presence of spatial autocor-
relation or spatial dependence in the residuals is then 
evaluated for both the spatial regimes (or variable 
rate) and the uniform rate response specification. If 
it is present, then appropriate spatial econometric 
techniques need to be implemented to account for the 
spatial autocorrelation in the residuals. Ignoring such 
autocorrelation will yield OLS estimates that are inef-
ficient and will bias the standard errors, t-test statistics, 
measures of fit, and specification tests, rendering 
statistical inference unreliable (Anselin, 1988).

There are several spatial econometric techniques 
that can be used to incorporate spatial dependence in 
yield response function estimation -- i) a geostatisti-
cal approach, ii) a spatial regression approach, iii) a 
polynomial trend approach, and iv) a classical near-
est neighbor approach (Lambert, Lowenberg-Deboer, 
and Bongiovanni, 2004). In this paper, the spatial 
regression approach is used to account for spatial 
autocorrelation in the yield response function.

Note that there is no clear consensus in the lit-
erature as to which approach is superior for model-
ing spatial dependence in yield response functions.11 

11 Lambert, Lowenberg-Deboer, and Bongiovanni (2004), for 
example, found that the parameter estimates from the different 
estimation procedures tend to be very similar. Hurley, Oishi, 
and Malzer (2005) had mixed results where they found that 
a spatial regression model works best in one of their fields, 
while a geostatistical approach is more appropriate in another 
field. Zimmerman and Harville (1991) and Lark (2000) further 
mention that controlling for spatial dependence in these models 
are very important, but there is no clear advantage as to which 
methodology to use to account for this dependence.
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However, it was decided to use a spatial regression 
approach because it is more practical when the spatial 
layout of the data is a grid structure and the spatial au-
tocorrelation can be characterized as discrete relation-
ships between specific grids or polygons (see Lambert, 
Lowenberg-Deboer, and Bongiovanni, 2004).

Under the spatial regression approach, one way 
to incorporate spatial dependence is to include an 
additional independent variable called the spatial 
lagged dependent variable. This spatial lagged vari-
able is simply the dependent variable weighted by 
the matrix containing the neighborhood structure. 
Formally, a spatial lag model is expressed as:
(4)    y = ρWy + Xβ + εi,
where ρ is a spatial autoregressive coefficient, ε is 
a vector of error terms, W defines the weight matrix 
that defines the neighborhood structure, and y defines 
our dependent variable, which in our case is yield; X 
is the matrix containing all the independent variables 
of our model (applied N, and the square term of 
applied N), and β is the vector containing all the 
parameters associated with the independent variables. 
This procedure is called the spatial lag model, and it 
is mostly used when the main concern is to explicitly 
correct or to evaluate the existence and strength of 
the interaction between locations in the space.

Within the spatial regression approach, another 
way to incorporate spatial dependence in linear regres-
sion models is through the error structure. This method 
is called the spatial error model (SAR), and it is mostly 
used when the concern is correcting for the potentially 
biasing influence of spatial autocorrelation due to the 
use of spatial data (Anselin, 1999). The formal expres-
sion of the spatial error model can be written as:
(5)    y = Xβ + μ,
where: μ = λW μ + ξ.

Note that the spatial structure of the data is 
represented in the specification of the error term (μ) 
through the parameter lambda (λ).

To determine which spatial regression model 
fits the data better, an empirical test based on the 
Lagrange Multiplier (LM) principle can be used 
(Anselin, 1988). Standard LM tests against a spatial 
error alternative and against a spatial lag alternative 
is used in this study. A robust version of these LM 
statistics is calculated as well because these robust 
statistics take spatial misspecifications into account. 
The robust version of the LM statistic for the SAR 
model is used to test for a spatial error process when 
the model specification contains a spatially lagged 

dependent variable. The robust version of the LM 
statistic for a spatial lagged model is used to test for 
a spatially lagged dependent variable in the presence 
of a spatial error process. Based on the decision rules 
outlined by Anselin and Florax (1995), a spatial er-
ror model is deemed more appropriate if the robust 
LM-error statistic is statistically significant while 
the robust LM-lag statistic is not.

An additional robust test used in this paper is 
the recently developed statistic by Kelejian and 
Robinson (1992). In contrast to the Moran’s I and 
Lagrange Multiplier tests, this test does not require 
normality for the error terms. It is also applicable to 
both linear and nonlinear regressions and requires 
less information about the exact form of the spatial 
weights matrix. This is also a large sample test which 
means that it might not be of great power for small 
samples. If the LM and Robust LM tests are not con-
clusive, the alternative test of Kelejian and Robinson 
(1992) is used to find the appropriate way to account 
for spatial autocorrelation in the model.

The two important components that underlie the 
econometric results from the models above are the 
choice of neighborhood structure and the yield re-
sponse estimation technique. The rook neighborhood 
structure is used as the basis for the spatial weights 
matrix in our delineation of the management zones 
and also in modeling the yield response function 
above. Standard OLS techniques and Kelejian and 
Prucha’s (1999) Generalized Method of Moments 
(GM) approach are the techniques used to estimate the 
parameters of the yield response function in order to 
undertake the economic analysis (described in more 
detail below). Unlike Maximum Likelihood (ML) es-
timation, the GM estimation approach does not rely on 
a strong distributional assumption about the error term. 
Nevertheless, in order to check for the sensitivity of 
the economic results, the economic effect of using one 
alternative neighborhood structure and several differ-
ent alternative estimation techniques were examined. 
Specifically, the sensitivity of our results to the use of 
a queen neighborhood structure and/or to the use of 
the following estimation procedures: Maximum Like-
lihood (ML), a two-step GMM approach (GM-Two 
step), an iterated GM approach that does not account 
for groupwise heteroskedasticity (GM-Iterated), and 
an iterated GM approach that does consider group-
wise heteroskedasticity (GM-GH) were investigated. 
This sensitivity analysis allows for exploration of the 
robustness of the results to alternative neighborhood 
structure and estimation procedures.
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The Economic Optimization Model and Net 
Return Evaluation. The economic model to assess 
the impact of the management zone delineation pro-
cedure is based on an optimization model for spatial 
profit (or net return) maximization.

The procedure used is consistent with previous 
studies that undertook economic (or profitability) 
analysis of precision technologies (See, among others, 
Lowenberg- Deboer and Boehlje, 1996; Bongiovanni 
and Lowenberg- Deboer, 1998; Anselin, Bongiovanni, 
and Lowenberg-Deboer, 2004; Bullock, Lowenberg-
DeBoer, and Swinton, 2002). Specifically, the esti-
mated parameters of the cotton yield response functions 
are used to formulate an economic optimization model 
that maximizes profit for a representative field. In this 
model, net returns were maximized over the following 
costs: fertilizer cost, cost of soil samples, and cost of 
retrofitting equipment appropriate for each case ($0 
acre -1 for uniform rate and $1.69 acre -1 for variable rate, 
see Bronson et. al, 2006). Together with the estimated 
yield response parameters, information about cotton 
output price, N fertilizer price, and the fixed costs for 
cotton production in the Texas High Plains were col-
lected and used in the economic optimization model 
described in detail below (Bronson et al. 2006).

More formally, the economic optimization 
model is:
(6)  Max ]))([( 2

1
øγβαωπ −−++=∑

=
iNiiiiici

m

i
NrNNPA

where:
π =	 Total net returns over N fertilizer and fixed 

cost ($)
A =	 total area (34.59 acres)
ωi =	Proportion of total land area allocated to man-

agement unit i (i.e. for the management zones 
based on the spatial statistics approach devel-
oped in this study, MZ H-H = 40%, MZ L-L 

= 47%, MZ H-L-H = 13%; for a uniform rate 
approach ωi will simply be equal to one.)

i =	 Management unit (either the whole field or 
the management zones)

m =	Total number of management units (m = 1 for 
uniform rate approach and m = 3 for a variable 
rate approach based on the management zones 
delineated using the procedure in this paper)

Pc =	Price of cotton ( $0.47 per lb, see Bronson et. 
al, 2006)

Ni =	Qty. of N applied in management unit i (in 
lbs/acre); N is the choice variable

rN =	Price of N fertilizer applied ($0.35/lb, see 
Bronson et. al, 2006)

ø =	 Fixed cost (For the uniform rate, this cost 
includes the cost of regular N analysis of a 
soil sample ($0.3 acre -1). For the variable 
rate, this cost includes cost of retrofitting the 
equipment for variable rate N application plus 
the cost of N analysis of the soil samples ($ 
9.71 acre -1), see Bronson et al. 2006).

Using the framework in equation (6), the net re-
turns were computed from the following scenarios: (1) a 
uniform N rate application based on the recommended 
rate by Bronson et al. 2006, which was defined as the 
uniform rate agronomic (URA), (2) a uniform N rate 
application based on an economic optima (URE), (3) 
a variable rate N application based on the economic 
optima for each of the management zones established 
through the spatial statistics procedure above (VRN), 
and (4) a variable rate N application based on the 
economic optima for each of the management zones 
delineated based on landscape position (VRL).12

12 Scenarios 1 and 2 implicitly assumethat the producer does 
not have information about the variability of the field and, 
therefore, could only apply uniformly. Scenarios 3 implicitly 
assumes that the producer utilizes the information about the 
management zones delineated using the approach in this 
paper to variable apply N. Scenario 4 implicitly assumes that 
the producer utilizes information about landscape position to 
variably apply N. As mentioned in the introduction, the VRL 
scenario (scenario 4) is included in the analysis so that we can 
compare: (1) the net returns from a variable rate application 
program based on the delineation procedure designed in 
this study, versus (2) the net returns from a variable rate 
application program that uses the more common approach of 
dividing the field into different management zones based on 
landscape position. The three zones in the VRL scenario are: 
the south-facing side slope (MZS), the north-facing side slope 
(MZN), and the bottom slope (MZB) (See Figure 4).

Figure 4. Delineated Management Zones based on land-
scape position, 2002, Lamesa, Texas

Management zones 

North - Facing 

Bottom - Facing 

South - Facing
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For the URA scenario, the net return was 
calculated for this scenario by plugging in the 
agronomic N recommendation of 52 lbs/acre (See 
Bronson et al., 2006 for the agronomic basis of 
this recommendation) to the profit maximization 
model (in equation (6)) where the estimated pa-
rameters of the uniform rate response function is 
utilized. For the URE scenario, the parameters of 
the uniform rate response function is again used 
to first implement the maximization algorithm in 
equation (6) in order to calculate the economically 
optimal uniform N rate application (N*) for this 
scenario. Once the actual value of N* is found, 
this value is then plugged back in to the objective 
function in equation (6) to get the net returns for 
the URE scenario.

For the VRN scenario, the yield response func-
tion estimated with management zone-specific pa-
rameters is used to first ascertain the economically 
optimal variable N rates for each zone (i.e. N* for 
the H-H zone (N*H–H ), N* for the L-L zone (N*L–L ), 
and N* for the H-L-H zone (N*H–L–H )). These optimal 
variable N rates (for each portion of the field) are 
then inserted in the objective function of equation 
(6) to calculate the net returns for the VRN scenario. 

Note that the net returns for VRN are calculated in 
(6) using the variable rate yield response param-
eters of the management zones delineated using the 
spatial statistics procedure developed in this paper. 
As with the VRN scenario, the optimal variable N 
rates for the VRL scenario needs to be found first 
(in this case, optimal rates for the zones based on 
the three landscape positions: the south-facing side 
slope (N*South ), the north-facing side slope (N*North 
), and the bottom slope (N*Bottom )). These optimal 
variable rates are then plugged into the objective 
function in equation (6), where the parameters of 
the yield response function based on the landscape 
position delineation is used. The net returns for all 
four scenarios are then compared to examine which 
application and zone delineation procedure gener-
ated the highest net returns.

Results and Discussion

Yield Response Estimation Results and 
Model Diagnostics. The yield response estimation 
results for the OLS and SAR specifications of the 
different N application approaches (uniform, VRN, 
and VRL) are summarized in Tables 1, 2, and 3. 

Table 1. Parameter estimates of the cotton yield response function for uniform rate case (URA and URE), 2002, Lamesa, Texas

Variables
OLS 

(Ordinary Least Squares)
SAR-GM-Iterated 

(Spatial Error Model)
Parameter estimate P-value Parameter estimate P-value

Constant 987.35 0.0000 824.92 0.0000
N 0.23 0.9298 3.59 0.1207
N2 -0.01 0.6169 -0.02 0.0414

Lambda1 NA NA 0.35 0.0000

Measures of fit OLS SAR-GM-Iterated
Log Likelihood -1489.17 NA

AIC2 2984.35 2982.81

Diagnostic tests d.f. Value P-value Value P-value
Jarque – Bera (Normality) 2 81.00 0.0000

Koenker-Basset test (heteroskedasticity) 2 2.03 0.3616 NA NA
Lagrange multiplier(error) 1 26.72 0.0000 NA NA

Robust LM(error) 1 3.41 0.0649 NA NA
Kelejian-Robinson (error) 3 20.75 0.0001
Lagrange multiplier (lag) 1 25.10 0.0000 NA NA

Robust LM (lag) 1 1.79 0.1808 NA NA
1	Lambda is the estimated spatial autoregressive coefficient that characterizes the spatial structure of the unobserved er-

ror terms in the spatial error model.
2	Akaike’s Information Criteria (AIC) is calculated using Hurvich and Tsai’s (1989) correction factor to reduce bias: AIC= 

2n ln(σ) + n ln(2Π)+ n((n + k)/( n – 2 - k)).
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These results were estimated using the SpaceStat® 
software. Starting with the estimates for OLS in 
Table 1, the coefficients of both N and N 2 have the 
expected signs but they are not significant (except 
for the constant term). In Table 2, the OLS estimates 
for the coefficients of both N and N2 for manage-
ment zones H-H and L-L also have the expected 
signs, but the H-L-H management zone does not. 
Only four of the coefficients estimated by OLS are 
significant in Table 2.

In Table 3, the estimated response function 
is presented for the case of management zones 
delineated based on landscape position (south 
facing (MZS), north facing (MZN), and bottom 

(MZB)). Using OLS, all the coefficients follow an 
a priori expectation except for the coefficients as-
sociated with the north facing landscape position. 
Only four of the coefficients estimated by OLS 
are significant in Table 3. According to the Chow 
test for structural stability, we fail to reject the null 
hypothesis in this case, which means that the OLS 
coefficients are stable over all the management 
zones in Tables 2 and 3. These results suggest 
that a uniform single response function will be 
appropriate for this cotton production function. 
But note that this stability becomes invalid with 
OLS if spatial autocorrelation in the residuals is 
present (Anselin 1988).

Table 2. Parameter estimates of the cotton yield response function for the management zones delineated using the spatial 
statistics approach (Spatial regimes), 2002, Lamesa, Texas

Variables
OLS 

(Ordinary Least Squares)
SAR-GM-GHET 

(Spatial Error Model- Groupwise 
Heteroskedasticty)

Parameter estimate P-value Parameter estimate P-value
MZ H - H 449.92 0.3485 432.89 0.3696

N x MZHH 8.71 0.2324 9.82 0.1753
N2 x MZHH -0.04 0.1840 -0.04 0.1125

MZ L - L 668.03 0.0027 483.32 0.0030
N x MZLL 9.35 0.0778 12.56 0.0011
N2 x MZLL -0.06 0.0318 -0.08 0.0004

MZ H – L - H 1491.17 0.0123 1303.69 0.0092
N x MZHLH -8.43 0.4553 -5.32 0.5736
N2 x MZHLH 0.03 0.5912 0.02 0.7200

Lambda1 NA NA 0.37 0.0000

Measures of fit OLS SAR-GM-GHET
Log Likelihood -1483.72 NA

AIC2 2985.44 2973.785

Diagnostic tests d.f. Value P-value Value P-value
Jarque-Bera Normality 2 61.16 0.0000 NA NA

Koenker-Basset Test 2 5.99 0.0500 NA NA
Lagrange multiplier(error) 1 25.09 0.0000 NA NA

Robust LM(error) 1 0.14 0.7075 NA NA
Kelejian-Robinson (error) 9 33.81 0.0001 NA NA
Lagrange multiplier (lag) 1 25.29 0.0000 NA NA

Robust LM (lag) 1 0.34 0.5595 NA NA
Chow, Chow-Wald Test 6, 206 1.79 0.1032 12.26 0.0564

1	Lambda is the estimated spatial autoregressive coefficient that characterizes the spatial structure of the unobserved er-
ror terms in the spatial error model.

2	Akaike’s Information Criteria (AIC) is calculated using Hurvich and Tsai’s (1989) correction factor to reduce bias: AIC= 
2n ln(σ) + n ln(2Π)+ n((n + k)/( n – 2 - k)).
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Table 3. Parameter estimates of the cotton yield response function for the management zones delineated using the landscape 
position approach, 2002, Lamesa, Texas

Variables
OLS 

(Ordinary Least Squares)
SAR-GM-Iterated 

(Spatial Error Model)
Parameter estimate P-value Parameter estimate P-value

MZS 901.70 0.0111 865.90 0.0084
N x MZS 1.09 0.8485 2.88 0.5808
N2 x MZS -0.01 0.7254 -0.02 0.3528

MZN 1216.27 0.0000 853.40 0.0000
N x MZN -5.51 0.2499 2.07 0.6109
N2 x MZN 0.02 0.2957 -0.01 0.5658

MZB 721.01 0.0036 729.43 0.0013
N x MZB 7.45 0.1392 7.03 0.1336
N2 x MZB -0.05 0.0683 -0.04 0.0710
Lambda1 NA NA 0.36 0.0000

Measures of fit OLS SAR-GM-Iterated
Log Likelihood -1486.27 NA

AIC2 2990.54 2982.35

Diagnostic tests d.f. Value P-value Value P-value
Jarque-Bera Normality 2 88.12 0.0000 NA NA

Koenker-Basset Test 2 0.97 0.6166 NA NA
Lagrange multiplier(error) 1 20.70 0.0000 NA NA

Robust LM(error) 1 0.03 0.8689 NA NA
Kelejian-Robinson (error) 9 20.19 0.0168 NA NA
Lagrange multiplier (lag) 1 21.35 0.0000 NA NA

Robust LM (lag) 1 0.68 0.4105 NA NA
Chow, Chow-Wald Test 6,206 0.94 0.4671 2.15 0.9053

1	Lambda is the estimated spatial autoregressive coefficient that characterizes the spatial structure of the unobserved er-
ror terms in the spatial error model.

2	Akaike’s Information Criteria (AIC) is calculated using Hurvich and Tsai’s (1989) correction factor to reduce bias: AIC= 
2n ln(σ) + n ln(2Π)+ n((n + k)/( n – 2 - k)).

Diagnostics for spatial autocorrelation in all of the 
OLS models indicated that this problem is present and 
that a spatial error model is the proper specification to 
correct for spatial autocorrelation. The standard LM 
and robust-LM tests in Table 1 clearly show that the 
spatial error model is the proper specification for the 
uniform rate (Anselin and Florax, 1995). However, 
for Tables 2 and 3 the traditional LM and robust LM 
diagnostics statistics for spatial dependence are not 
conclusive. Both the robust LM-error and the robust 
LM-lag statistics are not significant. Given these re-
sults the more recent Kelejian-Robinson test is used 
to decide the proper specification needed to correct 
the spatial dependence in these models (Kelejian 
and Robinson, 1992). In this case, the Kelejian and 
Robinson test points to the spatial error specifica-

tion as the appropriate model to correct for spatial 
autocorrelation in this case. In addition, standard 
diagnostics for groupwise heteroskedasticity (across 
zones) suggests the presence of this misspecification 
for the case of spatial variable rate response function 
in Table 2 (See the Koenker and Bassett test). For this 
particular case, both spatial autocorrelation as well 
as heteroskedasticity are accounted for in the SAR 
model in Table 2.

After accounting for spatial autocorrelation in the 
uniform rate model (Table 1) the coefficients estimates 
for the constant, N and N 2 coefficients change rela-
tive to the OLS estimates and they are all significant 
(at the 5% level of significance for N and marginally 
significant for N 2 at 12% level). The fit of the model 
improves when the spatial error structure is modeled, 
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as indicated by a decrease in the Akaike Information 
Criteria (AIC) from 2984.35 to 2982.81. The improve-
ment of the model was also to be expected because of 
the highly significant spatial error coefficient (i.e. the 
lambda (λ) coefficient in equation 5).

Both spatial autocorrelation and groupwise het-
eroskedasticity are accounted for in the spatial error 
model in Table 2. The coefficients in this case vary 
slightly relative to the OLS estimates, but the signifi-
cance levels for the individual coefficients improve. 
Under the spatial error model all the coefficients are 
significant (at a lower significance levels that varies 
from 1% to 10%) except for the constant term and 
N coefficient for the H-H management zone and the 
N and N 2 coefficients associated with MZ H-L-H 
(where there is no pattern of spatial association given 
the Moran’s I results). After correcting for spatial 
autocorrelation and groupwise heteroskedasticity, 
the Chow test presented in Table 2 shows evidence 
of structural instability. This suggests that allowing 
for different yield response functions for each man-
agement zone is the proper functional specification. 
Again, the fit of the model improves when the spatial 
error structure is modeled as indicated by a decrease 
in AIC from 2985.44 to 2973.785.

After incorporating spatial autocorrelation in 
the VRL response function presented in Table 3 
(management zones based on landscape position), 
all the coefficients are consistent with our expecta-
tions, but there is no improvement in the significance 
levels. The Chow test (for both OLS and spatial 
error models) shows stability of the estimated coef-
ficients among all the landscape management zones. 
This result indicates that a single yield response 

function for the whole field may be appropriate and, 
consequently, that a uniform rate approach may be 
preferred over the variable rate approach based on 
landscape position. Nevertheless, these VRL param-
eter estimates are used in the optimization models in 
order to compare the net returns from a variable rate 
N application using landscape position versus a vari-
able rate N application based on the spatial statistics 
approach to management zone delineation.

Estimated Net Returns, Yields, and N Levels. 
A comparison of the returns from different N rates 
is given in Table 4. Based on the estimated response 
function(s) and the optimization model described in 
the previous section, point estimates of the yield, the 
optimal N application levels, and the correspond-
ing net returns for each of the different application 
techniques considered – URA, URE, VRN, and VRL 
were calculated. The URA was used to represent the 
N rates currently practiced in Southern High Plains 
of Texas. Each of these application scenarios was ex-
amined by using a yield response function estimated 
both by OLS and by using the spatial error model 
(SAR) estimated by Generalized Moments (GM). 
This allows the potential magnitude of inference or 
recommendation errors that could be committed to 
be seen, when spatial autocorrelation is not properly 
accounted for in the yield response estimation.

In general, the OLS technique tends to underes-
timate the difference between the net benefits from 
the spatial variable rate application (VRN) and the 
uniform rate application procedures (see Table 4a). 
On the other hand, the difference between the esti-
mates using VRL approach versus the uniform rate 
approaches tend to be overestimated when OLS is 

Table 4a. Estimated net returns under uniform rate and variable rate application methods and different estimation proce-
dures, 2002, Lamesa, Texas

OLS SAR-GM-Iterated/SAR-GM-GHET Difference (OLS-SAR)
------------------------------ Net Returns ($/acre) ------------------------------

Uniform rate, agronomic optimum (URA, 52 lb/ac) 443.69 428.68 15.01
Uniform rate, economic optimum (URE, 70.16 lb/ac) 463.75 431.44 32.31

Variable rate, spatial statistics approach (VRN) 458.20 446.88 11.32
Variable rate, landscape position (VRL) 484.70 433.86 50.84

Differences across application techniques
URE vs. URA (URE – URA) 20.07 2.75 17.32
VRN vs. URA (VRN – URA) 14.52 18.20 -3.68
VRN vs. URE (VRN – URE) -5.55 15.44 -20.99
VRL vs. URA (VRL – URA) 41.01 5.18 35.83
VRL vs. URE (VRL – URE) 20.95 2.42 18.53
VRN vs. VRL (VRN – VRL) -26.50 13.02 -39.52
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used. These results reinforce findings in previous 
studies that incorrectly used OLS to estimate yield 
response functions (i.e. OLS may provide misleading 
findings). Hence, using the more appropriate yield re-
sponse function that takes spatial autocorrelation into 
account, it is found that the VRN approach tends to 
have a higher net return relative to the URA ($18.20/
acre) and URE scenarios ($15.44/acre), respectively. 
Thus, the economic optimization results show that 
the returns to the VRN approach can more than cover 
the variable fertilizer cost, as well as the other fixed 
costs considered in this analysis. The net returns from 
a VRL approach also tend to be higher relative to 
the uniform rate approaches. Furthermore, the VRN 
approach based on the spatial statistics approach to 
management zone delineation is also shown to be 

more profitable than VRL ($13.02/acre). Note that 
this result is consistent with the a priori expectation 
since VRN is a more precise approach and because 
the field has more variability than what is reflected 
in the landscape position.

The estimated yields and N levels for the dif-
ferent N fertilizer application scenarios considered 
are presented in Tables 4a and 4b. When spatial 
autocorrelation is considered in the yield response 
estimation, the VRN scenario based on the spatial 
approach to management zone delineation tend to 
have higher yields relative to all the other applica-
tion techniques. The average N application levels 
used in the VRN approach also tend to be higher 
relative to the other application procedures (when 
spatial autocorrelation is accounted for). Note, 

Table 4b. Estimated yields under uniform rate and variable rate application methods and different estimation procedures, 
2002, Lamesa, Texas

OLS SAR-GM-Iterated /SAR-GM-GHET Difference (OLS-SAR)
--- Yield (lb/acre) ---

Uniform rate, agronomic optimum (URA, 52 lb/ac) 983.37 951.45 31.92
Uniform rate, economic optimum (URE, 70.16 lb/ac) 987.35 969.32 18.03

Variable rate, spatial statistics approach (VRN) 1055.47 1033.46 22.01
Variable rate, landscape position (VRL) 1059.18 972.96 86.22

Differences across application techniques
URE vs. URA (URE – URA) 3.98 17.87 -13.89
VRN vs. URA (VRN – URA) 72.09 82.01 -9.92
VRN vs. URE (VRN – URE) 68.12 64.14 3.98
VRL vs. URA (VRL – URA) 75.81 21.51 54.30
VRL vs. URE (VRL – URE) 71.83 3.64 68.19
VRN vs. VRL (VRN – VRL) -3.71 60.50 -64.21

Table 4c. Estimated N levels under uniform rate and variable rate application methods and different estimation procedures, 
2002, Lamesa, Texas

OLS SAR-GM-Iterated/SAR-GM-GHET Difference (OLS-SAR)
--- N application (lb/acre) ---

Uniform rate, agronomic optimum (URA, 52 lb/ac) 52.00 52.00 0.00
Uniform rate, economic optimum (URE, 70.16 lb/ac) 0.00 68.13 -68.13

Variable rate, spatial statistics approach (VRN) 75.63 78.43 -2.80
Variable rate, landscape position (VRL) 31.79 62.97 -31.18

Differences across application techniques
URE vs. URA (URE – URA) -52.00 16.13 -68.13
VRN vs. URA (VRN – URA) 23.63 26.43 -2.80
VRN vs. URE (VRN – URE) 75.63 10.30 65.33
VRL vs. URA (VRL – URA) -20.21 10.97 -31.18
VRL vs. URE (VRL – URE) 31.79 -5.16 36.95
VRN vs. VRL (VRN – VRL) 43.84 15.45 28.39
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however, that the VRN scenario tends to more 
efficiently utilize N because it applies less N in 
zones with high soil nitrate levels and more N in 
zones with low soil nitrate levels (results available 
from the authors upon request). Therefore, even if 
N application is higher (on average) for the VRN 
relative to URA, URE, and VRL, the more efficient 
use of the N fertilizer may still possibly reduce 
nitrate run-off in the soil and, consequently, reduce 
non-point source pollution. This is an empirical 
question beyond the scope of this study.

Sensitivity Analysis. As a sensitivity analysis, 
the effect of using an alternative neighborhood struc-
ture and alternative estimation techniques on the dif-
ference in the net returns across application scenarios 
(Table 5) was examined. In general, it was found 
that changing the estimation technique does not 
significantly affect the signs and the magnitudes of 
the difference in net returns. The economic inference 

that the VRN approach has higher returns relative 
to the other approaches still holds. Using the queen 
structure as the neighborhood specification, however, 
produced major changes in the magnitudes of the 
difference in net returns. Note that the economic 
inference of higher returns relative to the uniform 
rate approaches still hold in this case, but the infer-
ence of the VRN providing higher returns relative 
to the VRL approach do not hold anymore. Hence, it 
seems that these results are robust to the estimation 
method but may be sensitive to the choice of neigh-
borhood structure. This result indicates that further 
investigation of the effects of neighborhood choice 
may be warranted, but this is beyond the scope of 
this study. Nevertheless, a robust result was found in 
that the VRN approach tends to produce higher net 
returns relative to the uniform rate approaches (URA 
and URE) regardless of neighborhood structure and 
estimation method.

Table 5. Sensitivity of the differences in net returns under alternative neighborhood structure and estimation method as-
sumptions, 2002, Lamesa, Texas

Neighborhood structure1 Difference in net returns ($/acre) across application techniques2

Estimation Method3 URE-URA VRN-URA VRN-URE VRL-URA VRL-URE VRN-VRL

Rook Structure

OLS 20.07 14.52 -5.55 41.01 20.95 -26.50

SEM(ML) 3.25 22.98 19.73 5.92 2.51 16.59

SEM-GH (ML) 3.41 18.14 14.73 7.07 3.82 12.81

SEM (GM-Two step) 2.04 18.09 16.05 5.63 3.59 13.04

SEM (GM-Iterated) 2.75 18.15 15.39 5.17 2.41 13.57

SEM (GM-GH) 2.63 19.20 16.57 6.19 3.56 13.60

Queen Structure

OLS 20.07 14.52 -5.55 41.01 20.95 -26.50

SEM(ML) 0.12 7.60 7.48 0.11 -0.18 -2.38

SEM-GH (ML) 0.29 3.92 3.63 0.83 0.71 -5.86

SEM (GM-Two step) 0.25 6.32 6.07 3.84 3.58 -6.93

SEM (GM-Iterated) 0.06 5.47 5.41 0.54 0.48 -4.48

SEM (GM-GH) 0.01 6.09 6.08 1.29 1.28 -4.62

Note: 
1	The neighborhood structures considered are rook and queen. Note that these structures are assumed both in the delinea-

tion of the management zones for the spatial approach and in specifying the error structure in the SEM model;
2	The alternative estimation methods considered (aside from the traditional OLS and SEM (ML)) are: SEM groupwise het-

eroskedasticty estimation (SEM-GH),SEM using two stage Generalized Moments (GM-Two step), SEM using iterated Gen-
eralized Moments (GM-Iterated), and SEM using Generalized Moments considering groupwise hetroskedasticty (GM-GH).

3	Application techniques are: uniform rate based on agronomic optimum (URA), uniform rate based on economic optimum 
(URE), variable rate based on the global spatial approach (VRN), and variable rate based on landscape position (VRL).
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Conclusions and 
Recommendations

Based on an ESDA approach that utilizes a 
spatial autocorrelation statistic, a procedure was 
developed for delineating management zones using 
precision agriculture data from cotton in the Texas 
high plains. The ESDA approach to management 
zone delineation is a statistical method that could 
serve as a guide for producers to recognize relevant 
spatial patterns in their field and to manage it more 
effectively. An optimization model evaluates the 
economic impact of more precisely applying N fer-
tilizer based on these management zones versus (a) 
the more conventional method of using a uniform 
rate for the whole field, and (b) an alternative vari-
able rate application procedure based on landscape 
position. The main input of this optimization model 
is a cotton yield response function estimated using 
spatial econometric techniques that accounts for 
spatial dependence in the residuals

The results of this analysis reinforce observa-
tions in past studies that incorrectly estimating yield 
response functions without correcting for spatial 
dependence may lead to misleading inferences about 
the economic impact of variable rate technologies. 
In this study, an approach that uses standard OLS 
regression to estimate the yield response function 
tends to underestimate the net benefits of variable 
rate application in cotton production. But when a 
yield response function is used that accounts for 
spatial autocorrelation, it is found that applying 
variable N rates based on the management zones 
delineated (using the spatial statistics approach) 
provides higher net returns relative to conventional 
uniform rate application irrespective of neighbor-
hood structure and estimation method. The variable 
rate approach using the delineated management 
zones also produce higher net returns as compared 
to a variable rate application based on landscape 
position, but this result does not seem to be invariant 
to the choice of neighborhood structure assumed in 
the analysis. As mentioned above, further analysis 
that examines sensitivity of economic inferences 
under different neighborhood structures may be a 
worthwhile undertaking in the future. Recent ad-
vances in spatial econometric theory may provide 
future directions on how to select the appropriate 
neighborhood structure to impose for a particular 
data set (Holloway et al., 2006).

While the presented VRT profitability results are 
interesting, there are a couple of caveats to keep in 
mind when interpreting these results. First, the analysis 
done in this paper is “ex post”. This means that the ex 
post economic calculations are used to understand the 
implications of the estimated response on profitability, 
but they do not necessarily represent rules for an ex 
ante economic analysis. The second caveat is that the 
results from this study pertain only to a single year. If 
the response function is stable from one year to another, 
then one can take the one year analysis as a represen-
tative approach for the subsequent years. However, if 
variability is high from year to year, the results are only 
representative for a given state of nature observed at 
certain point in time (Anselin, Bongiovanni, and Lo-
wenberg-DeBoer, 2004). Hence, a multi-year analysis 
would be an interesting extension of this study.

Another area for future applied work includes 
the development and refinement of a user-friendly 
management zone decision tool based on the spatial 
statistics approach described above. The challenge 
is developing an interactive interface that is under-
standable to producers and is easy to use. Producers 
that have site-specific data for their fields may then 
be able to utilize this tool to delineate management 
zones for more precise management of their farm. 
Collaboration with Extension faculty is needed for 
the successful development of this tool and for the 
dissemination of the tool to producers.
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