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ABSTRACT

Current commercial fiber testing was not 
designed to measure or detect white specks in 
the small quantities that have been determined 
to be detrimental to the quality of dyed, finished 
products. In the absence of applicable fiber testing, 
the most logical step would be the development of 
counting methodologies, which would allow the 
accurate and repeatable quantification of white 
specks in a test medium that has significance to 
an end-product. Prior work indicated that dyed 
yarn was such a test medium, but the manual white 
speck reading process used was influenced by the 
limitations of human inspectors. There is a need 
for the application of scanner-based image analysis 
techniques and protocols to replace the human ex-
pert in the quantification of white specks on dyed 
yarn. One of the first challenges was describing a 
white speck from a human visual defect perspective 
in parameters that could be identified by image 
analysis counting software. This study undertook 
the task of creating an operational definition of a 
white speck confirmed by human observations that 
could be used to establish measurement param-
eters for a scanner-based image analysis procedure 
for counting white specks. Results demonstrated 
that by using scanned images of dyed yarn, in con-
junction with counting software, it was possible to 
develop an operational definition of a white speck 
in terms of pixel area and gray scale level that 
relates to human observations.

Due to the lack of secondary cell wall development, 
immature fibers are weaker, less rigid, and have 

a lower density than mature fibers. These factors 
result in a higher propensity for immature fibers 
than for mature fibers to form neps (Hebert et al., 

1988). In an un-dyed state, entangled fiber clusters 
are generically classified as neps. In most cases, fiber 
neps consist of at least five fibers with an average of 
16 or more fibers (Herbert et al., 1988). It is only after 
the application of dye, when some neps remain un-
dyed, that the more specific classification of “white 
speck” is used (Herbert et al., 1988).

High volume instrument (HVI) fiber testing, 
based on average fiber properties, was not designed 
to measure or detect the presence of immature fibers 
in the small quantities that have been determined to 
be detrimental to the quality of dyed finished goods 
(Zellweger Uster, 1999). It has been estimated that 
even in fabric with severe white speck contamination 
the percentage of white speck fibers (by weight) is 
most likely less than 0.10% of the total fibers (Watson, 
1989). These amounts would be too small to have 
significant effects on the average fiber properties, as 
measured by current commercial instruments, but are 
substantial enough to decrease the commercial value 
of the fiber to the end-user (Goynes et al., 1996).

Human experts have proven to be reliable and 
consistent for counting white specks on dyed yarn 
(Simonton et al., 2001). The problem with using hu-
mans is in the availability of expert operators to per-
form the counting task. Prior work highlighted that not 
all humans are capable of achieving expert operator 
status for the counting of white specks, which limits 
the pool of potential operators (Simonton et al., 2001; 
2003). The current research established an operational 
definition of a white speck that could link visual results 
obtained by expert and novice operators with those 
obtained through image analysis. It was hypothesized 
that white specks observed on the surface of dyed yarn 
by humans could be operationally defined by size and 
gray scale level using scanner-based image analysis 
techniques and protocols.

MATERIALS AND METHODS

This research was divided into the following 
segments: (1) creation of dyed sample yarns and 
boards, (2) digitizing sample boards loaded with 
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dyed yarn, (3) image analysis, (4) expert operator 
identification of white specks, (5) novice operator 
identification of white specks, and (6) analysis of 
the results. An explanation of each of the research 
segments is provided below. Procedures and proto-
cols developed in prior work were used for counting 
white specks by humans in this research (Simonton 
et al., 2001; 2003).

Sample yarn. A 24.6/1 Tex ring spun yarn with 
a 4.2 twist multiple (812 turns per meter) were cre-
ated from a group of cotton fiber samples taken from 
commercial bales of cotton. The yarns were intended 
to represent a test group with the potential of having 
a very low to very high range of white speck content.  
The processing flow diagram for the sample cottons 
is provided in Figure 1.

Yarn board fabrication. After the dyeing pro-
cess, an Alfred Sutter yarn board winder (Alfred 
Sutter; new york, ny) was used to wind samples 
onto 178-mm wide by 279-mm long by 3.2-mm 
thick, black, rigid paper yarn boards. of the 178 mm 
available on the board, only 135 mm was used in the 
winding process to achieve the desired sample length. 
Each sample was used to fabricate five yarn boards 
containing a minimum of 200 m of yarn per board or 
approximately 26.8 wraps per cm. Each board cre-
ated was labeled with an “A” and “B” side. The “A” 
and “B” designations were arbitrary designations for 
the purpose of preventing the operators from read-
ing the same side twice. A total of 10 boards were 
fabricated for the white speck identification process 
for each bale sample.

Digitized board images. In other image analysis 
processes not directly related to yarn white specks, 
flat bed scanners have been used to acquire images. It 
was noted that for samples that were within the size 
limitations of the scanner bed and with a thickness 
that allowed the lid to close over the sample, flat 
bed scanners worked well (Shiau et al., 2000). The 
scanner parameters were set to minimize or totally 
disable several optional features contained in the 
scanner software, such as auto sharpening and digital 
interpolation, which were designed to optimize im-
ages. These features were not designed for this type 
of work and in some cases inhibited the process.

Care must be taken when using flat bed scan-
ners to create images for measurement software. As 
part of the protocol the scanner was validated with 
samples of known white speck content before each 
scanning session. A cold scanner provided images 
that possessed different white speck levels than those 
obtained when the scanner had been stabilized. With 
this knowledge, it was possible to establish test pro-
tocols that provided stable and consistent images for 
the counting software. It was also discovered that the 
time between scans was critical. For this reason, the 
protocol included an allowable time range between 
scans for the operator to work within.

Prior work indicated that gray scale images 
would work well with image analysis software for 
this particular type of application (Stojanovic et al., 
2001). Gray scale consists of 256 shade increments 
with 0 being black and 256 white. The 256 gray scale 
shades provided sufficient increments to make fine 
distinctions between target objects and backgrounds. 
The result of the scan was a two-dimensional map of 
pixels with each pixel holding a gray scale intensity 
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Figure 1. Flow diagram for textiles processed in these ex-
periments.

Sample dyeing. A Chavis Model 44 yarn winder 
(Chavis Textile Manufacturing, Inc.; Gastonia, nC) 
was used to place the samples onto stainless steel dye 
tubes for dyeing. After winding, these samples were 
package dyed using a Morton Package Dye Machine 
Model 77-132-1 (Gaston County Dyeing Machine 
Co.; Gastonia, nC). The textile industry has long 
recognized reactive dyes as one of the preferred dye 
families for dyeing cotton due to their good color fast-
ness to light and to washing along with their superior 
coverage capabilities (Trotman, 1975). The dye used 
for the yarn was a mixture of three commercial reac-
tive dyes; 0.016% Drimarine yellow K-2r reactive 
yellow 125 (Clariant Corp.; Charlotte, nC), 3.6% 
Intracon Brilliant Blue VS-rW reactive Blue 19 
(Crompton and Knowles; reading, PA), and 2.7% In-
tracon navy Blue VS-Hr reactive Blue 89 (Crompton 
and Knowles). This combination resulted in a navy 
blue color that provided the dark shade required for 
revealing white speck contamination.
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measurement corresponding to the reflectance or the 
transmittance of the object at the physical location 
represented by that particular pixel (Gann, 1999).

As the result of numerous preliminary trials, 
the sample boards were digitized with a 118 dots 
per centimeter (300 dpi) resolution in gray scale 
(256) with a Hewlett-Packard Scan Jet Model 7400c 
flat bed scanner (Palo Alto; CA) attached to a Dell 
Model 530 computer (round rock, TX) equipped 
with a 1.7 GHz Xeon processor. Image files created 
from the process were stored in the bitmap (bmp) 
format. Bitmap files work well in image analysis 
applications when using images taken from scanners 
(Shiau et al., 2000).

Image analysis. The software package, Counting 
Apparatus for Trash and Impurities (CATI, version 6, 
CIrAD Laboratories; Montpellier, France), was used 
for white speck counting. The software package has 
the features required for determining the area occu-
pied and the average gray scale level of objects being 
identified. In a simplified explanation, CATI scans 
each pixel row by row and compares the gray scale 
value contained in each pixel with the predetermined 
gray scale measurement parameter. If the actual value 
is greater than the minimum parameter value, the soft-
ware identifies it as an “open object”. The software 
then moves to the next pixel and repeats the process. 
As the software moves down the image it retains the 
“x” and “y” coordinates for each pixel that exceeded 
the minimum gray scale parameter. When an open 
object of interest is surrounded or encapsulated by 
background pixels, it becomes a “closed object”. once 
it has been classified as a closed object, the software 
applies operator controlled minimum size (pixel area) 
selection parameters. If these parameters are satisfied, 
then the closed object will be classified as an object 
of interest (white speck).

The CATI system provided a text printout of “x” 
and “y” grid coordinates for each object identified as 
a white speck. The grid coordinates were based on 
118 dots per centimeter resolution. For example, a 
grid coordinate of x = 850 and y = 645 for an image 
scanned at 118 dots per centimeter (300 dpi) would 
indicate the object of interest would be located 7.2 cm 
in the “x” direction and 5.5 cm in the “y” direction. 
This type of information made it possible to visually 
locate white specks identified by the CATI software.

For this operation, the predetermined CATI gray 
scale parameter was set at 74. When considering this 
parameter, any pixel that had a value of 74 or above 

was considered an object of interest from a gray 
scale perspective. Gray scale 74 was selected because 
preliminary testing indicated that this level was the 
limit of the expert operator’s ability to differentiate 
a white speck from background.

After the object of interest meets the gray scale 
selection criteria, size became the selection criterion. 
The minimum size parameters were set at six pixels 
of surface area at 118 dpc (300 dpi) of resolution. 
Six pixels of area were used because test results 
indicated that 6 pixels was the limit of the expert 
operator’s accuracy.

Human verification. A sample group of yarn 
boards selected for the trials were each placed into 
separate clear plastic sleeves. The plastic sleeves 
were secured to the yarn boards with heavy-duty clips 
to prevent slippage. once secured, a series of align-
ment marks were added to the clear plastic sheets to 
verify the alignment when the operator opened and 
closed the sleeves during the reading process. This 
configuration also allowed the operator to read both 
sides of the yarn board without changing the clear 
plastic cover sheet.

Expert operators. Two expert operators, work-
ing simultaneously, identified white specks on the 
ten sample boards. Using a red permanent marker, 
the expert operators circled the white specks they 
observed on the clear plastic sleeve. once the expert 
operators had completed the detailed reading of all 
boards, the plastic sleeves containing the circles were 
removed. Each of the circles on the sheet was num-
bered sequentially. The expert operators then began 
the task of matching the physical coordinates of the 
circles with the grid coordinates given by CATI. 
once this had been completed, size and gray scale 
level was assigned to the circled white specks based 
on CATI information. The process was intended to 
verify that the white specks identified by CATI also 
existed as a human visual defect. The clear plastic 
sheets created by the expert operators during this 
phase were used as master templates for evaluation 
by the novice operators.

Novice operators. It was not only important 
to confirm the existence of a white speck by expert 
operators, but it was also important to understand 
what a group of novice operators would see when 
examining some of the same boards. A trial was 
developed with a group of 11 novice operators who 
possessed varying degrees of experience related to 
the cotton industry.
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Each novice operator was presented a group 
of four yarn boards taken from the set used previ-
ously in the expert operator work. Each board was 
equipped with the clear plastic sheet as described 
previously. The boards were intended to represent 
a group of boards with different levels of visible 
white specks as determined by counts collected by 
the expert operators.

The sample boards were placed inside of a Veri-
Vide light cabinet (Equitex; West yorkshire, UK) 
to provide a consistent source of lighting. From a 
training script, a designated expert operator first read 
the definition of a white speck to be used. For this 
work, a white speck was defined as surface clusters 
of fibers in dyed textile products that are noticeably 
lighter in color than the body of fibers adjacent to 
them. Based on this definition, each novice operator 
was asked to point out to the expert operator what 
he/she considered to be white specks on the first of 
the four yarn boards. The expert operator also dem-
onstrated the technique used for circling the observed 
white specks on the clear plastic cover sheet. After 
completion of the first board, it was set aside and the 
sample set of three yarn boards were presented the 
novice operator. From this point, the expert operator 
did not supply feedback or comments.

Using the master templates as overlays, the re-
searchers were able to identify the white specks cir-
cled by the novice operators. When the white speck 
identified by a novice operator matched one on the 
master template, it was assigned the master template 
white speck identification number. The identification 
number was then used to acquire the size and gray 
scale level of the identified white speck.

RESULTS AND DISCUSSION

Expert operators and CATI comparison. Us-
ing a minimum area of six pixels and a minimum gray 
scale of 74 as measurement parameters, CATI identi-
fied 1,348 objects on the 20 board sides processed. 
The expert operators confirmed the visual existence 
of 1,099 white specks, or 81.5% of the white specks 
identified by CATI.  Figure 2 contains the frequency 
distribution of the size of the white specks observed 
by the expert operators. Figure 3 contains the same 
information for gray scale.

It is important to evaluate the relationship be-
tween size and gray scale reading to understand the 
discrepancy between the human and CATI white 
speck counts. The 249 objects identified by CATI 

but not identified by the expert operators were ex-
amined. The main difference occurs in the smaller 
pixel ranges and lower gray scale readings. As white 
speck pixel area decreased, operator discrepancy 
with CATI increased (Fig. 4). There was also more 
discrepancy between the operator and CATI as gray 
scale decreased (Fig. 5). These results indicate that 
the CATI system with its current parameters is more 
sensitive to the smaller, darker white specks than 
the expert operators. A more in depth examination 
revealed that 65.46% of the objects detected by CATI 
that were not detected by the experts were nine pixels 
(0.065mm) or fewer in size, and 65.06% had a gray 
scale of 80 or less.

Figure 2. Distribution by pixel size of CATI white specks 
that were confirmed by expert operators.
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Figure 3. Distribution by gray scale of CATI white specks 
that were confirmed by expert operators.

To simplify the size comparisons, the area of 
a white speck was stated in the number of pixels 
occupied when scanned at 118 dots per centimeter 
with a 74 gray scale setting. Within these parameters, 
87.90% of the white specks observed were less than 
or equal to 21 pixels (0.151 mm2) in total area. Ap-
proximately 47.8% of the white specks observed 
were ten pixels (0.072 mm2) in area or less. A total 
of 12.2 % and 10.5% of the observed white specks 
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were identified in the seven and six pixel range, 
respectively. The six (0.043 mm2) and seven (0.050 
mm2) pixel white specks comprised 22.7% of the to-
tal white specks observed by the expert operators.

A total of 92.7% of the white specks observed 
by the expert operators had a gray scale 86 or less. 
The lowest gray scale value of 74 accounted for 2.3% 
of the white specks observed with gray scale 75 ac-
counting for 8.0% of the white specks. The largest 
single gray scale increment was 78, which contained 
13.0% of the white specks.

The results indicated that the CATI system is 
more discriminating at the lower end of the gray 
scale and size range than the expert operators. This 
could indicate that the CATI set-up parameters used 
in this research are approaching the lower limits of 
the expert operator’s internal definition of a visual 
white speck defect.

Novice operators. The eleven novice operators 
generated a total of 1,553 data points. These results 
were broken down into size and gray scale compo-
nents and presented as a detection rate percentage. 
The results show a direct positive relationship be-
tween detection rate and the size of the white specks 
(Fig. 6). For the novice operators the detection rate 
declined as the white speck decreased in size. When 
white specks were 19 pixels (0.136 mm2) or more in 
size, the novice operator detection rates were high 
(>78%). In contrast, when the white specks occupied 
9 pixels (0.065 mm2) or fewer, only a small percent-
age of the eleven novice operators were able to detect 
them (<14%).

The effect of gray scale reading was not as obvi-
ous as the size component on the ability of novice op-
erators to detect specks. Without the size component, 
gray scale was not a consistent indicator of detection 
rate (Fig. 7). It is only when both components are 
examined together that a clearer view of the relation-
ship between size and gray scale appears.

Linear trends for gray scale value groupings 
with pixel count on the “x” axis and the number of 
novice operators that detected the white speck on 
the “y” axis were plotted (Fig. 8). Four gray scale 
value groupings were plotted. The graph illustrates 
that the detection rate improved as the white specks 
became lighter in shade and larger in size with the 
lowest detection rate for white specks in the lower 
end of the gray scale (74 to76) that are fewer than 
ten (0.072 mm2) pixels in total area. Linear trends 
were plotted for the size component with grayscale 

on “x” axis and the number of novice operators that 
detected the white speck on the “y” axis (Fig. 9). The 
plot shows detection rate for the novice operators was 
low for all white specks between six (0.043 mm2) 
and eleven pixels (0.079 mm2) of total area regard-
less of the gray scale level. The detection rate was 
improved for the novice operators when the white 
specks were greater than eleven pixels in total area 
(0.079 mm2).
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Figure 4. Discrepancy (%) between CATI and expert opera-
tors in detecting white specks based on size.

Figure 5. Discrepancy (%) between CATI and expert opera-
tors in detecting white specks based on gray scale.
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Expert and novice operator comparison. 
The comparison of expert and novice operators is 
interesting from several perspectives. The plot of the 
detection rate of the two groups illustrates the differ-
ence in detection rate when size is the determining 

factor (Fig. 10). The expert operators demonstrated 
proficiency at the lower pixel areas, while the profi-
ciency level of the novice operators only improved 
when higher pixel densities were reached.
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Figure 7. Detection rate (%) of white specks based on gray 
scale by novice operators.
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Figure 9. The effect of gray scale at various size levels (SZ) 
on the detection of white specks by novice operators.
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Figure 11. Comparison of the detection rate of white specks 
based on gray scale for expert and novice operators.

Gray scale levels followed the trends demon-
strated by pixel area for both groups of operators 
(Fig. 11). Expert operators were able to detect white 
specks even at the lower, darker end of the gray scale, 
while their novice counter parts detection rate was 
low regardless of the gray scale reading.

Cost of quality. Since white specks are human 
visual defects, it is important to address the link 
between what a human detects visually and their 
internal definition of the white speck quality issue. 
Beasley implied that there was not a universal defi-
nition of quality but rather operational definitions 
specific to the end user and organization when he 
stated, “quality is not as much defined as understood” 
(Beasley, 2001 pg. 12). This opinion was supported 
by Deming’s (1994) belief that quality is always 
customer defined.  If quality is defined by a customer, 
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then it becomes an economic issue. Beasley (2001) 
supported this point by suggesting that quality exists 
in an environment that has value for it. This point 
poses the question that if white specks have not been 
operationally defined, then how can an acceptable 
or unacceptable level be established by the market 
place. This is a major cost of quality issue for the 
entire cotton industry.

As demonstrated in this work, there is a large 
discrepancy between white specks observed by 
experts and those observed by novice operators. 
When designing a system for white speck detection 
and quantification, a decision has to be made on the 
type of operator that will be used. This decision will 
determine which and how many white specks are 
detected. It also makes defining the qualifications 
for becoming a novice or expert operator an issue. 
At what point does an operator move from novice to 
expert? These variables do not allow an operational 
definition using human operators alone to be formed 
since the type and experience level of the operator 
affects the count obtained.

If an image analysis system is developed based 
on novice operator observations, then there will be a 
higher probability of a Type II error in which white 
specks are not detected by the image analysis process 
but are detected by humans in the finished product. 
If expert operator observations are used to establish 
image analysis baselines, then Type I errors are pos-
sible, where the image analysis process detects white 
specks that have a low probability of being detected 
in the finished product by humans. This difference 
in detection rate between these two groups creates a 
cost of quality issue. Both Type I and II errors have 
costs associated with them, from an actual cost to a 
perceived cost associated with reputation in the mar-
ket place. Without a clear standardized white speck 
operational definition, the type of error that should 
be designed for by the industry is unknown.

CONCLUSION

These results demonstrated that when using the 
described protocols and scanner-based image analy-
sis techniques, white specks on dyed yarn can be 
characterized by area occupied and gray scale level. 
The characterization furnishes an operational defini-
tion of a white speck, which in turn also provides the 
link between human white speck observations and 
white specks identified by the counting software.

The research also highlights the need for deter-
mining at what size and gray scale a white speck 
becomes important to a human operator and whether 
or not those parameters should come from expert or 
novice operators. By having this knowledge, pre-
scriptive steps could be focused on the size of white 
specks that are detrimental to finish product quality, 
while having minimum affects on other critical fiber, 
yarn, and fabric properties.

ACKNOWLEDGEMENTS

Funding provided by the Texas Food and Fiber 
Commission and Texas Higher Education Coordinat-
ing Board (ArP #003644-0029-2001).

REFERENCES

Beasley, J. 2001. Understanding quality. Forum on the 
metaphysics of quality. Available online at www.moq.
org/forum/johnbeasley4.html (verified 30 nov. 2005).

Deming, W.E. 1994. The new economics, 2nd ed. Massachu-
setts Institute of Technology, Cambridge, MA.

Gann, r. 1999. Desktop scanners: image quality evaluation. 
Prentice Hall, Upper Saddle river, nJ.

Goynes, W.r., Bel-Berger, P.D., and Von Hoven T.M. 1996. 
Microscopic tracking of white-speck defects from bale 
to fabric. p. 1292-1294. In Proc. Beltwide Cotton Conf., 
nashville, Tn. 9-12 Jan. 1996. natl. Cotton Counc. Am., 
Memphis, Tn.

Hebert, J.J., Boylston, E.K., and Thibodeau, D.P. 1988. 
Anatomy of a nep. Textile res. J. 58 (7): 380-382.

Shiau, y., Tsai, I., and Lin, C. 2000. Classifying web defects 
with a back-propagation neural network by color image 
processing. Textile res. J. 70 (7): 633-640.

Simonton, J.L., Hequet, E.F., and Beruvides, M.G. 2001. A 
pilot study: using dyed cotton yarn for the quantification 
of white specks. p. 1317-1319. In Proc. Beltwide Cot-
ton Conf., Anaheim, CA. 9-13 Jan. 2001. natl. Cotton 
Counc. Am., Memphis, Tn.

Simonton, J.L., Beruvides, M.G., Altintas, P.Z., Kang, K. 
2003. Effect of textile treatments on white speck counts 
in dyed yarn. p.1996-2002. In Proc. Beltwide Cotton 
Conf., Atlanta, GA. 6-10 Jan. 2003. natl. Cotton Counc. 
Am., Memphis, Tn.

Stojanovic, r., Mitropulos, P., Koulamas, C., Karayiannis, 
y., Koubias, S., and Papadopoulos, G. 2001. real-time 
vision-based system for textile fabric inspection. real-
Time Imaging 7: 507-518.



222SIMonTon ET AL.: IMAGE AnALySIS For WHITE SPECK DETECTIon In yArn

Trotman, E. r. 1975. Dyeing and chemical technology of tex-
tile fibres. 5th ed. Charles Griffin & Co., LTD, London.

Watson, M.D. 1989. Difficulties in forecasting fabric white 
spots from fiber maturity. p. 130-135. In Proc 2nd Eng. 
Fiber Selection Conf., Memphis, Tn. 20-21 June, 1989. 
Cotton Inc., raleigh, nC.

Zellweger Uster. 1999. Description of all quality parameters 
measured by Zellweger Uster. Available online at http://
www.uster.com/en/index_4.asp (verified 27 Apr. 2004).


