COTTON PHYSIOLOGY
THE COTTON FOUNDATION

Reference Book Series

The Cotton Foundation was created in 1955 to foster innovative research and education not covered by other private or public agencies. It is supported by many of America's finest agri-industries and financial institutions, including banks, cotton magazines, and manufacturers of machinery, chemicals and other inputs used in cotton production, processing and marketing. With this effective partnership of agribusiness firms and the cotton industry through The Foundation, greater strength is marshalled on important cotton problems.

The goal of The Foundation is to enhance markets for the benefit of the U.S. cotton industry as well as its corporate suppliers. Funds granted to The Foundation go entirely to support research and educational programs. Staffing is provided by the National Cotton Council and offices are in the Council's building in Memphis, Tennessee.

The Foundation is pleased to initiate a program to publish a series of cotton reference books with this volume, COTTON PHYSIOLOGY, being the first. Second and third books in the series, WEEDS OF COTTON: Characterization and Control and COTTON INSECTS AND MITES: Characterization and Management, are in early developmental stages. Plans are to publish several others in this series.

The Cotton Foundation
1918 North Parkway
Memphis, Tennessee 38112
ACKNOWLEDGEMENT

Publication of this book was made possible by a grant to The Cotton Foundation from BASF Corporation. BASF is a major supplier to the cotton industry and supports programs for cotton through The Cotton Foundation.

BASF Corporation is a diversified chemical company with a strong tradition of technological excellence. The firm is part of the worldwide BASF Group. Based in West Germany, the BASF Group of 111 companies ranks among the world's largest in the manufacture and marketing of inorganic and organic industrial chemicals, coatings, paints, vitamins, dye-stuffs, pigments, pharmaceuticals, plastics, magnetic recording media and other specialty chemicals. Total annual sales are in excess of $15 billion.

The BASF commitment to agriculture is typified by the company's 1911 development of the Nobel prize-winning technique that allows mass production of affordable fertilizers. Following the establishment of BASF Corporation in the U.S., the company developed the first plant regulator available to American cotton growers. Cotton plants treated with Pix® plant regulator are more compact, resulting in interrelated benefits of higher boll numbers, early maturity, reduction of boll rot and control of rank growth. In addition, BASF Corporation manufactures Poast® herbicide, a postemergence product for grass control that offers cotton growers added flexibility in their weed control programs.

BASF Corporation is proud to be a member of The Cotton Foundation and sponsor of COTTON PHYSIOLOGY, the first book in The Cotton Foundation's cotton reference book series. The sponsorship is a reflection of the company's belief that continued support of the development of technologies and materials that promote the production of more cost-effective, higher yielding cotton, will make a stronger cotton industry.
COTTON PHYSIOLOGY

Editors
JACK R. MAUNEU AND JAMES McD. STEWART

Executive Editor and Publishing Coordinator
JAMES M. BROWN

Number One
THE COTTON FOUNDATION
REFERENCE BOOK SERIES

The Cotton Foundation, Publisher
Memphis, Tennessee, U.S.A.
1986
Photograph by James McD. Stewart

Photograph by William E. Barksdale
TABLE OF CONTENTS

FOREWORD.. xxii
PREFACE.. xxiv
CONTRIBUTORS.. xxvi

Chapter 1. Ecological Adaptations of Gossypium Species........... Paul A. Fryxell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Habitats</td>
<td>1</td>
</tr>
<tr>
<td>Temperature</td>
<td>2</td>
</tr>
<tr>
<td>Precipitation</td>
<td>2</td>
</tr>
<tr>
<td>Sunlight</td>
<td>3</td>
</tr>
<tr>
<td>Soils</td>
<td>3</td>
</tr>
<tr>
<td>Biotic Factors</td>
<td>3</td>
</tr>
<tr>
<td>Adaptations</td>
<td>4</td>
</tr>
<tr>
<td>Summary</td>
<td>7</td>
</tr>
</tbody>
</table>

SECTION I

DEVELOPMENT OF THE PLANT

Chapter 2. Vegetative Growth and Development of Fruiting Sites........ Jack R. Mauney

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Morphological Development</td>
<td>11</td>
</tr>
<tr>
<td>Vegetative Growth</td>
<td>13</td>
</tr>
<tr>
<td>Initiation of Flowering</td>
<td>15</td>
</tr>
<tr>
<td>Flower Development</td>
<td>16</td>
</tr>
<tr>
<td>Prime Sites of Flowering</td>
<td>19</td>
</tr>
<tr>
<td>Earliness</td>
<td>24</td>
</tr>
<tr>
<td>Vegetative Reproductive Ratio</td>
<td>26</td>
</tr>
<tr>
<td>Growing-Degree Day Summations</td>
<td>27</td>
</tr>
<tr>
<td>Summary</td>
<td>28</td>
</tr>
</tbody>
</table>

Chapter 3. Growth of Roots.......................... Bobby L. McMichael

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>The Anatomy of the Cotton Root</td>
<td>29</td>
</tr>
<tr>
<td>Methods for Measuring Root Growth in Cotton</td>
<td>31</td>
</tr>
<tr>
<td>The Development of the Cotton Root System</td>
<td>33</td>
</tr>
<tr>
<td>Factors Affecting Cotton Root Growth</td>
<td>34</td>
</tr>
<tr>
<td>Soil Temperature</td>
<td>34</td>
</tr>
</tbody>
</table>
Sequential Changes and Interactions .. 127
Exogenous Modification ... 131
Summary ... 135

Chapter 13. Use of Plant Growth Regulators for Crop Modification .. George W. Cathey & Robert O. Thomas

Introduction .. 137
Reproductive Development .. 137
Vegetative Development .. 139
Crop Termination .. 141
Summary .. 142

Chapter 14. Physiology of Defoliation in Cotton Production ... George W. Cathey

Introduction .. 143
The Nature of Defoliation .. 143
Hormonal Effects ... 146
Exogenous Chemical Defoliation .. 149
Summary .. 153

SECTION II

PHOTOSYNTHATE PRODUCTION & DISTRIBUTION

Chapter 15. The Biochemistry of Photosynthesis ... Richard Jensen

Introduction .. 157
Morphology of Higher Plant Chloroplasts ... 157
Fundamental Energy Processes in Photosynthesis ... 159
Role of the Pigment Systems .. 159
Spatial Orientation of the Photosystems ... 160
Flow of Electrons in Light .. 161
Photosystem II and Evolution of Oxygen ... 162
Photosystem I and the Reduction of NADP+ ... 163
Intermediates of Electron Transport ... 164
Photophosphorylation ... 165
Carbon Metabolism During Photosynthesis .. 167
Photosynthetic Carbon Reduction Pathway (Calvin cycle) 167
Regulation of CO₂ Fixation ... 169
Ribulose-P₅ Carboxylase/Oxygenase .. 169
Other Enzymes Regulated by Light .. 172
Storage of Energy by Starch Accumulation ... 173
Photorespiration and its Requirements ... 174
Biochemical Limitations of Whole Plant Photosynthesis 180
Summary .. 181
Chapter 16. Carbohydrate Production and Partitioning in the Canopy ... Jack R. Mauney

Introduction ... 183
Crop Growth Rate .. 183
Carbohydrate Formation .. 183
Maximum Growth Rates .. 184
Sunlight Interception .. 186
Boll Loading and Biomass Accumulation ... 187
Carbohydrate Distribution .. 188

Chapter 17. Photosynthesis, Dry Matter Production and Growth in CO₂ Enriched Atmospheres ... Donald L. Krizek

Introduction ... 193
CO₂ Enrichment of the Atmosphere ... 194
Controlled Conditions .. 194
Field Conditions .. 195
Metabolic Effects of CO₂ Enrichment ... 197
Photosynthesis .. 197
Carbohydrate Metabolism and Feedback Control of Photosynthesis 203
Growth and Dry Matter Production .. 209
Transpiration and Stomatal Activity ... 214
Reproductive Development ... 218
Senescence and Abscission ... 218
Interaction of CO₂ and Other Environmental and Morphological Factors 222
Water Stress .. 222
Air Pollution .. 223
Implications of Projected Global Increases in Atmospheric CO₂ 223
Summary ... 224

Chapter 18. Feedback Control and Stress Effects on Photosynthesis .. Daniel R. Krieg

Introduction .. 227
The Photochemical Conversion of Light to Chemical Energy .. 229
The Physical Processes Controlling the Transfer of CO₂ from the Atmosphere to the Illuminated Chloroplast .. 230
The Biochemical Conversion of CO₂ to CH₂O and Its Disposition 232
Stress Effects on Photosynthesis ... 236
Direct Effects .. 237
Summary ... 242

Chapter 19. A Conceptual Model of Stress Effects ... Donald N. Baker & Basil Acock

Introduction .. 245
Carbohydrate Stress ... 252
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION III</td>
<td>BOLL DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Integrated Events in the Flower and Fruit</td>
<td>James McD. Stewart</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Square Period and the Flower</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Square</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Ovary</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Stamen</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Anthesis</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>The Boll Period</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Seed and Boll Set</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Dry Matter Distribution</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Relative Weight Distribution and Developmental Events</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Environmental Influences</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Competitive Interactions</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>297</td>
</tr>
<tr>
<td>Chapter 21</td>
<td>Mineral Compartmentation Within the Boll</td>
<td>Harry R. Leffler</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Major Elements</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>Minor Elements</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Dynamic Relationships of Nutrient Compartmentation</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>309</td>
</tr>
<tr>
<td>Chapter 22</td>
<td>Carbohydrate Distribution in Bolls</td>
<td>A. Michael Schubert, C.R. Benedict, & Russell J. Kohel</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Assimilate Supply</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Sink Strength</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Source-to-Sink Proximity</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Duration of Assimilate Transport to Bolls</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>323</td>
</tr>
</tbody>
</table>
Chapter 25. Hormonal Influences in Fiber Development

Introduction .. 361
Methods Used in the Hormonal Research ... 361
Effect of Hormones on Fiber Initiation ... 363
Hormonal Influences on Fiber Differentiation ... 363
Fiber Nucleolus Evolution and Hormones .. 365
Effect of Hormones on Fiber Elongation .. 368
Effect of Hormones on Secondary Wall Formation .. 371
Summary .. 373

Chapter 26. The Outer Epidermis of the Cottonseed

Introduction .. 375
Morphology of the Outer Epidermal Layer ... 376
Light Microscopy .. 376
Electron Microscopy ... 383
Autoradiographic Analyses of the Epidermal Layer .. 403
Thymidine .. 403
Uridine .. 405
Amino Acids ... 407
Phenylalanine ... 408
The Seed Surface .. 410
Summary .. 413

Chapter 27. Chemistry and Biology of Cottonseed Globulins

Introduction .. 415
Chemistry of Acalin A and Acalin B ... 416
Possible Homologies ... 418
A Provisional Model .. 422
Summary .. 422

Introduction .. 425
Analysis of Global Gene Activity in Embryogenesis ... 427
Storage Protein Messenger–RNA’s .. 433
Late Embryo-abundant (Subset 5) mRNA’s ... 436
Further Directions in the Study of Differential Gene Activity 438

Chapter 29. Synthesis and Compartmentation of Enzymes During Seed Maturation

Introduction .. 441
Methods
Growth and Selection of Plants
Organelle Isolation and Enzyme Assays
Embryo Culture
Enzyme Development and Organelle Localization
In Germinating Seeds
In Maturing Embryos
In Cultured Embryos
Summary

SECTION IV
SEED AND GERMINATION

Chapter 30. Developmental Aspects of Planting Seed Quality

Introduction
Chronology of Seed Development
Effects of Date of Bloom on Seed Development
Estimations of Planting Seed Quality
Production of Quality Planting Seeds
Summary

Chapter 31. Weathering: Changes in Planting Seed Quality Between Ripening and Harvest

Introduction
Increases in Vigor and Germinability
Decreases in Vigor and Germinability
Changes in Seeds Associated with Weathering
The Influences of Environmental Factors on Weathering
The Contribution of Biological Processes to Weathering
Resistance to and Avoidance of Weathering
Summary

Chapter 32. Post-Harvest Factors Affecting Seed Quality

Introduction
Mechanical Damage
Harvesting
Ginning and Mechanical Dehulling
Handling and Conveying
Mechanical Properties of the Cottonseed Coat
Consequences of Mechanical Damage
Delinting
Flame Delinting
Acid Delinting

xvii
Acid Delinted vs Mechanically Delinted Seed

Page 499

Conditioning

Page 502

Storage

Page 504

Seed Quality

Page 507
- **Evaluation of Seed Quality**
- **Dormancy**
- **Improving Seed Quality**
- **Summary**

Page 517

Chapter 33. Techniques to Evaluate Planting Seed Quality

Charles C. Baskin, Norman W. Hopper, Gordon R. Tupper, & Otto R. Kunze

- **Introduction**
- **Seed Storage**
 - Hygroscopic Equilibrium
- **Seed Quality—Moisture—Temperature Relationship**
- **Variation in Seed Moisture Content**
- **Presence of High Moisture Foreign Material**
- **Storage in Trailers**
- **Storage in the Field**
- **Drying and Aeration**
- **Evaluating Seed Quality**
 - Tetrazolium Evaluation
 - Electrical Conductivity
 - Relation of Density and Weight to Seed Quality
- **Separation of Seed Using the Density Factor**

Page 533

Chapter 34. Germination and Stand Establishment

Meryl N. Christiansen & Randy Rowland

- **Introduction**
- **Cottonseed Germination**
- **Enzymology of Germination**
- **Environmental Effects on Germination**
 - Temperature
 - Oxygen Requirements
 - Mineral Deficiencies and Toxicities
- **Chemical Aids to Germination and Stand Establishment**
- **Stand Improvement**

Page 540

Chapter 35. Seed Quality and Stand Establishment

Luther S. Bird

- **Methods**
- **The Seed Quality Curve**
- **Application to Genetic Improvement**

Page 547

Chapter 36. Field Environment and Stand Establishment

Donald F. Wanjura
SECTION V
SPECIAL TOPICS

Chapter 37. Food and Feeding Quality of Cottonseed ... John P. Cherry, Russell J. Kohel, Lynn A. Jones, & William H. Powell

Introduction .. 557
Past Research Efforts on Seed Quality (1900-1970) .. 557
Seed Quality Research in the Early 1970's ... 565
Seed Quality Research on Glandless Cottonseed .. 566
Comparison of Seed Quality Data Developed Through the Years 571
Recent Cottonseed Quality Research ... 571
Results by Locations .. 572
Other Factors Affecting Cottonseed Quality ... 583
Pink Bollworm Contamination ... 583
Module Storage of Seed Cotton ... 584
Cottonseed Maturity, Closed-Boll Harvesting and Artificial Drying of Cottonseeds .. 584
Wild Gossypium Species ... 587
Improving Cottonseed Use in Feed and Food .. 589
Discussions .. 590
Geneticists Viewpoint ... 590
Industry Viewpoint .. 592
Summary .. 595

Chapter 38. Physiology of Secondary Products ... Alois A. Bell

Introduction .. 597
Phenolic Acids ... 597
Flavonoids .. 599
Flavanols ... 599
Flavones and Anthocyanins .. 604
Flavanols (Tannins) .. 605
Terpenes .. 609
Volatile Terpenes ... 609
Sesquiterpenoid Naphthols and Ketones ... 611
Terpenoid Aldehydes ... 614
Unique Fatty Acids and Lipids .. 619
Summary ... 621
Chapter 39. Organ and Tissue Cultures in Cotton

James McD. Stewart

Introduction.. 623
Embryo Culture... 623
Ovule Culture.. 624
Culture for Seed and Fiber Development... 625
In Ovulo Embryo Culture.. 626
In Vitro Fertilization.. 627
Tissue Culture.. 627
Callus Induction and Culture.. 627
Suspension Cell Culture... 628
Anther and Microspore Culture.. 629
Protoplast.. 630
Regeneration of Plants.. 630

Chapter 40. The Interface Between Plant Physiology and Genetics

Jerry E. Quisenberry

Introduction.. 633
Plant Physiology... 633
Plant Genetics.. 634
Physiological Genetics... 634
Summary.. 639

LITERATURE CITED... 641
INDEX... 767
From virtually every aspect, cotton is one of the most interesting higher organisms in the plant kingdom. It is rather unique in that it produces both fiber and food.

In its wild state, cotton is basically a perennial woody shrub in a semi-desert habitat. As an economic crop, it is now grown in the United States as a herbaceous annual under both semi-arid and humid conditions. Cotton also has been grown commercially as a perennial in areas of this country with mild winters. Only a few years ago about 50,000 acres of stub cotton were grown in Arizona. It has since been banned because it intensifies boll weevil and pink bollworm problems. However, in some parts of the world, some cotton is still grown commercially as a perennial.

Cotton belongs to the genus *Gossypium* which is in the Malvaceae or Mallow family. Other members of this family include okra, hollyhock, rose of Sharon, and even such plants as teaweed, spurred anoda, and velvetleaf that are weed pests in cotton. The 39 species in the genus *Gossypium* are quite diverse. Only four of them produce commercial-type lint. *G. hirsutum*, to which the upland varieties belong, and *G. barbadense*, which includes the extra long staple or Pima varieties, are the only ones grown commercially in the United States.

Even though cotton is grown as an annual, its reproductive and growth habits are controlled by a “perennial” physiological system programmed for maximum seed production and survival over a number of years rather than just one.

Compared with most crop plants, cotton adapts quite well to adverse conditions. For example, it is considerably more tolerant to high salinity soils than corn. Cotton’s vegetative and fruiting balance adjusts both during and after periods of stress (moisture stress, light stress, etc.) preserving the potential for good yield if sufficient growing season remains.

One interesting physiological aspect of cotton is the way fibers begin and develop. A single epidermal cell of the seed gives rise to a fiber. Some cells produce lint fibers and others shorter fuzz fibers. A relatively small percentage of the epidermal cells on a seed develop into fiber even though they all have the same genetic makeup. What controls which ones develop into fibers? What determines which fibers will be lint and which will be fuzz fibers? Someday we will have the answers to these and other questions about cotton. With such knowledge, we may be able to trigger initiation of fibers from more of the epidermal cells. This presumably projects to higher yields, but other factors such as inadequate photosynthate might limit the expression of more fibers per seed to higher yields.

There are numerous other interesting facets about cotton’s physiology. For example, a lint fiber’s elongation period lasts up to about 18 to 20 days postanthesis. After elongation ceases, deposition of secondary fiber wall material begins. Also, at about 18-20 days postanthesis, the endosperm begins to disappear. It is completely gone by the time the boll opens.
With some varieties, the lint and fuzz fibers are restricted to specific and sometimes separate areas of the seed surface. With the so-called naked seed varieties, the fuzz fibers are totally absent. Some wild species produce no fibers.

The physiological and biochemical events that take place in cotton's growth and development are highly regulated—much as if cotton is programmed by a highly sophisticated, built-in computer.

It is no wonder that many scientists working with cotton get caught up in its mystique and become deeply dedicated to unlocking its mysteries by finding the correct physiological/biochemical keys.

The National Cotton Council is pleased to have played a significant role in initiating The Cotton Foundation Reference Book Series and is particularly happy that the first book in the series is on cotton physiology.

The usefulness of COTTON PHYSIOLOGY as a reference book goes beyond the traditional researcher, teacher, and student users. Private agricultural consultants and representatives of the agricultural chemicals industry will find it to be a valuable source of information. Modern-day cotton producers also will find this book useful. Today's educated and innovative producers want to know more than just "what to do" and "when to do it." They want to know the reasons for doing things at certain times. They are interested in the cotton plant's fruiting and vegetative development as related to environmental conditions, cultural practices, etc. They realize that the more that is known about the cotton plant, the more successful they will be in culturing it as a commercial crop.

The National Cotton Council and The Cotton Foundation are indebted to Drs. Jack R. Mauney and James McD. Stewart, two outstanding scientists who have dedicated so much time and effort as editors in bringing this book to fruition. The Council and Foundation also recognize the major contributions of the 48 other scientists who were authors of the 40 chapters.

James M. Brown
Manager, Production Technology
National Cotton Council
The cotton plant is unique among major agricultural crops in the number of its actual and potential uses. Not only does it produce the fiber with which everyone is intimately familiar as a consumer, but it also produces a high quality oil and a protein meal equivalent to or better than soybean. The cotton plant is also unique for its service as a multifaceted experimental system. Notable in this vein are: (1) the early work on abscission, defoliation and the discovery of abscisin; (2) studies on the physics and biochemistry of cellulose deposition in fibers; (3) mathematical simulation of crop growth and productivity; (4) the ultramicrographic description of pollen tube growth and fertilization; (5) the in vitro culture of ovules and fibers; and (6) the in ovulo culture of interspecific hybrid embryos. Cotton continues to be used as a model plant in the molecular biology of embryogenesis and gene regulation, in crop modeling, in cellulose synthesis and in cell differentiation. Many individuals have spent their careers studying various aspects of cotton growth and production, but progress has been slow and many perplexing problems remain.

Cotton does not readily yield its secrets. Anecdotally, it is said that there are two types of individuals who have worked with cotton. There are those who start a research program and become so frustrated with the crop that they will never work with it again. Then, there are those who become so fascinated with the peculiarities and idiosyncrasies of the plant that they will never work with anything else.

It is in the spirit of and for the enthusiasts that we have attempted to create this book which is the culmination of several years of effort, hope and frustration. The inception of the idea for a comprehensive treatise on cotton physiology began in early 1978 during informal discussions among Earl King, who was USDA’s Research Leader for Cotton Physiology at Stoneville, Mississippi, Jim Brown of the National Cotton Council, and the two of us. We recognized that there was a large body of information on cotton physiology, but that there was no source or reference from which one could readily obtain information. Those discussions led to the decision to conduct a series of symposia that would concentrate on specific aspects of the life history of the cotton plant. The intent was to generate a series of review and research papers that would provide the bulk of a reference book.

The format of the symposia conducted over a four-year period as a part of the Cotton Physiology Conference program during the Annual Beltwide Cotton Conferences strongly influenced the character of the book. Each year, three or four individuals considered as experts in the specific topic areas were asked to make major presentations. They, in turn, selected 2 to 4 additional researchers to provide expertise in related areas that deserved emphasis. All individuals submitted manuscripts covering their assigned topics. Our decision was to make each contribution a chapter. Consequently, considerable variety in length and content will be found in the various texts. At the end of the fourth symposium, all authors were given an opportunity to update their contributions. Since there were obvious
deficiencies in the subjects covered, we asked for additional chapters from experts in the deficient areas. The final result is contained herein.

We hope this book will serve as a background resource and starting point for future research into the physiology of the cotton plant. Its physical bulk and its more than 2200 citations should be an eloquent testimony to the complexity of the developmental processes in the cotton plant and, by inference, all plants. Attempts to reduce this plant to simplistic experiments and unequivocal statements about its behavior are naive at best and foolhardy at worst. In the truest sense, the crop is a four-dimensional entity. There is an immediacy of its daily reaction, but it has a distinct “memory” of its past (both recent and evolutionary) which is the basis for its future. Until physiologists and agronomists can integrate those reactions in the same way the plants do, our understanding will lack the dimension of time which has such a profound impact on the productivity of the crop.

Though the primary use of symposia books of this type is as a reference gathering dust until a specific question is asked, we think that it can serve usefully as a mystery story read from cover to cover. The mystery is, “What is a cotton plant?” In much the same way as the blind professors describing the elephant, each author experiences the cotton plant from a different perspective. Collecting their accounts so that a composite picture of the whole emerges is the purpose of this treatise. All who want to know the plant completely should be anxious to read every facet.

We are indebted to the many authors who contributed their time and expertise without compensation to make the symposia so successful. Ultimately, this resource volume is a tribute to them and to cotton physiology.

Jack R. Mauney
James McD. Stewart
Editors
CONTRIBUTORS

Dr. Basil Acock
Plant Physiologist
USDA, Agricultural Research Service
Crop Simulation Research Unit
Mississippi State University
Mississippi State, MS 39762

Dr. Donald N. Baker
Agronomist
USDA, Agricultural Research Service
Crops Simulation Research Unit
Mississippi State University
Mississippi State, MS 39762

Dr. Charles C. Baskin
Associate Professor and Extension Specialist
Department of Agronomy
Mississippi State University
Mississippi State, MS 39762

Dr. Alois A. Bell
Pathologist
USDA, Agricultural Research Service
National Cotton Pathology Research Laboratory
P.O. Drawer JF
College Station, TX 77841

Dr. C.R. Benedict
Department of Biochemistry & Biophysics
Professor
Department of Plant Sciences
Texas A & M University
College Station, TX 77843

Dr. Jerry D. Berlin
Professor
Department of Biology
Texas Tech University
Lubbock, TX 79423

Dr. Luther S. Bird
(Retired)
Professor
Department of Plant Sciences
Texas A & M University
College Station, TX 77843
Stephen J. Bortman
Graduate Student
Department of Botany & Microbiology
Arizona State University
Tempe, AZ 85287

Dr. James M. Brown
Manager, Production Technology
National Cotton Council
P.O. Box 12285
Memphis, TN 38182

George W. Cathey
Plant Physiologist
USDA, Agricultural Research Service
Cotton Physiology & Genetics Research
Delta States Research Center
P.O. Box 225
Stoneville, MS 38776

Dr. John P. Cherry
Chemist
USDA, Agricultural Research Service
Southern Regional Research Center
1100 Robert E. Lee Boulevard
New Orleans, LA 70179

John S. Choinski, Jr.
Graduate Student
Department of Botany & Microbiology
Arizona State University
Tempe, AZ 85287

Dr. Meryl N. Christiansen
Plant Physiologist
USDA, Agricultural Research Service
Plant Physiology Institute
Agricultural Research Center
Beltsville, MD 20705

Prof. Edmond A.L. DeLanghe
Lab. Tropische Plantenteelt
Katholieke Universiteit Leuven
Kardinaal Mercierlaan, 92
3030 Heverlee, BELGIUM

xxvi
Dr. Gene Gunn
Plant Physiologist
USDA, Agricultural Research Service
Western Cotton Research Laboratory
4135 E. Broadway Rd.
Phoenix, AZ 85040

Dr. John M. Halloin
Plant Physiologist
USDA, Agricultural Research Service
National Cotton Pathology Laboratory
P.O. Drawer JF
College Station, TX 77841

Dr. Norman Hopper
Associate Professor
Department of Plant & Soil Science
Texas Tech University
Lubbock, TX 79409

Dr. Richard Jensen
Professor
Department of Biochemistry
University of Arizona
Tucson, AZ 85721

Dr. Howard E. Joham
Professor and Head
Department of Plant Sciences
Texas A & M University
College Station, TX 77843

Dr. Lynn A. Jones
Director, Research & Education
National Cottonseed Products Assoc., Inc.
P.O. Box 12023
Memphis, TN 38112

Dr. Wayne R. Jordan
Professor
Texas Agricultural Experiment Station
Blackland Research Center
Temple, TX 76501

Dr. Russel J. Kohel
Geneticist
USDA, Agricultural Research Service
Cotton and Grain Crops Genetic Research
P.O. Drawer DN
College Station, TX 77840
Dr. K. Kosmidou-Dimitropoulou
Plant Physiologist
Hellenic Cotton Board
150 Syngrou Ave.
Athens (404). GREECE

Dr. Dan R. Krieg
Professor
Department of Plant & Soil Science
Texas Tech University
Lubbock, TX 79409

Dr. Donald T. Krizek
Plant Physiologist
USDA, Agricultural Research Service
Plant Stress Laboratory
Agricultural Research Center
Beltsville, MD 20705

Dr. Otto R. Kunze
Professor
Department of Agricultural Engineering
Texas A & M University
College Station, TX 77843

Dr. Harry R. Leffler
Plant Physiologist
USDA, Agricultural Research Service
Cotton Physiology & Genetics Research
Delta States Research Center
Stoneville, MS 38776

DeKalb-Pfizer Genetics
3100 Sycamore Rd.
DeKalb, IL 60115

Dr. Jack R. Mauney
Plant Physiologist
USDA, Agricultural Research Service
Western Cotton Research Laboratory
4135 E. Broadway Rd.
Phoenix, AZ 85040

Dr. Bobby L. McMichael
Plant Physiologist
USDA, Agricultural Research Service
Plant Stress & Water Conservation Research
Southern Plains Cotton Research Laboratory
Rt. #3
Lubbock, TX 79401
Dr. Jan A. Miernyk
Graduate Student
Department of Botany & Microbiology
Arizona State University
Tempe, AZ 85287

Dr. William H. Powell
Agronomist
National Cottonseed Products Assoc., Inc.
P.O. Box 12023
Memphis, TN 38112

Dr. Jerry E. Quisenberry
Geneticist
USDA, Agricultural Research Service
Cropping Systems Research Laboratory
Rt. #3
Lubbock, TX 79401

Dr. John W. Radin
Plant Physiologist
USDA, Agricultural Research Service
Western Cotton Research Laboratory
4135 E. Broadway Rd.
Phoenix, AZ 85040

Dr. Harmon H. Ramey, Jr.
Geneticist
USDA, Agricultural Research Service
Cotton Quality Laboratories
University of Tennessee
Knoxville, TN 37996

Dr. Randy Rowland
Plant Physiologist
USDA, Agricultural Research Service
Plant Physiology Institute
Agricultural Research Center
Beltville, MD 20705

Dr. A. Michael Schubert
Assistant Professor
Department of Plant Sciences
Texas A & M University
College Station, TX 77843

Chemist
USDA, Agricultural Research Service
Northern Regional Research Center
1815 N. University St.
Peoria, IL 61604

3147 South Fairfield Drive
Tempe, AZ 85282

Chief, Fiber Technology Branch
USDA, AMS, Cotton Division
4841 Summer Avenue
Memphis, TN 38112

Associate Professor
Plant Disease Research Station
Texas A & M University
Yoakum, TX 77995
Dr. James McD. Stewart
Plant Physiologist
USDA, Agricultural Research Service
Department of Plant & Soil Science
University of Tennessee
Knoxville, TN 37996

J.F.M. Sung
Research Associate
Department of Plant & Soil Science
Texas Tech University
Lubbock, TX 79409

Dr. Robert O. Thomas
Plant Physiologist
USDA, Agricultural Research Service
Delta States Research Center
Stoneville, MS 38776

Dr. Richard N. Trelease
Professor
Department of Botany & Microbiology
Arizona State University
Tempe, AZ 85281

Dr. Gordon R. Tupper
Agricultural Engineer
Delta Branch Experiment Station
P.O. Box 96
Stoneville, MS 38776

Robert W. Wallace
Research Associate
Dept. of Biochemistry and Biophysics
Texas A & M University
College Station, TX 77843

Dr. Donald F. Wanjura
Agricultural Engineer
USDA, Agricultural Research Service
Cropping Systems Research Laboratory
Rt. 3
Lubbock, TX 79401