DEVELOPMENT OF COTTON FABRIC FRICTION CALCULATOR: NEW DEVELOPMENTS A. Arunachalam, S.K. Chinnasami, and S.S. Ramkumar The Institute of Environmental and Human Health Texas Tech University Lubbock, TX

Abstract

A multidisciplinary approach has been followed to derive and automate the calculation of the fabric friction factor. Visual Basic programming language has been used to develop the software to calculate the novel fabric friction factor. The logic and the approach followed in deriving the fabric friction calculator is elaborated in this paper.

Introduction

Friction of fabrics plays an important role in determining the overall quality of fabrics. Friction in polymeric textiles is a complex phenomenon. Most recently, a major upsurge in research on the frictional characterization of textile materials has taken place primarily due to the need for a simple, reliable and logical method to objectively quantify the friction of fabrics. Recent research at Texas Tech University has resulted in the development of a normalized friction factor, R. The normalized friction of fabrics using a single composite factor. The calculations that are needed to derive the friction factor are cumbersome. To enable the calculations to be simple, a Visual Basic Application (VBA) based software has been developed. This software automatically calculates the friction factor and outputs the results. The present paper elaborates the procedure behind the development of the friction factor calculator software.

Friction Factor Calculation

The friction force-normal load relationship in polymers and textiles can be conveniently represented using Equation 1.

Friction Force – Normal Load Relationship

The nonlinear relationship between the friction force and normal load can be represented by the following power equation:

$$F/A = C (N/A)^{n}$$
(1)

where,

F: Friction force in Newton;

N: Normal applied load in Newton;

A: Apparent area of contact in m²;

C: Friction parameter in Pascal to the power 1-n [(Pa¹⁻ⁿ)] and

n: Friction index (non-dimensional)

The frictional parameter, C and the friction index, n are obtained by solving the Equation 1. These two values are then used in Equation 2 to obtain the normalized friction factor, R.

Normalized Friction Factor [R]

$$\mathbf{R} = \mathbf{C/n} \tag{2}$$

where, C: Friction parameter in Pa¹⁻ⁿ n: Friction index and R: Friction factor in Pa¹⁻ⁿ

The normalized friction factor, R takes into account the surface mechanical properties and the material characteristics of the material. The composite factor gives the cumulative value of the frictional properties of textile materials.

Experimental Methodology

The static and dynamic friction forces over a range of different applied loads are obtained using the sliding friction apparatus as shown in Figure 1. A standard sled rubs the surface of the fabric as the crosshead of the tensile tester moves up. The fric-

tional interactions between the fabric and the sled are recorded by the load cell, which registers the friction force values. The friction force values are then used to calculate the friction factor.

User Friendly Friction Factor Calculator

As briefed in the introduction of this paper, the calculations involved to solve Equations 1 and 2 are cumbersome and involve some training in mathematics. The user-friendly software developed automatically calculates the friction factor from the friction force values. The software is written in Visual Basic 6.0 programming language. The overall "Calculator" software is built with different forms: 1) Input form, 2) Output form, 3) Search form and 4) Help form. The major steps that are involved in the software implementation are:

- a) Step 1: Entering the static and kinetic values obtained from the friction tester.
- b) Step 2: Calculation of the friction factor the built-in code does this process automatically and
- c) Step 3: Storing and the presentation of final results.

Figure 2 shows the Input screen of the software. The output screen is shown in Figure 3. The software is very user friendly and has "Search" options. The "Search" screen is shown in Figure 4. In addition, the software also has help menu (Figure 5).

Conclusions

The user-friendly Visual Basic based software developed is a simple and practical solution to the complex issue surrounding the frictional characterization of textiles. The software is helpful for people untrained in techniques as the data entry errors are displayed then and there avoiding further errors and complications. More importantly, the software is easy to install and handle.

Acknowledgements

Seshadri Ramkumar gratefully acknowledges the support of the Texas Food and Fibers Commission and the US Army for supporting his broad based research program on fibers and nonwoven materials.

References

Chinnasami, S., and Ramkumar, S. S., (2003), "Development of a Fabric Friction Calculator," AATCC Review, 3 (11), 20-23.

Hermann, D., Ramkumar, S. S., Parameswaran, S. S. and Padmanabhan, S., "Frictional Study of Woven Fabric: Relationship Between Friction and Velocity of Testing," Journal of Applied Polymer Science (in print).

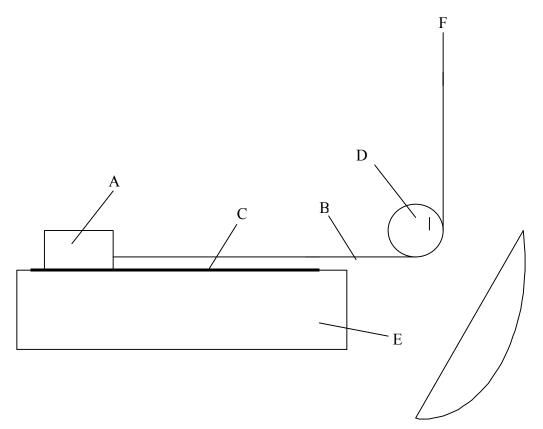
Roedel, C., and Ramkumar, S. S., (2002), "Development and the Study of the Surface Mechanical Properties of H1 Technology Needle punched Nonwoven Substrates," Textile Res. Journal, 73 (5), 381-385.

Ramkumar, S. S., Leaf, G. A. V., and Harlock, S. C., (2000), "A Study of the Frictional Properties of 1x1 Rib Knitted Cotton Fabrics," J. Textile Inst., 91, Part 1, No. 3, pp. 374-382.

Ramkumar, S. S. (2000), "Tribology of Textile Materials," Indian Journal of Fibre & Textile Res., Vol. 25, pp. 238.

Ramkumar, S. S., (2002), "Frictional Characterization of Enzyme Treated Fabrics "AATCC Review, Vol 2 (11), 24-27.

Ramkumar, S. S., Wood, D. J., Fox, K., and Harlock, S. C., (2003), "Development of a Polymeric Human Finger Sensor for Studying the Frictional Properties of Textiles, Part I: Artificial Finger Development," Textile Res. Journal, 73 (6), 469-473.


Ramkumar, S. S., Wood, D. J., Fox, K., and Harlock, S. C., (2003), "Development of a Polymeric Human Finger Sensor for Studying the Frictional Properties of Textiles, Part II: Experimental Results," Textile Res. Journal, 73 (7), 606-610.6.

Ramkumar, S. S., Shastri, L., Tock, R. W., Shelly, D. C., Smith, M. L., Padmanabhan, S., (2003), "Experimental Study of the Frictional Properties of Friction Spun Yarns," Journal of Applied Polymer Science, Vol. 88 (10), 2450-2454.

Ramkumar, S. S., and Roedel, C., (2003), "A Study of the Needle Penetration Speeds on the Frictional Properties of Nonwoven Webs: A New Approach," Journal of Applied Polymer Science, 89 (13), 3626-3631.

Ramkumar, S. S., Umrani, A., Shelly, D. C., Tock, R. W., Parameswaran, S. and Smith, M. L. (2003), "Study of the Effect of Sliding Velocity on the Frictional Properties of Nonwoven Substrates," Wear (in print).

Ramkumar, S. S., Rajanala, R., Parameswaran, S., Paige, R., Shaw, A., Shelly, D. C., Anderson, T. A., Cobb, G. P., Mahmud, R., Roedel, C., and Tock, R.W., Experimental Verification of Failure of Amontons' Law in Polymeric Textiles, Journal of Applied Polymer Science, Vol. 91 (6), pp. 3879-3885.

A – Steel sled; B- Nylon thread; C- Fabric; D- Pulley; E- Steel base; F- To tensile tester crosshead. Figure 1. Sliding Friction Apparatus.

🐂 Friction Calculator	×
Friction Calculator	
Number of Repeats Date 01-03-2004	
Fabric ID Select the no. of repeats of your test	
Source Testing Speed mm/min	
Sledge Area 💌 Weight gf	
Static Values Kinetic Values	
New Save Calculate Clear Search Help Exit	

Figure 2. Snap Shot of the Input Screen.

Friction Calculator				1
	Friction Calc	ulator		
	Results			
abric ID 010304	1	Date	01-03-2004	
	Static Values	Kinetic V	'alues	
Material Index	0.767	0.81		
Friction Parameter "C"	1.211	0.931		
Friction Factor "R"	1.579	1.149		
Average Friction Factor	1.364			
Comments				1
Value are within standards		r comments future refe	and save the rence	19
New Save	Clear Sear	ch He	lo Exit	

Figure 3. Snap Shot of the Output Screen.

🖷 Friction Calculator
Friction Enter the date of your test and press Find Fabric ID button
Search
Please enter the date of testing mm/dd/yyyy
Find fabric ID
Please select the fabric ID to see its stored results FABRICI 💌
Cearch Results
Static Values Kinetic Values
Material Index
Friction Parameter "C"
Friction Factor "R"
New Search Help Exit

Figure 4. Snap Shot of the Search Screen.

S. Friction Calculator
Friction Calculator
Help
Steps to use the Friction Calculator
Step 1 : Select the number of repeats you want to conduct
Step 2 : Enter the fabric ID. The fabric ID you enter should be unique
Step 3 : Enter the fabric make or source
Step 4 : Select or Enter the testing speed and sledge area
Step 5 : Enter the weight used for testing the sample
Step 6 : Enter the static and kinetic values
Step 7 : Save the values
Step 8 : Repeat steps 6 and 7 for 6 different weights
Step 9 : Press the calculate button to calculate the friction parameter
Step 10 : Enter your comments and save the results
Step 11 : Click the New button, if you want to calculate for a new test
Close

Figure 5. Snap Shot of the Help Screen.