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Abstract 
 
The prediction of yarn strength based on the three-stage procedure and assumption of fiber strength distribution of the 
Weibull type is compared with the empirical Solověv model.  The predictive ability is compared with USTER Statistics.  The 
sensitivity of both models to the relative variation of input data is estimated. 
 

Introduction 
 
Yarn mechanical properties are important for prediction of fabric mechanical behavior and estimation of yarn complex qual-
ity.  The majority of models for yarn prediction is based on fiber characteristics only and is valid for a restricted range of fi-
bers and yarns.  In this contribution two techniques were selected, including the parameters of yarn formation as well.  Com-
puter experiments are used for evaluation of sensitivity of these models to the variation of input variables.  The predictive 
ability of both models is compared with USTER Statistics. 
 

Prediction of Yarn Strength Based on Weibull Distribution 
 
This approach to yarn strength is used in the works (Pan 1992) for prediction of classical one-component and hybrid two-
component yarns.  The following assumptions are used: 
  

1. The fiber strength has a two-parameter Weibull distribution. 
2. The fiber helix angles in the yarn are randomly distributed from zero to the value at the yarn surface. Fiber migration 

is negligible. 
3. Yarn twist level does not alter the yarn strength distribution. 
4. When a fiber breaks, the load is carryied by survived fibers (distributed equally among the rest of fibers). 
5. The changes of yarn geometry and dimensions during extension are neglected. 

 
The computation has three stages: 
 

1. Estimation of fiber Weibull parameters from experimental mean strength and standard deviation. 
2. Estimation of parallel fibrous bundle of fibers strength. 
3. Estimation of twisted bundle strength (yarn strength). 

 
Let the fiber distribution be of the Weibull two-parameter type (Pan 1993) 
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The symbol denotes )(1 δF−  probability of fiber surviving at strengths δ≤x .  
 

In eqn. (1), ly [mm] is fiber length, αy is a scale parameter, and βy is a shape parameter. The mean fiber strength yδ  and corre-

sponding standard deviation ysδ  are computed from equations: 
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where Γ() is the gamma function.  For known yδ  a ysδ  computed from experimental data is parameter βy evaluated by itera-

tive solution of the equation:  
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in the interval 1;9β ∈ .  The estimated βy is then substituted to equation (2) and from this equation is evaluated  (ly.αy). 
 
For the computation of fibrous bundles distribution it is possible to use Daniel's famous result, that for large bundles (number 
of fibers in cross section Ny is more than 100) the bundle strength approaches a normal distribution (Pan 1993): 
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Mean strength, bδ , of the fibrous bundle is equal to : 
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The corresponding standard deviation bsδ  is  
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Once a twist is inserted to the fibrous bundle, the fibers are entangled with each other. During tensile deformation the lateral 
pressure is induced. For the evaluation of twist influence on changes of fibrous bundle strength the nominal yarn surface he-
lix angle q (Hearle 1969) is required.  
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where ρf [kg.m-3] is fiber density, Vf  is fiber volume fraction and Ty is yarn twist factor defined as 
 

.yT T Z= [tex.cm-1]  
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Here T [tex] is yarn fineness and Z  [cm-1 ] is number of twists. It was found that fiber volume factor could be expressed as 
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(10)

 
Angle  β is computed from twist intensity tgβ according to the relation: 
 

( )
24 4 4

y
Tarctg DZ arctg Z arctg Z T arctg Tπ πβ π π

πµρ πµρ µρ
    
 = = = =           

[rad] 
 

 
(11)

 



Poisson's ratio of twisted bundle νlt is dependent on the yarn surface helix only 
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Orientation efficiency factor ηq has the form 
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In the case of parallel fiber bundle is q approaching to zero and fiber strain at break.  The final equation for yarn strength sδ  

has simple form 
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where bδ  [N.tex-1] is mean strength of parallel fibrous bundle.  Standard deviation of yarn strength, 
s
sδ , is given by: 
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where bsδ  [N.tex-1] is standard deviation of strength in parallel bundle.  Inclusion of lateral interaction is described in (Pan 

1992).  The distribution of yarn strength is assumed to be normal as well and fully defined by parameters sδ  and 
s
sδ . 

 
Prediction of Yarn Strength Based on Solověv Model 

 
This empirical approach is using a set of coefficients modifying the relation between fiber strength and yarn strength.  Yarn 
strength F [N.tex-1] is defined as fiber strength Fv [N.tex-1] reduced by factors dependent on the fiber characteristics and twist 
level. 
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Here factor fn is characterizing of number of fibers influence, fl is characterizing of fiber length and length variation and fα   is 
characterizing of twist level influence. Solov v proposed for fn empirical form  
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where C is constant (for cotton is 0,375), H is correction for technology used ( combed yarns 3,5-4, carded 4,5-5) and K is 
constant (for cotton is 2,65). Number of fibers in cross section n is computed from well-known ratio  
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where T is yarn fineness and t is fiber fineness (both in [tex]).  For the factor fl the following relation could be used:  
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where a is empirical constant (for cotton 5) and  l [mm] is fiber length..  For computation of fα it is necessary to derive 
Koechlin's twist factor α and critical Koechlin's twist factor αk.  Koechlin's critical twist factor is computed from the relation: 
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Koechlin's twist factor is derived as: 
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The difference between these factors is denoted as δα , and is given by: 
 

kαδ α α=  [m-1ktex1/2] 
 

(22)

 
The regression type equation is proposed for computation of fα (Zelinková, Brzezina 2000). 
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Quantity η lies in the interval 0,95-1,1. (for computations the value 1 is used) (Neckář 1969). 
 

Experiment 
 
Sensitivity of Models on Input Data Variation 
The sensitivity of predicted yarn strength on the input characteristics changes was evaluated by computational experiments.  
Sensitivity is defined as the percent deviation of model yarn strength F from experimental yarn strength FE : 
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Experimentally evaluated characteristics for combed ring cotton yarn were used as mean values for sensitivity evaluation. 
These characteristics are summarized in table 1. In each computational run the values of one parameter only were changed in 
prescribed range defined in table 2.  Results of computational experiments are summarized on the fig 1- 5.  
 
Comparison with USTER Statistics 
For comparison and evaluation of predictive ability, the six real combed and carded cotton type yarns were prepared.  Char-
acteristic of these yarns are given in Table 3.  For each yarn yarns strengths were computed for both models and included 
with experimentally measured yarn strengths to the graph having 5% and 95 % lines of corresponding USTER Statistics. 
These USTER Statistics curves were obtained by piecewise linear approximation from graphical forms.  Results are shown in 
Figures 6 and 7. 
 
For selected yarn types (carded and combed), predicted values of yarn strength for intervals of fiber fineness were computed.  
For carded yarn, the interval 16 - 18 tex was selected; and for carded yarn the interval 6 - 33 tex.  The input parameters for 
both yarns are in Table 4.  Results are shown on the Figures 8 and 9. 
 

Conclusion 
 
From all graphs is clear that both models are able to predict yarn strength with relatively great precision. The Uster Statistics 
95% level is near both models but the Solovev model has higher values of prediction.  On the other hand, the Weibull type 
model is often very close to the experimental values.  From sensitivity analysis it is clear that both models are similarly sensi-
tive on the changes of fiber strength and yarn fineness.  In other parameters, there are differences in sensitivity caused mainly 
by the simplified assumptions in the Weibull model. 
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Table 1.  Input data. 
Fiber length 

[mm] 
Fiber fineness 

[tex] 
Fiber density

[kg/m3] 
Fiber strength

[cN/tex] 
Fiber break strain 

[%] 
Yarn fineness 

[tex] 
Yarn twist

[1/m] 
24,86 0,12 1520 35,69 4,83 7 1220 

 
 
Table 2. Intervals for sensitivity evaluation. 

Range 
Fiber length 

[mm] 
Fiber fineness

[tex] 
Fiber strength

[cN/tex] 
Fiber break
strain [%] 

Yarn fineness 
[tex] 

Yarn twist
[1/m] 

min 0,1 20 13,605 3 5 600 
max 0,4 34,5 37,415 10,2 27,5 1200 

 
 

Table 3.  Experimental data for selected yarns. 

Yarn 
type 

Fiber 
length 
[mm] 

Fiber 
fineness 

[tex] 

Fiber 
density 
[kg/m3] 

Fiber 
strength 
[cN/tex] 

Fiber 
break 

strain [%] 

Yarn 
fineness 

[tex] 

Yarn 
twist 
[1/m] 

prst7,4 MIIces 24,86 0,12 1520 35,69 4,83 7,1 1220 
Prst10MIIces 24,86 0,148 1520 35,69 4,83 9,84 1291 
prst16.5A1ces 24,24 0,155 1520 29,56 6 15,92 972 
Prst20AImyk 23,16 0,155 1520 25,90 5,74 19,27 748 
prst295AImyk 23,16 0,165 1520 25,90 5,74 29,52 630 
prst 38AImyk 23,16 0,165 1520 25,90 5,74 37,3 533 

 
 

Table 4.  Input parameters for prediction of ring yarn strength 

Yarn type 

Fiber 
Length 
[mm] 

Fiber 
fineness 

[tex] 

Fiber 
strength 
[cN/tex] 

Fiber 
break 

strain [%] 

Yarn  
twist 
 [1/m] 

Prst20AImyk 23,16 0,155 25,90 5,74 748 
prst7,4 MIIces 24,86 0,12 35,69 4,83 1220 

 
 

 
 

Figure 1. Sensitivity on fiber fineness. 



 
 

Figure 2. Sensitivity on fiber length. 
 

 
 

Figure 3. Sensitivity on fiber strength. 
 

 
 

Figure 4. Sensitivity on yarn fineness. 
 

 
Figure 5. Sensitivity on yarn twist. 

 



Pan  
Solovev 
uster 95 % 
uster 5 % 
experiment 

 
Legends to figures: 

 

 
 

Figure 6. Combed ring yarns. 
 

 
 

Figure 7. Carded ring yarns. 
 

 
 

Figure 8. Carded ring yarn. 
 



 
 

Figure 9. Combed ring yarn. 
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