## INVESTIGATION OF EXPERIMENTAL LINT CLEANER

W. Stanley Anthony
Agricultural Research Service, USDA
U.S. Cotton Ginning Laboratory
Stoneville, MS

## **Abstract**

The saw-type lint cleaner improves the appearance of ginned lint by removing foreign matter, motes, cottonseed, and other undesirable material. Unfortunately, it also removes about as much good fiber as it does undesirable material. One stage of lint cleaning typically removes about 20 pounds of material. An experimental lint cleaner was developed and patented to reduce the loss of good fiber and maintain fiber quality in the bale. Two studies were conducted to validate the operational characteristics of the experimental lint cleaner—one at a research facility and another at a commercial gin. Results at the research gin indicated that about 6 pounds of additional good fiber was retained by the experimental lint cleaner when compared to a standard lint cleaner with no significant difference in High Volume Instrument (HVI) or Advanced Fiber Information System (AFIS)-measured properties. The experimental lint cleaner operated for a full season at a commercial gin without operational problems. Measured HVI and AFIS-parameters of the baled lint from the experimental lint cleaner generally equaled or exceeded those of the standard lint cleaner.

## Introduction

The saw-type lint cleaner has been used for many years in the ginning industry to comb and blend cotton fiber (lint), and to remove motes (aborted ovules), cottonseed, undesirable fiber, and plant parts. The lint from a gin stand or another lint cleaner is formed into a batt on a condenser screen drum and then fed into one or more sets of compression rollers, passed between very closely fitted feed rollers and a feed plate or bar, and then fed onto a saw cylinder. The teeth of the saw cylinder convey the fibers past several cleaning points commonly called grid bars that are spaced 1/32th to 1/16th in. away from the saw teeth. Good fiber as well as undesirable material is ejected at each of these grid bars or cleaning points, with the amount of good fiber increasing proportionately as the number of cleaning points increase (Anthony, 1999b; 2000). The amount of material removed by lint cleaning depends on the amount of foreign matter in the cotton as well as the percentage of motes and the fiber length characteristics. Typically, one stage of saw-type lint cleaning removes about 20 lbs of material that includes at least 50% good fiber (Mangialardi and Anthony, 1998). The percentage of fiber in the lint cleaner waste ejected by each successive grid bar increases as the number of grid bars increase.

The material ejected by lint cleaners is commonly, but erroneously, called "motes" by much of the cotton industry and "lint cleaner waste" by some (Anthony, 1999a). It is not unusual for the foreign matter in the lint cleaner waste to represent less than 50% of the total by weight. Lint cleaner waste is typically 1) placed into the waste pile along with materials removed by the seed cotton cleaners, 2) cleaned with a cylinder-type cleaner at the gin and sold to a mote processing facility, or 3) cleaned with cylinder-type cleaners and saw-type lint cleaners at the gin and sold as cleaned "motes". Much of the fiber in the lint cleaner waste is equal in quality to the fiber in the bale, and should remain in the bale.

Toward this end, a new machine was developed and patented (Anthony, 2003). The new lint cleaner consists of a standard lint cleaner modified to include a secondary saw to prevent loss of the longer fiber that is incorrectly ejected by the primary cleaning saw and grid bar arrangement (Figure 1). The new lint cleaner also includes either a steel brush or splined roller to guide the cotton onto the secondary saw (not shown). Material from the standard grid bar/saw cylinder falls on the second saw cylinder and is metered and compressed by a powered splined roller or brush. The roller or brush is positioned and operated such that only the longer fiber ejected by the primary saw cylinder is retained by the secondary saw.

The purposes of this study were to 1) determine the effectiveness of the new lint cleaner, and 2) determine the operational suitability of the new lint cleaner in a commercial gin.

## **Methodology**

#### Study 1

A study was conducted in the full-scale gin at the Stoneville Ginning Lab involving three machine treatments, two cottons, and three replications for a total of 18 bales. The machine treatments included 1) the new machine as described earlier wherein the added section of the machine was bypassed to recreate a standard lint cleaner, 2) the machine described earlier equipped with a stationary brush for fiber retention, and 3) the new machine equipped with a powered roller for fiber retention. The cottons were Stoneville 747 and Stoneville BXN 47 harvested near Stoneville, MS, in 2001. The machine and cotton treatments were randomly assigned for the study. The sampling plan included 5 samples for wagon fractionation (module

foreign matter), wagon (module) moisture, feeder fractionation (foreign matter before the gin stand), lint moisture before the bale press, seedcoat fragments before the bale press, and 10 samples before the bale press for Shirley Analyzer, High Volume Instrument (HVI) and Advance Fiber Information System (AFIS) analyses. A one-pound sample of the lint cleaner waste was taken from random locations in the lint cleaner waste after it was collected by a battery condenser. Weights for seed cotton, cottonseed, samples, lint and waste were also taken.

### Study 2

The experimental lint cleaner (Figure 2) was removed from the full-scale gin at the Stoneville Lab, and installed in E. Ritter gin (Figure 3) at Marked Tree, AR, in August 2002. The Comet Extractor-feeder and a Continental Model 93 gin stand were also removed from the Stoneville Lab and installed in E. Ritter Gin to provide lint to the new lint cleaner. Since E. Ritter Gin was constructed as a "4-less-1" gin plant, the addition of the Stoneville machinery was simplified. The Stoneville equipment was installed for commercial operation during the 2002 season.

During the ginning season, the operational characteristics and the compatibility of the new lint cleaner to the commercial environment was observed on several occasions. In addition, 20 samples each were taken simultaneously 1) after the Continental Eagle 24D lint cleaner that followed a Continental Model 9000 Extractor-feeder, a Continental model 161 gin stand and a Continental Centrifugal Lint Cleaner, and 2) after the modified lint cleaner which followed a Continental Comet extractor-feeder and a Continental model 93 gin stand. Each of the 40 samples were divided into 5 sub-samples and analyzed by High Volume Instrument (HVI) at the Dumas Classing Office and the Advance Fiber Information System (AFIS) at Stoneville. At the same time, four samples were taken at each feeder apron for fractionation.

#### **Results**

#### Study 1

The data collected during ginning is shown in Table 1 with gin identifications and bale numbers in the order of the ginning treatments. Analyses of variance for the ginning related data is shown in Table 2. Ginning rate, wagon fractionation, feeder fractionation, wagon moisture, and lint moisture were not significant in the study. Wagon fractionation, feeder fractionation, wagon moisture, and lint moisture averaged 8.8%, 3.9%, 10.0%, and 5.3%, respectively (Table 3). The lint cleaner waste data was significant only for machines. The lint cleaner waste removed per 500-lb bale ranged from 14.5 lbs for the roller treatment to 20.5 lbs for the standard machine. Typical waste produced by the 16D and 28D lint cleaners are shown in Figures 4 and 5, respectively. The waste emitted by the 16D contained much more fiber than the waste emitted by the 28D.

None of the AFIS data was significant for machines (Table 4); however, several variables (short fiber content by weight, immature fiber content, fineness, neps per gram) were significant for cotton. Means for the AFIS data are shown in Table 5. The analyses of variance for HVI classing data is shown in Table 6 and means are in Table 7. None of the classing data was significant for machine or the interaction between machine and cotton. Leaf, micronaire, reflectance, yellowness, and uniformity were significant for cottons. The Shirley Analyzer waste, both total and visible, was significant for machines at the 5% level of probability for machines. The Shirley Analyzer visible waste was not significant between the standard (2.3%) or brush (2.5%) treatment but was different between the standard and roller treatment (2.7%).

Since the marketing parameters such as length, color, leaf, and micronaire were not different, then the value per pound of the cotton in the bale would be the same. The difference would be in the bale weight. For example, the bale would weigh 6 lbs more using the experimental machine treatments for a bale value increase for the farmer of over \$4.00. For a typical 30,000 bale per year gin, this would be \$120,000 annually.

Analyses of variance and means for seedcoat fragment data are in Tables 8 and 9, respectively. None of the treatments were significant.

It was apparent during the conduct of the experiment that different feed rates for the lint cleaner waste would be beneficial to improving the performance of the machine. Subsequent to this study, the rotational speed of the feed roller was changed from 31 to about 11 revolutions per minute and the amount of fiber recovered from the lint cleaner waste was dramatically increased. The initial test with the roller at different speeds, suggested that the 5 lbs of fiber recovered could be increased to at least 8 pounds. Further research is required in this area.

# Study 2

Means for the feeder fractionation samples at E. Ritter Gin were 4.6% and 4.8% for the standard and modified lint cleaner treatments, respectively. Note that the "standard" lint cleaner for Study 2, was a commercial Continental Eagle Model 9000 extractor-feeder and 161 Model gin stand followed by a Continental Centrifugal Lint Cleaner and a model 24D lint cleaner operated in parallel with the Continental Model Comet extractor-feeder and 93-saw gin stand followed by the experimental lint cleaner. Analyses of variance and means for Study 2 are in Tables 10 and 11, respectively. A number of significant dif-

ferences were evident for the AFIS data, primarily in favor of the modified lint cleaner. Several of the HVI variables were significant, mostly in favor of the 28D lint cleaner as follows:

| Machine | Leaf | Length, in. | Uniformity | Staple |
|---------|------|-------------|------------|--------|
| 24D     | 3.50 | 1.069       | 82.4       | 34.2   |
| 28D     | 3.77 | 1.079       | 82.8       | 34.5   |

The differences in marketing parameters did not affect the price per pound. Thus, the difference in the two machines is in the bale weight. For example, the bale would weigh about 6 lbs more using the modified machine for an increase of about \$4.00.

The modified cleaner processed about 5,000 bales during the season without any operational problems.

## **Acknowledgement**

The support of Mr. Charles Glover, Mr. Don Arnold and staff at E. Ritter & Company, Marked Tree, AR, is gratefully acknowledged. Without their support, this project would not have been possible.

## Disclaimer

Mention of a trade name, proprietary product, or specific machinery does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply approval of the product to the exclusion of others that may be available.

## References

Anthony, W.S. 1999a. Can lint cleaner waste be reduced? Proc. Beltwide Cotton Conf. Vol. 2:1403-1406. National Cotton Council, Memphis, TN.

Anthony, W.S. 1999b. Patent Number 5,909,786. Device to reduce fiber waste by lint cleaners.

Anthony, W.S. 2000. Methods to reduce lint cleaner waste and damage. Transactions of the ASAE. Vol. 43 (2):221-229.

Anthony, W.S. 2003. Enhanced separation of contaminants from fibers such as cotton, kenaf and flax. U.S. Patent number 6,615,454.

Mangialardi, G. J., Jr., and W. S. Anthony. 1998. Ginning: Field evaluation of air and saw lint cleaning systems. Journal of Cotton Science. 2 (1):53-61.

Table 1. Gin data for Study 1.

|        |                     |                        | Gin   | Seed, weight | Bale weight | Lint cleaner | Moisture,   | %    |
|--------|---------------------|------------------------|-------|--------------|-------------|--------------|-------------|------|
| Gin ID | Cotton <sup>1</sup> | Treatment <sup>2</sup> | time  | lbs.         | lbs         | waste lbs    | Seed cotton | Lint |
| 5      | 1                   | Brush                  | 13:45 | 750          | 472         | 14.40        | 9.95        | 5.20 |
| 8      | 1                   | Brush                  | 13:01 | 750          | 475         | 15.00        | 10.54       | 5.45 |
| 16     | 1                   | Brush                  | 13:20 | 760          | 473         | 15.62        | 9.33        | 4.98 |
| 6      | 2                   | Brush                  | 15:02 | 870          | 547         | 14.58        | 9.13        | 4.79 |
| 7      | 2                   | Brush                  | 14:20 | 800          | 495         | 16.42        | 9.92        | 5.27 |
| 15     | 2                   | Brush                  | 13:05 | 800          | 487         | 12.56        | 8.76        | 4.47 |
| 1      | 1                   | Roller                 | 15:25 | 770          | 548         | 16.12        | 10.55       | 7.13 |
| 12     | 1                   | Roller                 | 14:10 | 830          | 515         | 15.14        | 11.54       | 5.46 |
| 13     | 1                   | Roller                 | 14:25 | 850          | 528         | 14.72        | 11.44       | 4.96 |
| 2      | 2                   | Roller                 | 14:43 | 890          |             | 11.64        | 8.84        | 6.08 |
| 11     | 2                   | Roller                 | 13:35 | 780          | 470         | 14.68        | 12.01       | 5.48 |
| 14     | 2                   | Roller                 | 13:49 | 810          | 487         | 13.38        | 9.38        | 4.82 |
| 4      | 1                   | Standard               | 12:41 | 740          | 569         | 21.72        | 10.37       | 5.78 |
| 9      | 1                   | Standard               | 12:04 | 700          | 427         | 19.20        | 10.80       | 5.28 |
| 17     | 1                   | Standard               | 12:55 | 750          | 462         | 19.78        | 8.88        | 5.12 |
| 3      | 2                   | Standard               | 13:37 | 830          | 516         | 20.00        | 8.40        | 5.72 |
| 10     | 2                   | Standard               | 13:10 | 780          | 483         | 20.40        | 9.94        | 5.46 |
| 18     | 2                   | Standard               | 14:21 | 820          | 486         | 19.10        | 9.33        | 4.74 |

 $^{1}$ STV 747 = cotton No. 1; BXN 47 = cotton No. 2

<sup>&</sup>lt;sup>2</sup>Sixteen-D lint cleaner with secondary 12" diameter saw and 5 grid bars (Standard). Also equipped with either a feed roller (Roller) or a stationary brush (Brush) to feed waste on secondary saw.

Table 2. Analyses of variance for the ginning related data for Study 1.

|                                  |              |               |         | M                          | ean Squares                           |                                      |                            |                  |
|----------------------------------|--------------|---------------|---------|----------------------------|---------------------------------------|--------------------------------------|----------------------------|------------------|
|                                  |              |               | Waste   |                            | Seed cotton                           | Seed cotton                          |                            | _                |
| Source of variation <sup>1</sup> | Ginning rate | Actual<br>lbs | Percent | Per<br>500-lb<br>bale, lbs | fractionation<br>before<br>processing | fractionation<br>before<br>gin stand | Seed<br>cotton<br>moisture | Lint<br>moisture |
|                                  |              | 61.11*        |         |                            |                                       |                                      |                            |                  |
| Machine                          | 0.09 ns      | *             | 2.50 ** | 62.58**                    | 0.39 ns                               | 0.04 ns                              | 2.06 ns                    | 0.59 ns          |
| Cotton                           | 0.08 ns      | 4.44 ns       | 0.10 ns | 2.43 ns                    | 2.59 ns                               | 0.45 ns                              | 3.29 ns                    | 0.36 ns          |
| Machine *                        |              |               |         |                            |                                       |                                      |                            |                  |
| Cotton                           | 0.06 ns      | 1.36 ns       | 0.04 ns | 1.11 ns                    | 0.05 ns                               | 0.13 ns                              | 0.07 ns                    | 0.04 ns          |
| Error                            | 0.10         | 1.52          | 0.07    | 1.72                       | 0.74                                  | 0.31                                 | 0.92                       | 0.38             |
| P>F                              | 0.59         | 0.01          | 0.01    | 0.01                       | 0.49                                  | 0.72                                 | 0.22                       | 0.54             |
| Mean                             | 4.5          | 16.36         | 3.37    | 16.83                      | 8.82                                  | 3.91                                 | 9.95                       | 5.34             |
| CV                               | 6.9          | 7.54          | 7.78    | 7.78                       | 9.74                                  | 14.21                                | 9.63                       | 11.54            |
| $MSE^2$                          | 0.31         | 1.23          | 0.26    | 1.31                       | 0.86                                  | 0.56                                 | 0.96                       | 0.62             |

ns indicates not significant

Table 3. Means for ginning related data separated by Waller-Duncan for Study 1.

|                 |               |         | •       | Mean          | s for variab       | le               |                    |                  |
|-----------------|---------------|---------|---------|---------------|--------------------|------------------|--------------------|------------------|
|                 |               |         | Waste   |               |                    | Foreign          | Initial seed       |                  |
|                 | Ginning rate, | Actual, |         | Per<br>500-lb | Initial<br>foreign | matter<br>before | cotton<br>moisture | Lint<br>moisture |
| <u>Variable</u> | bales/hr      | lbs     | Percent | bale, lbs     | matter %           | ginning $\%$     | %                  | %                |
| Machine         |               |         |         |               |                    |                  |                    |                  |
| Standard        | 4.6a          | 20.03a  | 4.10a   | 20.52a        | 8.67a              | 3.89a            | 9.62a              | 5.35a            |
| Brush           | 4.4a          | 14.76a  | 3.01b   | 15.06b        | 8.68a              | 4.01a            | 9.61a              | 5.03a            |
| Roller          | 4.4a          | 14.28b  | 2.91c   | 14.54b        | 9.12a              | 3.84a            | 10.63a             | 5.66a            |
| Variety         |               |         |         |               |                    |                  |                    |                  |
| 1-STV 747       | 4.56          | 16.86   | 3.42    | 17.10         | 9.20               | 4.11             | 10.38              | 5.48             |
| 2-STVBXN 47     | 4.44          | 15.86   | 3.31    | 16.54         | 8.45               | 3.75             | 9.52               | 5.20             |

Table 4. Analyses of variance for AFIS data for Study 1.

|                        | Shor   | t fiber |        |        | •              |        |         |           |          |        |           |          |
|------------------------|--------|---------|--------|--------|----------------|--------|---------|-----------|----------|--------|-----------|----------|
| Source of              | conte  | ent, %  |        |        | $\mathbf{UQL}$ | L(n),  | Length  | Length    |          | Mat    |           |          |
| Variation <sup>1</sup> | Weight | Number  | IFC    | L(w)   | (w)            | in.    | 5%, in. | 2.5%, in. | Fineness | ratio  | Nep/gm    | Nep/size |
| Machine                | 0.01ns | 0.62ns  | 0.01ns | 0.01ns | 0.01ns         | 0.01ns | 0.01ns  | 0.01ns    | 1.40ns   | 0.01ns | 344.04ns  | 8.00ns   |
| Cotton                 | 3.15** | 11.22ns | 1.18** | 0.01ns | 0.01ns         | 0.01ns | 0.01ns  | 0.01ns    | 160.80** | 0.01ns | 6164.20** | 26.40ns  |
| Machine*               |        |         |        |        |                |        |         |           |          |        |           |          |
| Cotton                 | 0.13ns | 2.50ns  | 0.01ns | 0.01ns | 0.01ns         | 0.01ns | 0.01ns  | 0.01ns    | 0.17ns   | 0.01** | 22.81ns   | 43.64ns  |
| Error                  | 0.40   | 3.17    | 0.06   | 0.01   | 0.01           | 0.01   | 0.01    | 0.01      | 4.85     | 0.001  | 460.65    | 25.05    |
|                        |        |         |        |        |                |        |         |           |          |        |           |          |
| P>F                    | 0.21   | 0.41    | 0.03   | 0.81   | 0.99           | 0.57   | 0.99    | 0.94      | 0.01     | 0.02   | 0.06      | 0.44     |
| Mean                   | 7.64   | 25.15   | 3.30   | 1.00   | 1.19           | 0.80   | 1.33    | 1.40      | 184.46   | 0.89   | 245.24    | 714.33   |
| CV                     | 8.25   | 7.08    | 7.57   | 1.68   | 1.43           | 2.61   | 1.25    | 1.10      | 1.19     | 0.91   | 8.75      | 0.70     |
| MSE2                   | 0.63   | 1.78    | 0.25   | 0.17   | 0.02           | 0.02   | 0.02    | 0.02      | 2.20     | 0.01   | 21.46     | 5.00     |

<sup>\*</sup>Indicates significance at the 5% probability level.

<sup>\*\*</sup>Indicates significance at the 1% probability level.

Degrees of freedom = 2, 1, 2 and 11, respectively.

<sup>&</sup>lt;sup>2</sup>Root mean square error

<sup>\*\*</sup>Indicates not significant

\*\*Indicates significance at the 1% probability level.

Degrees of freedom = 2, 1, 2 and 11, respectively.

<sup>&</sup>lt;sup>2</sup>Root mean square error

Table 4 (continued). Analyses of variance for AFIS data for Study.

| Source of              |        | -         |                       |                        |                      |                       | Visible foreign |
|------------------------|--------|-----------|-----------------------|------------------------|----------------------|-----------------------|-----------------|
| Variation <sup>1</sup> | SCN/gm | SCN/size  | Total/gm <sup>2</sup> | Dust size <sup>3</sup> | Dust/gm <sup>3</sup> | Trash/gm <sup>4</sup> | matter, %       |
| Machine                | 5.42ns | 3157.59ns | 8825.04ns             | 13.56ns                | 6269.67ns            | 242.05ns              | 0.10ns          |
| Cotton                 | 0.03ns | 13.52ns   | 21204.27ns            | 24.73ns                | 14156.84ns           | 708.13ns              | 0.12ns          |
| Machine*               |        | 3442.31ns | 3404.50ns             | 97.62ns                | 2550.34ns            | 117.94ns              |                 |
| Cotton                 | 1.98ns |           |                       |                        |                      |                       | 0.05ns          |
| Error                  | 2.98   | 922.29    | 6347.12               | 121.12                 | 3995.30              | 324.07                | 0.10            |
|                        |        |           |                       |                        |                      |                       |                 |
| P>F                    | 0.46   | 0.06      | 0.28                  | 0.83                   | 0.24                 | 0.52                  | 0.56            |
| Mean                   | 19.95  | 1204.78   | 559.59                | 353.17                 | 451.54               | 108.12                | 2.00            |
| CV                     | 8.66   | 2.52      | 14.24                 | 3.12                   | 14.00                | 16.65                 | 15.87           |
| $MSE^5$                | 1.73   | 30.37     | 79.67                 | 11.01                  | 63.21                | 18.00                 | 0.32            |

ns indicates not significant

Table 5. Means for AFIS data separated by Waller-Duncan for Study 1.

|             | Short fiber content, % |        |       | L(w), | UQL   | L(n), | Length | Length    |          | Mat   |         |          |
|-------------|------------------------|--------|-------|-------|-------|-------|--------|-----------|----------|-------|---------|----------|
| Variable    | Weight                 | Number | IFC   | in    | _     |       | -      | 2.5%, in. | Fineness | ratio | Nep/gm  | Nep/size |
| Machine     |                        |        |       |       |       |       |        |           |          |       |         |          |
| Standard    | 7.65a                  | 25.0a  | 3.30a | 0.99a | 1.19a | 0.80a | 1.33a  | 1.40a     | 184.77a  | 0.89a | 238.50a | 713.65a  |
| Brush       | 7.67a                  | 25.5a  | 3.33a | 0.99a | 1.19a | 0.80a | 1.32a  | 1.40a     | 183.90a  | 0.89a | 253.43a | 715.67a  |
| Roller      | 7.60a                  | 25.0a  | 3.27a | 0.99a | 1.19a | 0.80a | 1.33a  | 1.40a     | 184.70a  | 0.89a | 243.78a | 713.68a  |
| Variety     |                        |        |       |       |       |       |        |           |          |       |         |          |
| 1-STV 747   | 7.22                   | 24.36  | 3.04  | 1.00  | 1.19  | 0.81  | 1.32   | 1.40      | 187.44   | 0.90  | 226.73  | 715.54   |
| 2-STVBXN 47 | 8.05                   | 25.94  | 3.56  | 0.99  | 1.19  | 0.79  | 1.33   | 1.40      | 181.47   | 0.88  | 263.74  | 713.12   |

Table 5 continued. Means for AFIS data separated by Waller-Duncan for Study 1.

| SCN/   | SCN/                                      | Total/                                                                   | Dust                                                                                                                                                                                                                              | <b>Dust/</b>                                                                                                                                                                                                                                                                                                   | Trash/                                                                                                                                                                                                                                                                                                                                                                                    | Visible foreign                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gm     | size                                      | gm¹                                                                      | size <sup>2</sup>                                                                                                                                                                                                                 | gm²                                                                                                                                                                                                                                                                                                            | gm³                                                                                                                                                                                                                                                                                                                                                                                       | matter, %                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                           |                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18.98a | 1207.62ba                                 | 519.85a                                                                  | 354.62a                                                                                                                                                                                                                           | 417.15a                                                                                                                                                                                                                                                                                                        | 102.80a                                                                                                                                                                                                                                                                                                                                                                                   | 1.89a                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19.98a | 1226.17a                                  | 562.53a                                                                  | 351.62a                                                                                                                                                                                                                           | 456.18a                                                                                                                                                                                                                                                                                                        | 106.40a                                                                                                                                                                                                                                                                                                                                                                                   | 1.96a                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20.88a | 1180.55b                                  | 596.38a                                                                  | 353.28a                                                                                                                                                                                                                           | 481.30a                                                                                                                                                                                                                                                                                                        | 115.15a                                                                                                                                                                                                                                                                                                                                                                                   | 2.14a                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                           |                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.91  | 1203.91                                   | 593.91                                                                   | 352.00                                                                                                                                                                                                                            | 479.59                                                                                                                                                                                                                                                                                                         | 114.39                                                                                                                                                                                                                                                                                                                                                                                    | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.99  | 1205.64                                   | 525.27                                                                   | 354.34                                                                                                                                                                                                                            | 423.50                                                                                                                                                                                                                                                                                                         | 101.84                                                                                                                                                                                                                                                                                                                                                                                    | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | gm<br>18.98a<br>19.98a<br>20.88a<br>19.91 | gm size  18.98a 1207.62ba 19.98a 1226.17a 20.88a 1180.55b  19.91 1203.91 | gm         size         gm¹           18.98a         1207.62ba         519.85a           19.98a         1226.17a         562.53a           20.88a         1180.55b         596.38a           19.91         1203.91         593.91 | gm         size         gm¹         size²           18.98a         1207.62ba         519.85a         354.62a           19.98a         1226.17a         562.53a         351.62a           20.88a         1180.55b         596.38a         353.28a           19.91         1203.91         593.91         352.00 | gm         size         gm¹         size²         gm²           18.98a         1207.62ba         519.85a         354.62a         417.15a           19.98a         1226.17a         562.53a         351.62a         456.18a           20.88a         1180.55b         596.38a         353.28a         481.30a           19.91         1203.91         593.91         352.00         479.59 | gm         size         gm¹         size²         gm²         gm³           18.98a         1207.62ba         519.85a         354.62a         417.15a         102.80a           19.98a         1226.17a         562.53a         351.62a         456.18a         106.40a           20.88a         1180.55b         596.38a         353.28a         481.30a         115.15a           19.91         1203.91         593.91         352.00         479.59         114.39 |

<sup>&</sup>lt;sup>1</sup> Dust plus trash

<sup>\*\*</sup>Indicates significance at the 1% probability level.

<sup>&</sup>lt;sup>1</sup>Degrees of freedom = 2, 1, 2 and 11, respectively.

<sup>&</sup>lt;sup>2</sup> Dust plus trash.
<sup>3</sup> Smaller than 500 microns but larger than 50 microns.
<sup>4</sup> Larger than 500 microns and smaller than 2000 microns.

<sup>&</sup>lt;sup>5</sup>Root mean square error.

<sup>&</sup>lt;sup>2</sup> Smaller than 500 microns but larger than 50 microns <sup>3</sup> Larger than 500 microns and smaller than 2000 microns

Table 6. Analyses of variance for HVI classing data for Study 1.

| Source of             |         |         |            |          |         |         |
|-----------------------|---------|---------|------------|----------|---------|---------|
| variance <sup>1</sup> | Staple  | Leaf    | Micronaire | Strength | Rd      | Plusb   |
| Machine               | 0.18 ns | 0.12 ns | 0.002 ns   | 0.10 ns  | 0.97 ns | 0.01 ns |
| Cotton                | 0.03 ns | 0.43 ** | 0.46 **    | 0.56 ns  | 5.93 ** | 0.45 ** |
| Machine*cotton        | 0.03 ns | 0.10 ns | 0.002 ns   | 0.16 ns  | 0.23 ns | 0.02 ns |
| Error                 | 0.21    | 0.04    | 0.01       | 0.17     | 0.50    | 0.04    |
| P>F                   | 0.14    | 0.01    | 0.01       | 0.50     | 0.04    | 0.07    |
| Mean                  | 36.55   | 3.73    | 4.90       | 29.67    | 75.34   | 8.75    |
| CV                    | 1.25    | 5.11    | 2.37       | 1.41     | 0.94    | 2.20    |
| $MSE^2$               | 0.46    | 0.19    | 0.12       | 0.42     | 0.71    | 0.19    |

ns indicates not significant

<sup>2</sup>Root mean square error

Table 6 continued. Analyses of variance for HVI classing data for Study 1.

| Source of             | Trash,   |         |            | Color grade |           | Shirley A | nalyzer  |
|-----------------------|----------|---------|------------|-------------|-----------|-----------|----------|
| variance <sup>1</sup> | % area   | Length  | Uniformity | index       | Bark      | Total     | Visible  |
| Machine               | 0.01 ns  | 0.01 ns | 0.31 ns    | 3.15 ns     | 212.62 ns | 0.36 *    | 0.27 *   |
| Cotton                | 0.003 ns | 0.01 ns | 1.78 **    | 8.15 ns     | 27.43 ns  | 0.004 ns  | 0.09 ns  |
| Machine*cotton        | 0.003 ns | 0.01 ns | 0.01 ns    | 0.49 ns     | 459.53 ns | 0.04 ns   | 0.02  ns |
| Error                 | 0.003    | 0.01    | 0.11       | 2.63        | 596.71    | 0.08      | 0.05     |
| P>F                   | 0.18     | 0.91    | 0.01       | 0.38        | 0.80      | 0.13      | 0.07     |
| Mean                  | 0.37     | 1.14    | 82.65      | 98.03       | 13.6      | 4.12      | 2.50     |
| CV                    | 14.03    | 1.36    | 0.39       | 1.66        | 179.88    | 6.69      | 8.96     |
| $MSE^2$               | 0.05     | 0.02    | 0.33       | 1.62        | 24.43     | 0.28      | 0.22     |

ns indicates not significant

Table 7. Means for HVI classing data separated by Waller-Duncan for Study 1.

|             |                          |       |            | Strength, |        |       |
|-------------|--------------------------|-------|------------|-----------|--------|-------|
| Variable    | Staple, 32 <sup>nd</sup> | Leaf  | Micronaire | g/tex     | Rd     | Plusb |
| Machine     |                          |       |            |           |        |       |
| Standard    | 36.74a                   | 3.69a | 4.92a      | 29.81a    | 75.70a | 8.72a |
| Brush       | 36.50a                   | 3.74a | 4.88a      | 29.55a    | 75.41a | 8.78a |
| Roller      | 36.41a                   | 3.87a | 4.90a      | 29.67a    | 74.91a | 8.76a |
| Variety     |                          |       |            |           |        |       |
| 1- STV 747  | 36.59                    | 3.89  | 5.06       | 29.85     | 74.77  | 8.91  |
| 2-STVBXN 47 | 36.51                    | 3.58  | 4.74       | 29.50     | 75.91  | 8.60  |

Table 7 continued. Means for HVI classing data separated by Waller-Duncan for Study 1.

| Source of   | Trash, |             |            | Color grade | Color |       | Shirley A | nalyzer, % |
|-------------|--------|-------------|------------|-------------|-------|-------|-----------|------------|
| variance    | % area | Length, in. | Uniformity | index       | mode  | Bark  | Total     | Visible    |
| Machine     |        |             |            |             |       |       |           |            |
| Standard    | 0.35a  | 1.14a       | 82.91a     | 98.56a      | 31a   | 9.3a  | 3.88b     | 2.30b      |
| Brush       | 0.34a  | 1.14a       | 82.56a     | 98.33a      | 31a   | 11.1a | 4.11ab    | 2.48ba     |
| Roller      | 0.41a  | 1.14a       | 82.48a     | 97.20a      | 31a   | 20.4a | 4.38a     | 2.73a      |
| Variety     |        |             |            |             |       |       |           |            |
| 1- STV 747  | 0.38   | 1.14        | 82.96      | 97.36       | 31    | 14.81 | 4.14      | 2.57       |
| 2-STVBXN 47 | 0.35   | 1.14        | 82.33      | 98.70       | 31    | 12.35 | 4.10      | 2.43       |

<sup>\*</sup>Indicates significance at the 5% probability level.

<sup>\*\*</sup>Indicates significance at the 1% probability level.

<sup>&</sup>lt;sup>1</sup>Degrees of freedom = 2, 1, 2 and 11, respectively.

<sup>\*</sup>Indicates significance at the 5% probability level.

<sup>\*\*</sup>Indicates significance at the 1% probability level.

Degrees of freedom = 2, 1, 2 and 11, respectively.

<sup>&</sup>lt;sup>2</sup>Root mean square error

Table 8. Analyses of variance for seedcoat fragments per gram of lint for Study 1.

| Source of             | Seedcoat F | Seedcoat Fragments  |         | otes                | Funiculi |                     |
|-----------------------|------------|---------------------|---------|---------------------|----------|---------------------|
| variance <sup>1</sup> | Count      | Weight <sup>2</sup> | Count   | Weight <sup>2</sup> | Count    | Weight <sup>2</sup> |
| Machine               | 176.17 ns  | 29.92 ns            | 2.77 ns | 92.26 ns            | 1.34 ns  | 0.05 ns             |
| Cotton                | 54.54 ns   | 57.72 ns            | 0.10 ns | 5.89 ns             | 3.86 ns  | 0.48 ns             |
| Machine*cotton        | 18.71 ns   | 32.72 ns            | 2.24 ns | 56.38 ns            | 1.12 ns  | 0.41 ns             |
| Error                 | 60.31      | 20.92               | 1.57    | 31.50               | 0.87     | 0.17                |
| P>F                   | 0.27       | 0.20                | 0.33    | 0.16                | 0.15     | 0.22                |
| Mean                  | 41.67      | 22.35               | 3.07    | 11.36               | 3.02     | 1.10                |
| CV                    | 18.64      | 20.46               | 40.81   | 49.40               | 30.90    | 37.61               |
| $MSE^3$               | 7.77       | 4.57                | 1.25    | 5.61                | 0.9.3    | 0.41                |

ns indicates not significant

Table 9. Means for seedcoat fragments per gram of lint separated by Waller-Duncan for Study 1.

|             | Seedcoat Fragments |                     | M     | otes                | Funiculi |                     |
|-------------|--------------------|---------------------|-------|---------------------|----------|---------------------|
| Variable    | Count              | Weight <sup>1</sup> | Count | Weight <sup>1</sup> | Count    | Weight <sup>1</sup> |
| Machine     |                    |                     |       |                     |          |                     |
| Standard    | 35.50a             | 21.53a              | 2.33a | 9.13a               | 2.83a    | 1.03a               |
| Brush       | 43.83a             | 20.64a              | 3.67a | 15.89a              | 36.56a   | 1.21a               |
| Roller      | 45.67a             | 24.88a              | 3.22a | 9.06a               | 2.67a    | 1.06a               |
| Variety     |                    |                     |       |                     |          |                     |
| 1- STV 747  | 39.93              | 20.56               | 3.15  | 10.79               | 2.56     | 0.94                |
| 2-STVBXN 47 | 43.41              | 24.14               | 3.00  | 11.93               | 3.48     | 1.26                |

<sup>&</sup>lt;sup>1</sup>Milligrams per gram of lint

<sup>\*</sup>Indicates significance at the 5% probability level.

<sup>\*\*</sup>Indicates significance at the 1% probability level.

Degrees of freedom = 2, 1, 2 and 11, respectively. Milligrams per gram of lint

<sup>&</sup>lt;sup>3</sup>Root mean square error

Table 10. Analyses of variance for Study 2. See appendix A for abbreviations.

|                | Mean        | squares     | •       |         |          | Coefficient  |          |        |
|----------------|-------------|-------------|---------|---------|----------|--------------|----------|--------|
| Variable       | Machine     | Error       | F-Value | Pr > F  | R-Square | of variation | Root MSE | Mean   |
| LW             | 0.01283     | 0.00080     | 16.03   | 0.0003* | 0.3023   | 2.9741       | 0.0283   | 0.951  |
| Lwcv           | 95.48908    | 11.06766    | 8.63    | 0.0057* | 0.1891   | 10.4831      | 3.3268   | 31.73  |
| UQLv           | 0.00301     | 0.00013     | 22.5    | 0.0001* | 0.3781   | 1.0256       | 0.0116   | 1.129  |
| SFCw           | 16.06251    | 0.41435     | 38.77   | 0.0001* | 0.5117   | 9.3027       | 0.6437   | 6.92   |
| Ln             | 0.03692     | 0.00275     | 13.4    | 0.0008* | 0.2659   | 6.6648       | 0.0525   | 0.788  |
| Lncv           | 340.80411   | 39.54585    | 8.62    | 0.0057* | 0.1889   | 13.6976      | 6.2885   | 45.91  |
| SFCn           | 85.57600    | 3.74450     | 22.85   | 0.0001* | 0.3818   | 9.1848       | 1.9351   | 21.07  |
| 1pt5           | 0.00490     | 0.00030     | 16.47   | 0.0002* | 0.3080   | 1.3570       | 0.0172   | 1.271  |
| 12pt5          | 0.00425     | 0.00019     | 21.89   | 0.0001* | 0.3717   | 1.0285       | 0.0139   | 1.355  |
| Fine           | 45.90385    | 10.98394    | 4.18    | 0.0481* | 0.1015   | 1.8567       | 3.3142   | 178.50 |
| IFC            | 2.90080     | 0.29119     | 9.96    | 0.0032* | 0.2121   | 13.4663      | 0.5396   | 4.01   |
| Matrat         | 0.00402     | 0.00043     | 9.38    | 0.0041* | 0.2023   | 2.3739       | 0.0207   | 0.872  |
| Nepsize        | 16.78822    | 2119.27537  | 0.29    | 0.5915  | 0.0079   | 1.0754       | 7.5682   | 703.8  |
| Nepgm          | 1279.05361  | 647.95960   | 1.97    | 0.1684  | 0.0506   | 10.9944      | 25.4551  | 231.5  |
| <b>SCNsize</b> | 27155.44676 | 3227.31990  | 8.41    | 0.0062* | 0.1853   | 4.5251       | 56.8095  | 1255.4 |
| SCNgm          | 64.06581    | 5.83506     | 10.98   | 0.0021* | 0.2288   | 15.9243      | 2.4156   | 15.2   |
| Total          | 37617.32560 | 18840.61400 | 2       | 0.1660  | 0.0512   | 21.0127      | 137.2611 | 653.2  |
| Meansize       | 111.17604   | 495.16428   | 0.22    | 0.6384  | 0.0060   | 6.4542       | 22.2523  | 344.8  |
| Dustgm         | 25005.77600 | 14755.64490 | 1.69    | 0.2010  | 0.0438   | 22.5866      | 121.4728 | 537.8  |
| Color          | 9.02500     | 11.82184    | 0.76    | 0.3877  | 0.0197   | 9.0067       | 3.4383   | 38.2   |
| Mike           | 0.00961     | 0.03435     | 0.28    | 0.5999  | 0.0073   | 4.1189       | 0.1853   | 4.5    |
| Strength       | 0.66564     | 0.63974     | 1.04    | 0.3142  | 0.0267   | 2.7554       | 0.7998   | 29.03  |
| Rd             | 0.08100     | 0.78837     | 0.1     | 0.7503  | 0.0027   | 1.2156       | 0.8879   | 73.0   |
| Plusb          | 0.00196     | 0.06247     | 0.03    | 0.8603  | 0.0008   | 2.7593       | 0.2499   | 9.06   |
| Leaf           | 0.72900     | 0.10058     | 7.25    | 0.0105* | 0.1602   | 8.7247       | 0.3171   | 3.6    |
| Pctarea        | 0.00004     | 0.00007     | 0.52    | 0.4767  | 0.0134   | 17.9978      | 0.0084   | 0.047  |
| Length         | 0.00088     | 0.00010     | 8.79    | 0.0052* | 0.1878   | 0.9336       | 0.1003   | 1.074  |
| Uniform        | 2.20900     | 0.13847     | 15.95   | 0.0030* | 0.2957   | 0.4506       | 0.3721   | 82.58  |

<sup>\*</sup>Indicates significance at the 5% level of probability.

Table 11. Overall means for the two machine treatments for AFIS and HVI data for Study 2. See Appendix A for description of abbreviations.

|         | L(w), | L(w), | UQL(w), | SFC(w), | L(n) | L(n),         | SFC(n),  | Length  |
|---------|-------|-------|---------|---------|------|---------------|----------|---------|
| Machine | in.   | CV    | in.     | in.     | in.  | $\mathbf{CV}$ | <b>%</b> | 5%, in. |
| 24D     | 0.93  | 33.26 | 1.12    | 7.55    | 0.76 | 48.79         | 22.51    | 1.26    |
| 28D     | 0.97  | 30.13 | 1.14    | 6.26    | 0.82 | 42.88         | 19.55    | 1.28    |

Table 11 continued. Overall means for the two machine treatments for AFIS and HVI data for Study 2. See Appendix A for description of abbreviations.

| Length    | • •    |      | Maturity | Nep/size, |        | SCN/size, |        | Total |
|-----------|--------|------|----------|-----------|--------|-----------|--------|-------|
| 2.5%, in. | Fine   | IFC  | ratio    | um        | Nep/gm | um        | SCN/gm | dust  |
| 1.34      | 177.44 | 4.27 | 0.86     | 703.14    | 237.11 | 1281.15   | 13.92  | 623.0 |
| 1.37      | 179.61 | 3.73 | 0.88     | 704.45    | 225.65 | 1228.36   | 16.48  | 685.1 |

Table 11 continued. Overall means for the two machine treatments for AFIS and HVI data for Study 2. See Appendix A for description of abbreviations.

| 101 5144 21 | Strength, | осостр | 2011 01 40 | 010 (1441 | Trash, | Length, |      |         |
|-------------|-----------|--------|------------|-----------|--------|---------|------|---------|
| Dust/gm     | Mike      | g/tex  | Rd         | Plusb     | Leaf   | % area  | in.  | Uniform |
| 513.13      | 4.48      | 28.90  | 73.00      | 9.07      | 3.50   | 0.05    | 1.07 | 82.35   |
| 563.79      | 4.52      | 29.16  | 73.09      | 9.05      | 3.77   | 0.05    | 1.08 | 82.82   |

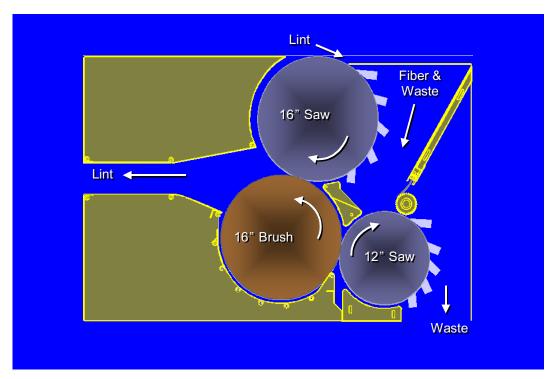



Figure 1. Cross-sectional view of the modified lint cleaner.



Figure 2. Side view of the experimental lint cleaner installed at Stoneville lab.



Figure 3. Side view of modified lint cleaner installed at E. Ritter Gin.



Figure 4. Typical lint cleaner waste from 16D lint cleaner.



Figure 5. Typical lint cleaner waste from 28D lint cleaner.

| Appendix A. Abbreviation | ons for AFIS and HVI variables.                                        |
|--------------------------|------------------------------------------------------------------------|
| Nep size [mm]            | Mean size of all neps (both fiber and seed coat neps) in the sample.   |
| _                        | Total nep count normalized per gram. This includes both fiber          |
| Neps per gram            | and seed coat neps.                                                    |
|                          | Average length of all the fibers in the sample computed on a           |
| L(w) [in]                | weight basis.                                                          |
| L(w) CV [%]              | Percentage of the coefficient of variation of the length by weight.    |
|                          | Upper Quartile Length by weight. This is the length which is ex-       |
| UQL(w) [in]              | ceeded by 25% of the fibers by weight.                                 |
| SFC(w) [%]               | Short fiber content of the sample (calculated by weight).              |
|                          | Average length of all the fibers in the sample computed on a num-      |
| L(n) [in]                | ber basis.                                                             |
| L(n) CV [%]              | Percentage of the coefficient of variation of the length by number.    |
| . ,                      | Short fiber content of the sample (actual fibers counted by num-       |
| SFC(n) [%]               | ber).                                                                  |
| ( ) [ ]                  | Length, calculated by number, that is exceeded by five percent of      |
| L5%(n) [in]              | the fibers.                                                            |
| ( ) [ ]                  | Length, calculated by number, that is exceeded by 2.5 percent of       |
| L2.5%(n) [in]            | the fibers.                                                            |
|                          | Total trash consists of Trash and Dust; this is the total of the trash |
| Total trash [count/gra   | and dust count per gram of the sample.                                 |
| Trash Size [mm]          | Mean size of all the trash in the sample.                              |
| . ,                      | Particles measured by the Trash Module that are below the size         |
| Dust [count/gram]        | defined as Dust on the trash Report Type setup screen.                 |
|                          | All foreign matter in cotton that is above the size defined as Dust    |
|                          | is considered trash. This is the amount of trash per gram of the       |
| Trash [count/gram]       | sample.                                                                |
| VFM [%]                  | Percentage of Visible Foreign Matter (dust and trash) in the sample.   |
| SCN size [mm]            | Mean size of all seed coat neps in the sample.                         |
| SCN per gram             | Seed coat nep count normalized per gram.                               |
| Z Z Z Y Y Z Z            | Fineness - Mean fiber fineness (weight per unit length) in mil-        |
|                          | litex. One thousand meters of fibers with a mass of 1 milligram        |
| Fine [mTex]              | equals 1 millitex.                                                     |
|                          | Immature Fiber Content is the percentage of fibers with less than      |
|                          | 0.25 maturity. The lower the IFC%, the more suitable the fiber is      |
| IFC [%]                  | for dyeing.                                                            |
| 11 0 [70]                | Maturity Ratio - The ratio of fibers with a 0.5 (or more) circular-    |
|                          | ity ratio divided by the amount of fibers with a 0.25 (or less) cir-   |
|                          | cularity. The higher the maturity ratio, the more mature the fibers    |
| Mat Ratio                | are and the better the fibers are for dyeing.                          |
| Micronaire               | Micronaire is a measure of fiber fineness and maturity.                |
|                          | Strength measurements are reported in terms of grams per tex. A        |
| Strength                 | tex unit is equal to the weight in grams of 1,000 meters of fiber.     |
| <b>5</b> ***             | Color of cotton is determined by the degree of reflectance (Rd) and    |
|                          | yellowness (+b). Reflectance indicates how bright or dull a sample     |
|                          | j === : : : : : : : : : : : : : : : : :                                |

yellowness (+b). Reflectance indicates how bright or dull a sais, and yellowness indicates the degree of color pigmentation.

Rd and Plusb Trash is a measure of the amount of non-lint materials in the cot-

ton, such as leaf and bark from the cotton plant. The surface of the cotton sample is scanned by a video camera and the percentage of the surface area occupied by trash particles is calculated. Fiber length is the average length of the longer one-half of the fi-

bers (upper half mean length).

Percent area

Length

Length uniformity is the ratio between the mean length and the up-

per half mean length of the fibers and is expressed as a percentage. Uniform