UNCERTAINTY ASSOCIATED WITH PARTICULATE MATTER CONCENTRATION MEASUREMENTS FROM AGRICULTURAL OPERATIONS Jacqueline E. Price, Ron E. Lacey, Bryan W. Shaw, and Calvin B. Parnell, Jr. Center for Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

Abstract

Gravimetric measurement of particulate matter (PM) concentrations in ambient environments is the basis for regulation of PM fractions (i.e. PM_{10} and $PM_{2.5}$) under the Federal Clean Air Act. While the measurement is straight forward, inherent elements of uncertainty enter the analysis, resulting in much larger uncertainty in the concentration calculation. This paper discusses the importance of uncertainty approximation and analyzes the uncertainty inherent in a gravimetric PM concentration measurement. Utilizing a first order Taylor Series approximation and analytical derivatives, the overall system uncertainty is computed. Additionally, this paper uses a sensitivity analysis of the contributing uncertainty elements in order to identify the most critical measurements and their implications on the calibration, operation, and design of PM samplers.

Introduction

Gravimetric measurement of particulate matter (PM) concentration in ambient environments is the basis for regulation of PM fractions (i.e. PM_{10} and $PM_{2.5}$) under the Federal Clean Air Act. In cotton ginning, particulate matter (PM) is considered the primary emitted air pollutant. In general, PM emissions from gins processing picker-harvested cotton are typically less than those of gins processing stripper-harvested cotton, and the PM emissions from the ginning of the first harvest of cotton are generally less than the PM emissions from later harvests (U.S. EPA, 1995). Additionally, data shows that approximately 37% of the total PM emitted from cotton ginning (following PM control systems) is PM_{10} , which describes particulate matter with an aerodynamic equivalent diameter less than or equal to 10 μ m (U.S. EPA, 1995). However, we know that assuming a lognormal particle size distribution of the PM in the air with a typical cotton gin dust mass median diameter of 20 μ m and GSD of 2.0, the mass of PM₁₀ on the filter equals approximately 16% of the total suspended particulate matter measured (Wang, 2000).

While these PM measurements are straight forward, numerous elements of uncertainty can enter the analysis, resulting in much larger uncertainty in the concentration calculation. This discussion covers the incorporation of uncertainty analysis in gravimetric measurement of particulate matter.

A measurement of a variable can only provide a deterministic estimate of the quantity being measured; thus, it can only be considered complete when supplemented by a quantitative statement of the inaccuracies surrounding the measurement. Therefore, proper experimental planning and design requires an understanding of the errors inherent in these measurements so that the experimenter can have some degree of certainty in the final measurements and calculations.

Uncertainty can be defined as the statistical representation of the reliability associated with a specific set of measurements (Yegnan et al., 2002). Uncertainty can also be described as the possible set of values on a given measurement and can be considered a statistical variable (Kline, 1985). The term *error* takes on a slightly different definition. The total error, δ , is the difference between the measured value and the true value of the quantity being measured. It can also be thought of as the sum of the *systematic error* and the *random error*, $\delta = \beta + \varepsilon$, where β is the systematic error and ε is the random error (ANSI/ASME, 1998). This is illustrated by Figure 1.

Systematic error, β , also known as fixed error or bias, is defined as the constant element of the total error, δ ; therefore, this error value remains constant for each measurement. Random error, ε , also known as repeatability error or precision error, is the random error element of the total error, thus each measurement takes on a different value for this part of the total error measurement (ANSI/ASME, 1998). Thus, the term error refers to a fixed quantity, and it cannot be considered a statistical variable.

Many of the current methods of estimating the uncertainty surrounding experimental results are based upon an analysis by Kline and McClintock (1953). With the goal in mind of determining the effects of each potential measurement error, they proposed a process which considers the impact of these individual uncertainties, commonly referred to as the propagation of uncertainty (Kline and McClintock, 1953). This process involves a Taylor series approximation to estimate the uncertainty in various circumstances.

Objectives

The objectives of this uncertainty analysis are:

- 1. To determine the uncertainty surrounding the gravimetric particulate matter (PM) concentration using a first-order Taylor series approximation method.
- To identify the most critical measurements and their implications on the calibration, operation, and design of PM samplers using a sensitivity analysis.

Methodology

The impact of the individual uncertainties of each primary measurement in an experiment on the total systematic uncertainty of the experiment must be approximated. This idea is commonly referred to as the law of propagation of uncertainty (ISO, 1995). The uncertainties from the individual independent variables propagate through a data reduction equation into a resulting overall measurement of uncertainty as demonstrated in Figure 2 (Coleman & Steele, 1999).

Primary Systematic Uncertainty Determination

Manufacturers specify the accuracy of their respective measurement instrument, and this information is used in this analysis as the value for the systematic uncertainty of the measuring device. This accuracy specification takes into account various factors such as linearity, gain, and zero errors (Coleman & Steele, 1999). All of the uncertainty values used in this discussion except for that of the pressure drop across the orifice meter (ΔP_a) were obtained from the specifications on the manufacturers' data sheets. The uncertainty value given by the manufacturer must include any sensor or transducer bias in the system. In the case of the ΔP_a reading from the Hobo instrument, the bias in both the pressure transducer and the Hobo data logger must be accounted for.

Uncertainty Propagation Calculation

With the individual systematic uncertainties now determined, the propagated systematic uncertainty can be calculated. Assuming that all individual uncertainties are at the same confidence level (95% confidence interval or 20:1 odds in this instance), let *Y* be a function of independent variables $x_1, x_2, x_3, ..., x_n$. Therefore, the data reduction equation for determining Y from each x_i is

$$Y = Y(x_1, x_2, ..., x_n)$$
[1],

Furthermore, let ω be defined as the systematic uncertainty in the result and $\omega_1, \omega_2, \dots, \omega_n$ as the systematic uncertainties in each of the above independent variables. Given the same confidence interval on each of the independent (uncorrelated) variables, the resulting systematic uncertainty of Y, ω_γ , can be calculated as the positive square root of the estimated variance, ω_{γ}^2 , from the following equation (Holman, 2001)

$$\omega_{\rm Y} = \pm \sqrt{\omega_{\rm Y}^{2}}$$
[2],

where the variance, ω_v^2 , is calculated by

$$\omega_{Y}^{2} = \left(\frac{\delta Y}{\delta x_{1}}\omega_{1}\right)^{2} + \left(\frac{\delta Y}{\delta x_{2}}\omega_{2}\right)^{2} + \dots + \left(\frac{\delta Y}{\delta x_{n}}\omega_{n}\right)^{2}$$
[3],

or

$$\omega_Y^{2} = (\theta_1 \omega_1)^2 + (\theta_2 \omega_2)^2 + \dots + (\theta_n \omega_n)^2$$
[4],

where θ , the *sensitivity coefficient*, is defined as

$$\theta_i = \frac{\delta Y}{\delta x_i}$$
^[5].

Gravimetric Sampling Governing Equations

The concentration of particulate matter (PM) in the air can be measure by gravimetric means, where the PM in the air is captured on a filter and then weighed. The particulate matter concentration is a function of the mass of PM collected in a known volume of air as indicated in equation 6 below.

$$C = \frac{W}{V}$$
[6],

where C is the concentration, W is the mass of PM_{10} collected on the filter, and V is the total volume of air through the system during the entire time of sampling. Both W and V are calculated quantities from other measurements. Therefore, these quantities must be reduced to basic measurements as seen in Figure 3.

First, the mass on the filter, W, is necessary. Assuming a lognormal particle size distribution of the PM in the air with a typical cotton gin dust mass median diameter of 20 μ m and GSD of 2.0, the mass of PM₁₀ on the filter equals approximately 16% of the total suspended particulate matter measured (Wang, 2000). Therefore, the mass of PM₁₀ on the filter is calculated by equation 7.

$$W = 0.16 * (W_f - W_i)$$
[7].

where W_f is the weight of the filter and PM after the sampling period and W_i is the weight of the bare filter before the sampling period. These filters are weighed three times before and after sampling under controlled environmental conditions (relative humidity and temperature has an impact on the accuracy), and the mean of each of these three measurements is used. Both W_f and W_i are primary measured quantities, so no further reduction is necessary.

The total volume of air in ft³, V, used during the sampling time is determined by equation 8.

$$V = Q^* \Theta \tag{[8]},$$

where Q is the volumetric flow rate in cfm and θ is the elapsed time of the test in minutes. The elapsed time of the test, θ , is a measured quantity; however, Q is not. So, Q must be evaluated further. Each gravimetric sampler uses a fan or pump to draw air downward through the filter. The fan/pump setup includes an orifice meter in the line to the sampler in order to calculate the volumetric flow rate of air through the tube. The volumetric flow rate in cfm, Q, is calculated from the pressure drop across an orifice meter as in the following equation, which is derived from Bernoulli's equation (Sorenson and Parnell, 1991).

$$Q = 5.976 * k * (D_0)^2 * \sqrt{\frac{\Delta P_a}{\rho_a}}$$
[9],

where k is a calibration constant for the orifice meter, ΔP_a is the measured pressure drop across the orifice meter in inches of water using a transducer output to a data logger to record the instantaneous pressure drop across the orifice meter, ρ_a is the mean air density in lbs*ft⁻³, and D₀ is the diameter of the orifice in inches determined by the end mill specifications. For field sampling measurements, the gas used is air where the air density in lbs*ft⁻³ can be estimated by equation 10 (Cooper and Alley, 1994).

$$\rho_a = \left[\frac{P_a - RH * P_s}{0.37 * (460 + T)}\right] + \left[\frac{RH * P_s}{0.596 * (460 + T)}\right]$$
[10],

where P_s is the saturated vapor pressure in lbs*in⁻² at T (Engineering Toolbox, 2003), T is the dry bulb temperature of the air in degrees Fahrenheit, and RH is the relative humidity fraction of the air. In three of the four examples that follow, the value of k is determined against a laminar flow element (LFE) of greater precision and accuracy than the orifice meter, where the value of k is given by equation 11.

$$k = \frac{Q_{LFE}}{5.976 * (D_0)^2 * \sqrt{\frac{\Delta P_c}{\rho_c}}}$$
[11],

where Q_{LFE} is the flow given by the LFE (ft³*min⁻¹), ρ_c is the density of the air during calibration (lbs*ft³), and ΔP_c is the pressure drop across the orifice meter during calibration in inches of water. In the low volume example, the reading from a mass flow meter ($Q_{massflowmeter}$) is used in lieu of Q_{LFE} in equation 11 (to determine the k value). The density of the air during calibration, ρ_c , is calculated using the same equation as ρ_a , (refer to equation 10).

Results and Discussion

Sensitivity Coefficient Determination

In order to evaluate the effect of each primary measurement on the final concentration measurement, the sensitivity must be calculated with respect to each of these primary measurements. The sensitivity coefficient for each element of gravimetric sampling system is based on equation 5. In order to determine the sensitivity coefficients, the systematic uncertainty of each instrument is necessary. Table 1 specifies the instruments used for each measurement as well as the related systematic uncertainty as provided in the manufacturer's specifications. These uncertainty values are assumed to be at a 95% confidence interval (2 standard deviations from the mean, also referred to as 20:1 odds). Literature identifies this as a Type B analysis in which the evaluation of systematic uncertainty is based upon scientific judgment and manufacturers' specifications (NIST, 1994).

With this systematic uncertainty information, the sensitivity coefficient for each variable in equations 6-11 is determined using partial differential equations (as described by equation 5). These partial differentials can be found in Appendix A.

Sensitivity and Uncertainty Analysis

To determine the most sensitive input parameters with respect to the output particulate matter concentration, a sensitivity analysis must be performed on the uncorrelated primary measurements (Yegnan et al, 2002). The information obtained from the sensitivity analysis is used to obtain the uncertainty in the particulate matter concentration calculation. Additionally, this information helps the experimenter identify the most influential sources of uncertainty. This proves to be important when the amount of uncertainty in the final computation needs to be reduced by identifying these influential sources of uncertainty.

This analysis evaluates the PM_{10} concentrations in four situations: the high volume sampling technique (Q ~ 50 cfm, which is the midpoint of the U.S. EPA defined appropriate operating flow rates; Q ~ 39 cfm and Q ~ 60 cfm, which are the upper and lower limit flow rates as defined by the U.S. EPA) and low volume sampling technique (Q ~ 0.6 cfm ~ 1 m³/min) used by the Texas A&M Center for Agricultural Air Quality Engineering & Science (CAAQES). It is important to note that the sampling instrumentation used by CAAQES has less uncertainty and variability associated with each piece of instrumentation than the approved EPA sampling instrumentation.

Each portion of Table 2 is a summary of the sensitivity of each independent parameter contributing to the final particulate matter concentration. This information is derived from a model in Microsoft Excel as provided in Appendix B. Using the process defined in the methods section, the sensitivities of each of the parameters are calculated based on equation 5. The uncertainty of each secondary measurement (the propagation of the primary measurements) is determined by the process as described in equations 3 and 4. These secondary uncertainties include not only the uncertainty in the concentration measurement (ω_c) but also the uncertainty in the mass on the filter (ω_w), the volume of air (ω_v), the volumetric flow rate of air (ω_q), the density of the air during the sampling period (ω_{p_a}), the density of the air during the orifice meter calibration (ω_{p_c}) and the k value across the orifice meter (ω_k). Ultimately, the model calculates the amount of impact of each parameter on the total uncertainty will yield a value much larger than 100%. However, if the parameters representing the primary measurements are summed (ΔP_a , T_a , P_a , RH_a , P_{sata} , Q_{LFE} , D_0 , ΔP_e , T_e , P_e , RH_e , P_{sate}), then the Percentage of Total Uncertainty results in 100% of the total uncertainty.

The following scenario evaluations are included in Tables 2 and 3 (with the calculations included in Figures 4 - 7):

- TAMU Gravimetric Sampling $Q \sim 0.6$ cfm (1 m³/hr)
- TAMU Gravimetric Sampling Q ~ 39 cfm
- TAMU Gravimetric Sampling Q ~ 50 cfm
- TAMU Gravimetric Sampling Q ~ 60 cfm

Table 3 displays the overall concentration uncertainty for each of the scenarios, while Table 2 breaks down the uncertainty into the contribution of each measurement to the total uncertainty.

In all four scenarios, it's important to note that the leading contributor to the uncertainty in the final concentration calculation is the pressure drop across the orifice meter. If we are to seek a higher degree of certainty in our final concentration calculation, then the optimal decision would be to decrease the uncertainty in the pressure drop across the orifice meter measurement.

Conclusions

A measurement of a variable can only provide a deterministic estimate of the quantity being measured; thus, it can only be considered complete when supplemented by a quantitative statement of the inaccuracies surrounding the measurement. Thus, it is extremely important that all scientific measurements and calculations include a statement of uncertainty. This analysis uses a first order Taylor Series approximation to determine the total uncertainty surrounding the PM concentration for four gravimetric sampling scenarios.

In addition to determining the total uncertainty, the most critical measurements in gravimetric sampling of PM are identified using a sensitivity analysis. In evaluating the uncertainty surrounding each measurement and the impact on the total uncertainty in the final calculation, it is notable that the pressure drop across the orifice meter during the test as well as during calibration accounts for approximately 60% - 80% of the total uncertainty in each of the four examples. With this knowledge, the experimenter has identified the optimal part of the measurement process to focus on to effectively reduce the total uncertainty in the experiment, if desired.

Thus, this analysis has provided a systematic method of determining which instruments in the process need to be improved on in terms of reducing overall uncertainty by using a Taylor Series approximation approach based off of the pioneering research by Kline and McClintock in 1953. An uncertainty analysis should be included in every single experimental procedure!

References

American National Standards Institute/American Society of Mechanical Engineers (ANSI/ASME). *Test Uncertainty*, Performance Test Code 19.1 – 1998. New York, NY: ASME.

Coleman, Hugh W., and W. Glenn Steele. 1999. *Experimentation and Uncertainty Analysis for Engineers*. 2nd ed. New York, NY: John Wiley & Sons.

Cooper, C. David, and Alley, F.C. 1994. Air Pollution Control: A Design Approach. 2^{nd} ed. Prospect Heights, Illinois: Waveland Press, Inc.

Devore, Jay L. 1995. Probability and Statistics for Engineering and the Sciences. 4th ed. Pacific Grove, CA: Brooks/Cole.

The Engineering Toolbox. 2003. *Saturated Steam Table in SI Units*. http://www.engineeringtoolbox.com/28_101.html. Last accessed December 18, 2003.

Holman, J.P. 2001. Experimental Methods for Engineers. 7th ed. Boston, MA: McGraw Hill.

International Standards Organization (ISO). 1995. Guide to the Expression of Uncertainty in Measurement. Geneva: ISO.

Kline, S.J., and McClintock, F.A. 1953. Describing Uncertainties in Single-Sample Experiments. *Mechanical Engineering*. 75: 3-8.

Kline, S.J. 1985. The Purposes of Uncertainty Analysis. Journal of Fluids Engineering. 107: 153-161.

National Institute of Standards and Technology (NIST). 1994. *Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results*. NIST Technical Note 1297. United States Department of Commerce. Washington, DC: US GPO.

Sorenson, J.W., and Parnell, Calvin B. 1991. Agricultural Processing Technology. College Station, TX: Texas A&M University.

U.S. EPA. 1995. *Compilation of Air Pollutant Emission Factors, AP-42, 5th Edition*, Volume I: Stationary Point and Area Sources. Research Triangle Park, NC: U.S. GPO.

USEPA. 1999. 40 CFR Part 50. National Primary and Secondary Ambient Air Quality Standards. Research Triangle Park, NC: U.S. GPO.

USEPA. 1999. 40 CFR Part 70. National State Operating Permit Programs. Research Triangle Park, NC: U.S. GPO.

Wang, L. 2000. A New Engineering Approach to Cyclone Design for Cotton Gins. M. S. thesis, Agricultural Engineering Dept., Texas A&M University, College Station.

Yegnan, A., D.G. Williamson, A.J. Graettinger. 2002. Uncertainty Analysis in Air Dispersion Modeling. Environmental Modeling & Software. 17: 639-649.

Table 1. Instrument Specification.

		Systematic
Parameter	Instrument	Uncertainty
w w	Sartortius SC2 (low volume)	1 * 10 ⁻⁷ g
W_i, W_f	Mettler Toledo AG balance (high volume)	2 * 10 ⁻⁴ g
Θ (Time)	HOBO data logger	0.20 min
AD	Omega PX274 Pressure Transducer	0.075
ΔP_a	+ HOBO cord	0.1 mA + 3 %
Do	End Mill Specs	0.025 in
Ta	HOBO Weather Station Temperature/RH Smart Sensor	0.8 °F
Pa	HOBO Weather Station Barometric Pressure Smart Sensor	1 %
RHa	HOBO Weather Station Temperature/RH Smart Sensor	3 %
P _{sata}	Steam Tables	0.0001 psia
Q _{massflowmeter}	Aalborg GFC17 Mass Flowmeter	1.5 % FS
Q _{LFE}	Meriam Instruments Model 50MC2-2	0.344 cfm
ΔP_c	Digital Manometer – Dwyer Series 475 Mark III	0.5 % FS
T _c	Davis Perception II	1 °F
Pc	Davis Perception II	1 %
RH _c	Davis Perception II	5%
P _{satc}	Steam Tables	0.0001 psia

			TAMU High Volume TAMU Low Volume]	EPA Lower I High Volu		EPA Upper Limit High Volume			
	Parameter	Units	Nominal Value	Uncertainty	% of Total Uncertainty	Nominal Value	Uncertainty	% of Total Uncertainty	Nominal Value	Uncertainty	% of Total Uncertainty	Nominal Value	Uncertainty	% of Total Uncertainty	
Mass	W_{f}	G	9.1	2.00E-04	1.663%	10.3013	1.00E-07	0.0016%	9.786	2.00E-04	1.431%	9.832	2.00E-04	1.655%	
	W _i	G	9.7	2.00E-04	1.663%	10.3	1.00E-07	0.0016%	9.7	2.00E-04	1.431%	9.7	2.00E-04	1.655%	
Volume	θ(Time)	Min	180	0.20000	0.016%	180	0.20000	0.0088%	180	0.20000	0.0084%	180	0.20000	0.023%	
Volı	Q	Cfm	50.00	4.33220	96.66%	0.589	0.06977	99.99%	39.00	4.66991	97.13%	60.00	4.34247	96.67%	
	ΔP_a	in of H ₂ O	1.5493	0.2260	68.50%	1.074	0.2118	69.2%	0.9426	0.2078	82.31%	2.2310	0.2465	56.30%	
ð	$ ho_{a}$	Lbs/ft ³	0.07213	0.000736	0.335%	0.07213	0.000736	0.185%	0.07213	0.000736	0.176%	0.07213	0.000736	0.480%	
	k		0.80235	0.037300	27.83%	0.72620	0.04761	30.62%	0.80235	0.03730	14.64%	0.80235	0.037300	39.88%	
	T _a	° F	85	0.8	0.0069%	85	0.8	0.004%	85	0.8	0.0036%	85	0.8	0.0099%	
٩	Pa	Psia	14.676	0.14676	0.3277%	14.676	0.14676	0.181%	14.676	0.14676	0.172%	14.676	0.14676	0.4697%	
-	RH _a		0.58	0.0174	0.0002%	0.58	0.0174	0.0001%	0.58	0.0174	0.0001%	0.58	0.0174	0.0003%	
	P _{sata}	Psia	0.5961	0.0001	0.000%	0.5961	0.0001	0.000%	0.5961	0.0001	0.000%	0.5961	0.0001	0.000%	
	$\begin{array}{l} Q_{LFE} / \\ Q_{massflow} \end{array}$	Cfm	50	0.344	0.6095%	0.5	0.00795	1.801%	50	0.344	0.321%	50	0.344	0.8735%	
К	ΔP_c	in of H_2O	1.6	0.1	12.57%	0.8	0.1	27.82%	1.6	0.1	6.616%	1.6	0.1	18.022%	
	Do	inches	1.5	0.025	14.31%	0.1875	0.001	0.810%	1.5	0.025	7.527%	1.5	0.025	20.505%	
	ρ _c	Lbs/ft ³	0.07449	0.000762	0.337%	0.07449	0.000762	0.186%	0.07449	0.000762	0.177%	0.07449	0.000762	0.4824%	
	T _c	° F	70	1	0.0115%	70	1	0.0063%	70	1	0.006%	70	1	0.0164%	
مّ	P _c	Psia	14.676	0.14676	0.325%	14.676	0.14676	0.1797%	14.676	0.14676	0.171%	14.676	0.14676	0.4657%	
<u> </u>	RH _c		0.5	0.025	0.0002%	0.5	0.025	0.0001%	0.5	0.025	0.0001%	0.5	0.025	0.0003%	
	P _{satc}	psia	0.36292	0.0001	0.000%	0.36292	0.0001	0.000%	0.36292	0.0001	0.000%	0.36292	0.0001	0.000%	

 Table 2. Gravimetric Sampler Sensitivity Analysis for Uncertainty Propagation.

Table 3. Total Uncertainty for Gravimetric Sampling Under Normal Conditions.

	Concentration (µg/m ³)	Uncertainty (µg/m ³)	Uncertainty (%)
$TAMU - 1 m^{3}/hr$	69.31	8.21	11.85
TAMU – 39 cfm	69.22	8.41	12.15
TAMU – 50 cfm	69.06	6.09	8.81
TAMU – 60 cfm	69.06	5.08	7.36

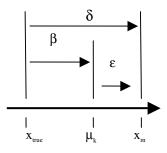


Figure 1. Illustration of Total Error, δ .

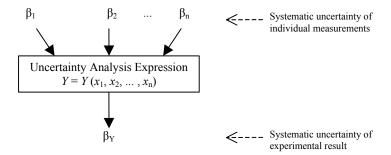


Figure 2. Determining the systematic uncertainty for an experiment (from Coleman & Steele, 1999).

$$C = \frac{W}{V} \qquad (6)$$

$$\longrightarrow W = 0.16* (W_f - W_i) \qquad (7)$$

$$\longrightarrow V = Q * \Theta \qquad (8)$$

$$\longrightarrow Q = 5.976* k* (D_0)^2 * \sqrt{\frac{\Delta P_a}{\rho_a}} \qquad (9)$$

$$\longmapsto \rho_a = \left[\frac{P_a - RH * P_s}{0.37* (460 + T)}\right] + \left[\frac{RH * P_s}{0.596* (460 + T)}\right] \qquad (10)$$

$$\longrightarrow k = \frac{Q_{IFF}}{5.976* (D_0)^2 * \sqrt{\frac{\Delta P_e}{\rho_e}}} \qquad (11)$$

$$\longrightarrow \rho_e = \left[\frac{P_e - RH * P_s}{0.37* (460 + T)}\right] + \left[\frac{RH * P_s}{0.596* (460 + T)}\right] \qquad (10)$$

Figure 3. Breakdown of Equations.

C = W/V	69.0 6 µg/r												
ω _c	6.0862E-06	g/m²	6.09 µg/m²	0	R	8.81%							
							% of TOTA	Uncerts	uinty				
	ω _w	0.00028284	a		8C/8W	0.003923			anny				
	0v	22.0831655			8C/8V	-2.7098E-							
		$W = W_r - W_i$	0.0176 g										
		ωw	0.000282843 g										
												aint % of Total Unce	rtainty
			©wf	2.00E- 2.00E-	-		8W/8W; 8W/8Wi		1	50.00 50.00		1.6626% 1.6626%	
			®w	2.005	-u4 g		o wowi		- 1	50.00	00%	1.0020%	
		V = QO	8999.996854 ft ³	5	254,8515	m ³							
		ωv	779.8596285 ft		22.08317								
									5	% of Par	tial Uncert	aint % of Total Unce	rtainty
			0.e		0.2 min		8V/80	49.99	99825	0.01	64%	0.0159%	
			@q	4.3321972			8V/8Q		180	99.98	36%	96.6588%	
Q = 5.976 * k			(Uncertainty in Do	o is already	accounted for	in the calib	ration of k)						
	49.99998	3 cfm	(assume F _A = 1)										
0 g	4.332197	afm											
ωq	4.552181	cim					% of Partial U	Incertaint	% of To	tal Unc	ortaintv		
	ω _{Do}	0	(accounted for in	k)	δQ/δDo	66.6666	0.0000%	Jincertaint		000%	ertainty		
	(0 APa	0.22601105			δQ/δ∆Pa	16.136	70.8658%		68.49	980%			
	ωk	0.03729956			δ Q /δk	62.3173	28.7878%		27.82	259%			
	00 pa	0.00073572	lbs/ft ³		δQ/δρα	-346.599	0.3465%		0.33	349%			
		k - Olfo / /5 9	76 * D ₀ ² * sqrt(∆P ₀ /	- W									
		K - Gile / (5.5	0.80234559	Pall									
		(O) k	0.03729956										
									% of Pa	artial Un	certain1%	of Total Uncertainty	
			@ Qife	0.344	cfm		δk/δQlfe	0.01605	2.19	902%		0.6095%	
			ω _{Do}	0.025			δk/δDo	-1.06979	51.41	130%		14.3061%	
			ω _{ΔPc}		in of H ₂ O		δk/δ∆Pc	-0.25073	45.18	872%		12.5737%	
			ω _{ρc} 0	.00076168	lbs/ft°		δk/δρc	5.3857	1.20	095%		0.3366%	
			0.5	= ((P (RH	l _o * P _{sato})) / (0.3	37 (460 + T.))) + ((RH, * P	Parta) / (0.59	96 (460 -	+ T.)))			
			10		0.07448848		<i>an 1</i>	Bally - 1	,	- 6777			
			@ ₀ 0		0.00076168								
				-							%	of Partial Uncertaint	y % of Total Uncertainty
					(ORHc	0.025			δρc/δRI		-0.0007	0.0531%	0.0002%
					(0 Psatc	0.0001	•		δρc/δPs		0.00097	0.0000%	0.0000%
					©Pc	0.14676	-		δρα/δΡα		0.0051	96.5422%	0.3249%
					ω _{Tc}	1	°F		δρς/δΤς	-(0.00014	3.4047%	0.0115%
		ρa = ((Pa - (Rł	Ha * Psata))) / (0.37 ((460 + T _a))	+ ((RHa * Psata)) / (0.596 (4	60 + T _a)))						
			0.07212942 lbs										
		ω _{ca}	0.00073572 lbs		% of Total Un	certainty							
		-							% of Pa	artial Un	certain1%	of Total Uncertainty	
			@ _{RHa}	0.0174			δρα/δRHa	-0.00112		703%		0.0002%	
			@ Psata	0.0001			δρa/δPsata	-0.00109		000%		0.0000%	
			ω _{Pa}	0.14676			δρα/δΡα	0.00496	97.85			0.3277%	
			ω _{Ta}	0.8	· P		δρα/δΤα	-0.00013	2.07	711%		0.0069%	

Figure 4. TAMU – 50 cfm – Uncertainty Analysis.

C = W/V	69.31 µg/n	" ³										
0 = VWV	8.2124E-00		8.21 µg/m ³		OR	11.85%						
					_		•					
	ωw	1.41421E-07	7.0	80	C/8W 0.3	333205773	% of TOTAL U 0.0033%	Incertainty				
	00v	0.355610452			-	2.3093E-05						
			-									
		$W = W_f - W_i$	0.000208	<i>,</i>								
		Φw	1.41421E-07	,								
			e.,	1.00E-07 g			8W/8W.		% of Parts 1 50.000		% of Total Uncertainty 0.0016%	1
				1.00E-07 g			8W/8W		1 50.000		0.0016%	
				· ·								
		V = Q⊖	105.9845585		3.001148 m ³							
		®v.	12.5582646	t ³	0.35561 m ³							
			-	0.2 m	-les		δV/8 0	0.58880310			% of Total Uncertainty 0.0088%	/
				0.2 m			8V/8Q	0.00000310			99.9879%	
Q = 5.976 * k	* D _o ² * sqrt(/	(Pa/pa)	(Uncertainty in D			or in the ca					00.0010.00	
	49.9999	8 cfm	(assume F _A = 1)	,								
00 Q	4.33219	7 cfm										
			0 (accounted for in		δQ/δDo	66,666			% of Total U 0.0000%	ncertainty		
	© Do ©∆Pa		5 in of H ₂ O		δQ/δ∆Pa	16.13			68.4980%			
	Øk.	0.0372995			8Q/8k	62.317			27.8259%			
	0 en	0.0007357	2 lbs/ft ³		8Q/8pa	-346.59	9 0.3465%		0.3349%			
			-									
		k = Qife / (5.	976 * D ² * sqrt(AP	-/ρe))								
		Ω.	0.80234559 0.03729956									
		ω _k	0.03729936						% of Partial	Uncertaint% d	of Total Uncertainty	
			(C) C	0.344	cfm		δk/δQlfe	0.01605	2.1902%		0.6095%	
			@ _{Do}	0.025	in		δk/δDo	-1.06979	51.4130%		14.3061%	
			(D _{APc}		in of H ₂ O		8k/8∆Pc	-0.25073	45.1872%		12.5737%	
			00pc	0.00076168	lbs/ft°		δk/δρc	5.3857	1.2095%		0.3366%	
				= ((P (PH	-* P	37 (480 +	T _c))) + ((RH _c *	P) / /0 59	6 (460 + T.W			
			P	- ((rs - (nn	0.0744884		1000 + (funds 1	sate) / (0.08				
					0.0007616							
			-	-						% c	of Partial Uncertainty	% of Total Uncertainty
					(0 RHc	0.02			δρc/δRHc	-0.0007	0.0531%	0.0002%
					00 Phair		1 psia		δρc/δPsatc	-0.00097	0.0000%	0.0000%
					ω _{Pc} ω _{Tc}	0.1467	6 psia 1 ° F		δρc/δΡc δρc/δΤc	0.0051	96.5422% 3.4047%	0.3249% 0.0115%
					w ₁ ⊱		1.1		0,01010	-0.00014	3.4047%	0.0110%
		$\rho_n \equiv ((P_n - (P_n - $	(H _a * P _{min}))) / (0.37	(460 + T _n)) -	+ ((RH _a * P _{sa}	_{tn}) / (0.596	(460 + T _n)))					
			0.07212942 lb									
		ω _{ρs}	0.00073572 lb	e/ft ³	% of Total U	Incertainty						
							8.a/20Uc			Uncertain!% o	of Total Uncertainty	
			© RHa	0.0174	n n i n		δpa/δRHa δpa/δPsata	-0.00112	0.0703%		0.0002%	
			00 Prata 00 Pa	0.14676			8pa/8Pa	0.00109	97.8587%		0.0000%	
			Фта	0.8			8pa/8Ta	-0.00013	2.0711%		0.0069%	

Figure 5. TAMU – 1 m³/hr – Uncertainty Analysis.

C = WV	69.23			-									
00e	8.41E	-06 g/m ³	8.41 μg/m ³		OR	12.15%							
							% of	TOTAL Un	certainty				
	ωw	0.000282	84 g		8C/8W	0.0050305	8	2.8623%					
	ωv	23.80371	35 m ³		δC/δV	-3.482E-0	7 9	7.1377%					
				-									
		W = W ₁ - V	N 0.0137 0.00028284	~									
		ωw	0.00020204	9 9						% of Partial U	ncertain1%	of Total Uncertainty	
			00wf	2.00E-04	g		8W/8	SW1	1	50.0000%		1.4312%	
			00wi	2.00E-04	9		8W/8	sw,	-1	50.0000%		1.4312%	
				1									
		V = Q⊖	7020.00531 840.620207		198.784 23.8037								
		ωv	840.620207	3 11	23.8037					% of Partial II	ncertain1%	of Total Uncertainty	
			0.e	0.2	t min		δV/δ	θ 30	9.0000295	0.0086%	noendarin /o	0.0084%	
			ωq	4.669911	cfm		δV/δ	Q	180	99.9914%		97.1293%	
Q = 5.976	* k * D ₀ ² * e	sqrt(∆Pa/pa)	(uncertainty in I	D _o is already	y accounter	d for in the	calibra	ation of k)					
	39	cfm	(assume $F_A = 1$)									
ω _Q	4.66991	cfm											
	_			- 13	8Q/8Do		52 %		Uncertain	% of Total U	ncertainty		
	600°		(accounted for i	in K)	δQ/δ∆Pa			0.0000%		0.0000%			
	(CAP)	0.20780962	In or n ₂ O		δQ/δk	20.68		84.7457% 15.0729%		82.3129%			
	ω _k	0.00073572	lbo-M ²		δΟμ/δρα	48.60				14.6402%			
	ω _{pa}	0.00073572	IDST		очнора	-270	.35	0.1814%		0.1762%			
		k = Olfe / (5.9	976 * D _o ² * sqrt(Δ	P./a.))									
		n – 4,1077 (0.0	0.80234559	· eren									
		0 4	0.03729956										
										% of Partial	Uncertain	% of Total Uncertainty	
			CODIFE	0.344	t cfm		8	/ôQife	0.01605	2.1902%		0.3207%	
			0De	0.025	5 in			/ôDo	-1.0698	51.4130%		7.5270%	
			(0 _{APc}	0.1	in of H ₂ O		δ	l∕δ∆Pc	-0.2507	45.1872%		6.6155%	
			ω _{pc}	0.00076168	3 lbs/ft ³		δ	/8ρ c	5.3857	1.2095%		0.1771%	
			P	$_{c} = ((P_{c} - (R$			0 + T _c))) + ((RH _e *	P _{satc}) / (0	.596 (460 + T _c	.)))		
						848 lbs/ft ²							
			a	pe	0.00076	168 lbs/ft ³							
										See/EDUe		% of Partial Uncertainty	
					ORHE		025 001 ps	le.		δρc/δRHc δρc/δPsatc	-0.0007	0.0531%	0.0001% 0.0000%
					Opsale		зот ра 376 ра			opc/oPsatc 8pc/8Pc	0.0051	96.5422%	0.1710%
					ω _{Pc} ω _{Tc}	0.140	1°1			δρα/δΤα	-0.0001	3.4047%	0.0060%
					wite						a terre l	activity or	2.200070
		$p_{a} = ((P_{a} - (R)$	H _a * P _{asta}))) / (0.3	7 (460 + T,)) + ((RH, 1	* P _{seta}) / (0.	596 (4	(60 + T _a)))					
			0.07212942										
		©	0.00073572 #		% of Tota	I Uncertain	nty						
							·			% of Partial	Uncertain	% of Total Uncertainty	
			OgHa	0.0174	1		-	a/8RHa	-0.0011	0.0703%		0.0001%	
				0.0004	mala		8.	a /S De ata	0.0044	0.0000%		0.000044	

 ω_{BMa}
 0.0174
 δpa/δRHa
 -0.0011
 0.0703%
 0.0001%

 ω_{Psata}
 0.0001 psia
 δpa/δPsata
 -0.0011
 0.000%
 0.0000%

 ω_{Psata}
 0.14676 psia
 δpa/δPa
 0.00496
 97.8587%
 0.1724%

 ω_{Ta}
 0.8 ° F
 δpa/δTa
 -0.001
 2.0711%
 0.0036%

Figure 6. TAMU – 39 cfm – Uncertainty Analysis.

C = W/V	69.06	ua/m ³										
ω _c		E-06 g/m ³	5.08 µg/i	n OR	7.36%							
						% of TOTAL U	Jncertaintv					
	ωw	0.000283	2843 g	8C/8W	0.003269877		,					
	ωv	22.1363	1212 ^{m³}	8C/8V	-2.2582E-07	96.6901%						
		W = W, -	W, 0.02	112 g								
		ωw	0.000282	843 g								
			_	2.00E-04 g		δW/δW,		% of Partia 1 50.0000		% of Total Uncertain 1.6549%	ty	
			00 _{val} 00 _{val}	2.00E-04 g		8W/8W		-1 50.0000		1.6549%		
				-								
		V = Q⊗	10799.99									
		ωv	781.7364	849 ft ³ 22.1363	31 m²			K of Partia	Uncertainty	% of Total Uncertain		
			0 .	0.2 min		8V/80	59.999994			0.0228%	iy	
			ωq	4.3424688 cfm		δV/8Q	1	80 99.9764	1%	96.6673%		
Q = 5.976	'k " D _o 2 " s	qrt(∆Pa/pa)	· ·), is already accounted	for in the calibra	ation of k)						
	59.99999	cfm	(assume F _A = 1))								
	4.342469	cfm										
ω <u>ο</u>	4.042405	Cilli				% of Partial L	Incertainty	% of Total Un	certainty			
	e po	C	(accounted for i	nk) δQ/δDo	79.99999			0.0000%	-			
	$\omega_{\Delta Pa}$	0.246462198	β in of H ₂ O	8Q/8∆Pa	13.44669	58.2449%		56.3038%				
	ω _k	0.037299561		8Q/8k	74.78074			39.8835%				
	00 pa	0.000735715	5 lbs/ft*	δQ/δρα	-415.919	0.4966%		0.4800%				
		k = Qife / (5.9	76 * D₀ ² * sqrt(∆P	-(p _e))								
			0.802345587									
		en kara kara kara kara kara kara kara kar	0.037299561									
				0.344 cfm		δk/δQlfe	0.016047	% of Partial U 2.1902%	ncertaint %	of Total Uncertainty 0.8735%	,	
			60 CM 60 CD	0.025 in		δk/δDo	-1.06979	51.4130%		20.5053%		
			00 gpc	0.1 in of H ₂ O		δk/δΔPc	-0.25073	45.1872%		18.0222%		
				0.000761678 lbs/ft ³		δk/δρc	5.385702	1.2095%		0.4824%		
			P-									
			P	$e_c = \langle (P_c - (RH_c * P_{satc})) \rangle$		_c))) + ((RH _c • P	_{wtc}) / (0.596	(460 + T _c)))				
					8482 lbs/ft ³ 1678 lbs/ft ³							
			6	θ _{ρε} 0.00076	10/0 000				56	of Partial Uncertain	ty % of Total Uncer	taintv
				Offic	0.025	i		δρc/δRHc	-0.0007	0.0531%	0.0003%	,
				ω _{Pade}	0.0001			δρc/δPsatc	-0.00097	0.0000%	0.0000%	
				ω _{Pc}	0.14676			δρc/δPc	0.005099	96.5422%	0.4657%	
				ω _{Tc}	1	• F		δρε/δΤε	-0.00014	3.4047%	0.0164%	
		$\rho_n = ((P_n - (R)$	H _a * P _{sata}))) / (0.37	(460 + T _a)) + ((RH _a + F	P _{sata}) / (0.596 (4	60 + T _a)))						
			0.072129422	bs/ft ³								
		ω _{ρ.}	0.000735715	bs/πt ³ %sofTota	al Uncertainty							
			-	0.0174		δρa/δRHa			ncertaint %	of Total Uncertainty 0.0003%	,	
			© RHa	0.0174 0.0001 psia		ορα/οικπα δρα/δΡsata	-0.00112 -0.00109	0.0703%		0.0003%		
			© Paula © Pa	0.14676 psia		δρα/δΡα	0.004959	97.8587%		0.4697%		
			Фта	0.8 ° F		δρα/δΤα	-0.00013	2.0711%		0.0099%		

Figure 7. TAMU – 60 cfm – Uncertainty Analysis.

<u>Appendix A</u> <u>Sensitivity Coefficient Determination</u>

 $C = \frac{W}{V}$ (refer to equation 6) $\frac{\delta C}{\delta W} = \frac{1}{V}$ $\frac{\delta C}{\delta V} = -\frac{W}{V^2}$ $W = W_f - W_i$ (refer to equation 7) $\frac{\partial W}{\partial W_c} = 1$ $\frac{\delta W}{\delta W} = -1$ $V = Q^* \Theta$ (refer to equation 8) $\frac{\delta V}{\delta O} = \Theta$ $\frac{\delta V}{\delta \Theta} = Q$ $Q = 5.976 * k * (D_0)^2 * \sqrt{\frac{\Delta P_a}{\rho}} \quad \text{(refer to equation 9)}$ $\frac{\delta Q}{\delta L} = 5.976 * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_c}}$ $\frac{\partial Q}{\partial D_{a}} = 11.952 * k * (D_{0}) * \sqrt{\frac{\Delta P_{0}}{\rho_{a}}}$ $\frac{\delta Q}{\delta \Delta P_0} = 2.988 * k * (D_0)^2 * \sqrt{\frac{1}{\Delta P_0 * \rho}}$ $\frac{\delta Q}{\delta \rho} = -2.988 * k * (D_0)^2 * \sqrt{\frac{\Delta P_0}{(\rho)^3}}$ $\rho_{a} = \left[\frac{P_{a} - RH * P_{s}}{0.37 * (460 + T)}\right] + \left[\frac{RH * P_{s}}{0.596 * (460 + T)}\right] \quad (\text{refer to equation 10})$ $\frac{\delta \rho_a}{\delta R H_a} = \frac{P_{sa}}{460 + T_a} * \left| \frac{1}{0.596} - \frac{1}{0.37} \right|$ $\frac{\delta \rho_a}{\delta P_{sa}} = \frac{RH_a}{460 + T_a} * \left[\frac{1}{0.596} - \frac{1}{0.37} \right]$ $\frac{\delta \rho_a}{\delta P_a} = \frac{1}{0.37 * (460 + T_a)}$ $\frac{\delta \rho_a}{\delta T} = \frac{1}{(460+T)^2} * \left| \frac{-P_a}{0.37} + RH_a * P_{sa} * \left| \frac{1}{0.37} - \frac{1}{0.596} \right| \right|$

$$k = \frac{Q_{LFE}}{5.976*(D_0)^2*\sqrt{\frac{\Delta P_c}{\rho_c}}} \quad \text{(refer to equation 11)}$$
$$\frac{\partial k}{\partial Q_{LFE}} = \frac{1}{5.976*(D_0)^2*\sqrt{\frac{\Delta P_c}{\rho_c}}}$$
$$\frac{\partial k}{\partial D_0} = \frac{-2*Q_{LFE}}{5.976*(D_0)^3*\sqrt{\frac{\Delta P_c}{\rho_c}}}$$
$$\frac{\partial k}{\partial \Delta P_c} = \frac{-\frac{1}{2}*Q_{LFE}}{5.976*(D_0)^2*\sqrt{\frac{\Delta P_c^3}{\rho_c}}}$$
$$\frac{\partial k}{\partial \Delta P_c} = \frac{\frac{1}{2}*Q_{LFE}}{5.976*(D_0)^2*\sqrt{\frac{\Delta P_c^3}{\rho_c}}}$$