
 
 THE FRITZ-TEXAS A&M DISPERSION MODEL DEVELOPMENT AND  

COMPARATIVE MODELING WITH ISC3 AND AERMOD 
Bradley K. Fritz 

USDA-ARS 
College Station, TX 

Bryan W. Shaw and Calvin B. Parnell, Jr. 
Texas A&M University 

College Station, TX 
 

Abstract 
 
The air pollution regulatory process involves the permitting of sources of regulated pollutants.  Part of the permit process re-
quires sources to demonstrate that the National Ambient Air Quality Standards (NAAQS) are not exceeded as a result of pol-
lutant release.  While ambient air sampling may be used to demonstrate compliance with the NAAQS, a source’s right to op-
erate is becoming increasingly dependent primarily on dispersion modeling results.  Currently used Gaussian based 
dispersion models do not adequately account for pollutant dispersion resulting from sub-hourly variations in wind speed and 
direction.  This can result in over-estimates of downwind concentration, which may result in costly additional control meas-
ures or operating permit being denied.  Low elevation releases and close property line boundaries cause low-level agricultural 
sources, such as cotton gins, to be very sensitive to inappropriate modeling results.  This research focused on the issue of de-
veloping a methodology to analyze the theoretical degree of dispersion within sub-hourly intervals.  The degree of dispersion 
was based on small time-interval (15 second) meteorological data.  Using the results of this analysis a new model that ac-
counts for plume dispersion due to sub-hourly variation in wind speed and direction, was developed.  The new model 
(FTAM) was compared to the currently used regulatory models ISC3 and AERMOD, using concentration predictions down-
wind of a source typical of a cotton gin.  FTAM 24-hour concentrations were generally lower that ISC3 predicted 24-hour 
concentrations, and similar or slightly higher than AERMOD predicted 24-hour concentrations. 
 

Introduction 
 
The Clean Air Act (CAA) is the predominant piece of legislation providing regulatory guidance in controlling sources of air 
pollution.  These regulatory programs have traditionally fallen into three categories; prohibition of new and existing sources 
emitting pollution, more stringent controls and permitting requirements for new sources, and addressing specific pollution 
problems such as hazardous air pollutants and visibility impairment (Brownell, 1999).  Relating to all of these categories are 
the National Ambient Air Quality Standards (NAAQS) which address pollution types and levels associated with public health 
and welfare.  
 
The ongoing regulatory trend requires sources to demonstrate, either through sufficient sampling or dispersion modeling re-
sults that source emissions do not produce off-property concentrations exceeding the NAAQS.  Recent efforts to gain an op-
erating permit for a cotton gin resulted in a regulatory preference of modeling results to on-site sampling results.  Given that a 
source’s right to operate could primarily hinge on property-line concentration estimates based on modeling, it is essential that 
the model used is as representative as possible and that the outputs are appropriately applied.   
 
The model approved by EPA and in use by most State Air Pollution Regulatory Agencies (SAPRAS) is Industrial Source 
Complex (ISC).  ISC is applied to small and large sources alike.  The same model used to predict downwind concentrations 
from power plants and other industrial sources is likewise applied to small agricultural sources such as grain elevators, cotton 
gins, and feed mills.  A Gaussian-based model increasingly being used is AERMOD (Atmospheric Dispersion Modeling Sys-
tem).  AERMOD was developed as a result of the formation of AERMIC (American Meteorological Society/Environmental 
Protection Agency Regulatory Model Improvement Committee), whose purpose was to introduce state-of-the-art modeling 
concepts into the EPA's air quality models.  As part of this research, a new model based on science similar to that used in the 
development of ISC, was developed.   
 
This paper looks at comparing the performance of ISC3, AERMOD, and the newly developed FTAM (Fritz Texas A&M 
Model) under the same set of input parameters.  The initial focus of the paper is on the development of FTAM.  Only a brief 
description of the theory and development of FTAM are presented, as a more detailed report is included in Fritz (2002).  
Comparative modeling was performed over a period of 10 days using meteorological data collected and resolved into input 
formats as required for each model 
 
Gaussian-Based Modeling 
All Gaussian-based dispersion models assume that at a given distance downwind of a source, the concentration of pollutant, 
in both the vertical and horizontal directions, can be represented by a normal, or Gaussian, distribution.  The degree of plume 



spread is controlled by the standard deviations associated with both the horizontal and vertical distributions.  The values of 
the standard deviations are functions of both the downwind distance and variations in meteorological conditions and are rep-
resented by the stability parameters σy and σz. 
 
The Gaussian dispersion equation is the ratio of the emission rate to the wind speed multiplied by the two normal density 
functions, and is given by Equation 1. 
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where: 
 
 C = steady state concentration at a point (x,y,z), µg/m3 
 Q = emission rate, µg/s 
 σy,σz = horizontal and vertical spread parameters, m 
 u = average wind speed at stack height, m/s 
 y = horizontal distance from plume centerline, m 
 z = height of receptor with respect to ground, m 

H = effective stack height , m  (H = h+∆h) 
h = physical stack height, m  
∆h = plume rise, m 

(Cooper and Alley, 1986) 
 
A physical representation of this relationship is shown in Figure 1. 
 
The stability parameters, σy and σz, define the plume spread in the horizontal and vertical directions, respectively.  The stabil-
ity parameter values are a function of the downwind distance from the source and the observed meteorological stability.  The 
most commonly used atmospheric stability classification scheme is that developed by Pasquill and Gifford (Cooper and Al-
ley, 1986).  The values of σy and σz determined using this methodology, typically are referred to as the Pasquill-Gifford (PG) 
stability parameters.  The stability parameter values associated with each stability class were developed from experimental 
data.  Therefore, the values of σy and σz represent mean observed plume spreads resulting from observed meteorological sta-
bility.  Additionally, the stability parameter values are a function of the time period over which the experiment occurred, and 
consequently a function of meteorological variations.  This is an important observation.  When applying these stability pa-
rameters to the Gaussian dispersion equation (Equation 1), the concentration (C) time period is defined.  For example, if the 
stability parameters were based on 15-minute observations, when applied to the Gaussian dispersion equation, the resulting 
concentration would be a 15-minute concentration.  
 
Despite its simplicity, there is a significant amount of disagreement as to the appropriate time frame in the literature.  Bey-
chok (1996) provides a good summation of this matter: 
 

A major problem with the Gaussian dispersion equation is defining what the calculated concentration C 
represents when using Pasquill’s dispersion coefficients.  D.B. Turner states that C represents a 3- to 15-
minute average; and American Petroleum Institute dispersion modeling publication believes C represents a 
10- to 30-minute average; S.R. Hanna and P.J. Drivas believe C is a 10-minute average; and others attribute 
averaging times from 5 minutes to 30 minutes.  Most agree on a range of 10 minutes to 15 minutes.  How-
ever, many Environmental Protection Agency computer models used to determine regulatory compliance 
assume that the Gaussian dispersion equation yields 60-minute average concentrations.  

 
This issue of the most appropriate time frame is the basis of this research.  Past work by Zwicke (1998) addresses this prob-
lem by applying the Gaussian dispersion equation and stability parameters over short time periods for which meteorological 
data was recorded.  He reported significant improvement in dispersion estimates as compared to ISC.  The meteorological 
data sets used by most SAPRAs for modeling purposes are based on hourly intervals and this does not meet the input data re-
quirements for Zwicke’s method.  The goal of this research is to develop a new model which appropriately accounts for long 
periods of meteorological variation while using one-hour averaged meteorological data.  The research hypothesis is that new 
stability parameter values can be determined as a function of the observed meteorological parameter statistics.  
 



Estimation of Plume Spread and the Associated Stability Parameter 
 
Degree of Plume Spread as a Function of Time 
The first step toward developing new stability parameters is developing an understanding of the present stability parameters.  
As stated earlier, there is significant disagreement as to the appropriate application of the PG stability parameters.  Therefore, 
an objective methodology for estimating the plume spread as a function of variations in meteorological parameters is needed.  
The analysis algorithm developed for this purpose assumes that pollutant spread is predominantly convection driven.  In other 
words, the diffusion of a pollutant as it travels downwind is negligible when compared to its transport by the wind.  It was also 
assumed that the pollutant’s travel speed and direction are dictated by instantaneous changes in wind speed and direction. 
 
Meteorological data collected in 15-second interval averages included temperature, relative humidity, barometric pressure, 
solar radiation, and wind speed and direction.  Using the collected data, “parcel” paths were traced as they traveled down-
wind from some common point of origination (i.e. the source).  A “parcel” is merely a unit used to describe some mass of 
pollutant released during each time interval, with each parcel being equal.  Parcels were released at the beginning of each me-
teorological data interval.  For example, at time, t = 0,s, Parcel 1 is released, and at time, t = 15,s, Parcel 2 is released.  The 
travel of each parcel was tracked mathematically based on the average wind speed and direction recorded for each 15-second 
interval.  All parcels originated at the origin (0,0).  For each time interval, the distance traveled was determined using wind 
direction (θ),wind speed (u), and time interval (t=15,s).  For each time interval, a parcel’s previous (x,y) coordinates were in-
cremented using the calculated displacements (∆x,∆y) (Equations 2 and 3).  The parcel trajectories were used to determine 
the plume spread at different downwind distances.  A parcel trajectories plot for a 10-minute period is shown in Figure 2.   
 

θcos•t•u=x∆   (2) 
θsin•t•u=y∆                                                                                     (3) 

 
The vector averaged wind direction for the entire period was determined.  Using the vector average direction and a given 
downwind distance, a line perpendicular to the average wind direction vector at the given downwind distance was estab-
lished.  The locations of parcel crossings on this line were recorded.  The distance from these intersection points and the point 
where the average wind direction line intersects was determined (Figure 3).  These values are denoted as W, and represent a 
width from plume centerline to a point in the plume where the parcel passed.  For a given time period, these W values were 
fitted to a normal distribution, as shown in Figures 4 and 5.  A normal distribution was chosen in order the meet the assump-
tion of normally distribution plume spread inherent in the Gaussian model.  The normal distribution fit also allowed for the 
determination of a standard deviation which corresponds to a stability parameter value.  From this fit, the plume spread pa-
rameter, σy (which will be referred to as σyBKF), was determined. 
 
We can see from Figure 4, for the example plume trace in Figure 2, at 100 m downwind the normal distribution fitted to the W 
values.  Associated with this normal distribution is a standard deviation (σ) of 18.6 m.  Similarly from Figure 5, based on the 
normal distribution fitted to the W values at 400 m downwind, the associated standard deviation is 64.3 m.  This standard de-
viation along with the downwind distance can be used to estimate the degree of plume spread (θ) using Equation 4.  Solving 
Equation 4 forn θ and substituting in 100 and 18.6, for x and σ (where σy equals σ), respectively, our estimated plume spread is 
about 43.6 degrees.  Similarly for x = 400 m and σ =64.3 m, the corresponding degree of plume spread is 38.1 degrees.   
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This methodology was used to develop a FORTRAN code for the purpose of performing similar data reduction for all col-
lected meteorological data.  Using this program, each hour of collected meteorological data was analyzed for 2-, 3-, 5-, 10-, 
15-, 20-, 30-, and 60-minute intervals, and at 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 m downwind.  For each 
interval, the average wind speed and direction, the wind speed and direction standard deviations, solar radiation, and σyBKF, 
were determined.   
 
A detailed analysis and comparison of the PG stability parameter, σyPG, and the calculated stability parameter, σyBKF, is in-
cluded in Fritz (2002).  In general, the results showed large ranges in the values of σyBKF, even under similar conditions.  Also, 
agreement of the σyBKF with σyPG occurred for time intervals that were less than 60 minutes, but varied as a function of stability 
classification and downwind distance.   
 
Development of FTAM σ  y – Regression Analysis 
The next step was to develop a relationship between the determined 60-minute stability parameter, σyBKF, and the downwind 
distance and meteorological parameter statistics.  To perform the regression analysis, the parameters significantly affecting 



the value of σyBKF were determined.  Based on plots of observed data, it was obvious that the downwind distance affected the 
value of the predicted stability parameter.  It was also observed that as the time interval increased, the value of σyBKF in-
creased.  The major parameter varying as a function of time is wind direction fluctuation.  Observed data indicate that the 
greater the magnitude of change in the wind direction, the greater the spread of the plume, and thus the greater the value of 
σyBKF.  Also important are the average and standard deviation of the wind speed.  Greater wind speeds result in farther trans-
port of a given parcel for a given time interval.  The combined effects of wind speed and wind direction significantly affect 
plume spread.  For example, for two hourly periods having the same variation in wind direction, the degree of plume spread 
will differ if the average wind speeds also differ. 
 
The initial form of the new 60-minute stability parameter, σy60, was a function of the various parameters along with power and 
interaction terms.  This approach did not result in an acceptable fit, based on R2 values.  Examining the relationships between 
the various parameters showed that variances in σyBKF were unequal with varying downwind distance (Figure 6) and wind di-
rection standard deviation (Figure 7).  A transformation of σyBKF was performed in order to counter this problem.  Pasquill 
(1962) suggested the following relationship (Equation 5) between σy60 and wind direction standard deviation (σθ). 
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Pasquill (1962) also presented several plots with the plume width (in degrees) as a function of the standard deviation of wind 
direction.  By solving Equation 4 for theta (θ), Equation 6, which fits the relationship given by Equation 5, is derived. 
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Figures 8 and 9 are similar to Figures 6 and 7, except that instead of plotting σyBKF as a function of the standard deviation of 
wind direction and downwind distance, θ is used.  The value of θ was calculated based on the value of σyBKF and its corre-
sponding downwind distance. 
 
The transformation of σyBKF to θ (Equation 6), resulted in variances in θ that are much closer to being equal for different stan-
dard deviations of wind direction and downwind distances.  The next step was to develop the model for the regression fit.  
Theta (θ) (which along with a designated downwind distance can be used to calculate σy60) was selected as the dependent vari-
able in the model.  The independent variables were downwind distance, average wind speed, standard deviation of wind 
speed, standard deviation of wind direction, and various polynomial and interaction terms.  SPSS was used for the regression 
analysis.  A forward entry method was selected for the analysis.  Table 1 shows the resulting change in the R2 value as predic-
tors were entered by order of significance.  
 
The footnote in Table 1 indicates which predictors were entered into a given model.  The following is a key to the variables’ 
names. 
 

• WDSD = Wind direction standard deviation, σθ 
• WDSDCUB = Wind direction standard deviation cubed, σθ

3 
• DD = downwind distance (in meters) from the source, x 
• WD2WSA = Wind direction standard deviation squared / wind speed averaged interaction, σθ

2 • u 
• WDDDWSL2 = Wind direction standard deviation / downwind distance (in km) from source / wind speed standard 

deviation interaction, 
σθ • (x/1000) • σu 

• DDSQRLOW = Square of downwind distance (in m), (x/1000)2 
• WSSD = Wind speed standard deviation, σu 
• WSSDSQR = Square of wind speed standard deviation, σu

2 
• WSSDCUB = Cube of wind speed standard deviation, σu

3 
• WSAVGSQR = Square of average wind speed, u2 
• WSSDWDIN = Wind speed standard deviation / wind direction standard deviation interaction, σu • σθ 
• DDCUBE = Cube of downwind distance (in m), x3 
• WDDDWSLO = Wind direction standard deviation / downwind distance (in km) / wind speed average interaction, 

σθ • (x/1000) • u 
• WDSDSQR = Square of wind direction standard deviation, σθ

2 
 



Based on the results of the regression fit, Table 1, model 9 was chosen.  The adjusted R2 for model 9 is 0.918.  Adding pa-
rameters into the model did not significantly improve the regression fit.  However, all of the above parameters are measured 
by most meteorological monitoring stations.  Therefore, adding any or all of the above parameters (if appropriate) will not 
add to the monitoring requirements.  Note that σy60 is the value of the 60-minute horizontal stability parameter estimated from 
the regression fit on σyBKF. 
 
Based on this analysis the best-fit model is as shown in Equation 7. 
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Where all variables are as defined above. 
 
The adjusted R2 for this model is 0.918.  A plot of the predicted value versus the actual value is shown in Figure 10.  Figure 
11 is a plot of the unstandardized residual versus the unstandardized predicted value. 
 

Comparative Modeling 
 
The next step was to perform side-by-side comparative modeling of FTAM, ISC3 and AERMOD.  The appropriate meteoro-
logical data inputs for each model were developed using short-term (15-second) meteorological data obtained from a Camp-
bell weather station.  As the intent of this comparative modeling was to contrast the 24-hour concentrations predicted from 
each model for the same pollutant source, the meteorological data was compiled such that each data file represented an entire 
24-hour period with one-hour averages for each hourly period.  The form and format of these meteorological data files for 
each model is discussed below. 
 
Meteorological Data Requirements for ISC3, FTAM, and AERMOD 
AERMOD required additional parameter calculations in addition to the measured meteorological data.  These additional pa-
rameters are used by AERMOD to characterize the planetary boundary layer (PBL).  The PBL is characterized as either sta-
ble (SBL) or convective (CBL).  As a steady-state plume model, AERMOD assumes both the vertical and horizontal distribu-
tions to be Gaussian in the SBL, and the horizontal to be Gaussian, and the vertical to be bi-Gaussian in the CBL (Cimorelli, 
1998). 
 
ISC3 required one meteorological data input file containing hourly averages of meteorological variables, as well as an esti-
mate of stability classification for each hour.  The stability classification estimate was based on the Pasquill-Gifford stability 
classification method and the hourly meteorological data.  Likewise, the stability parameters, σy and σz, were calculated using 
the Pasquill-Gifford method.   
 
FTAM required one meteorological data file containing hourly averages and standard deviations of meteorological variables.  
The vertical stability parameter, σz, was calculated based on the Pasquill-Gifford method, while the horizontal stability pa-
rameter, σy, was calculated using the regression fit shown in Equation 7.   
 
Generation of Meteorological Data Files 
The meteorological data files used in the comparative modeling analysis were generated from data collected in 15-second in-
tervals.  The rough data were separated into individual files, each representing a 24-hour period.  The 15-second data were 
averaged for each hour and the data for each 24 hour period were written to a separate file.  This resulted in data files each 
containing 24, 1-hour data for average solar radiation, average wind direction, average wind speed, wind direction standard 
deviation, wind speed standard deviation, average temperature, and average barometric pressure.  A FORTRAN program was 
developed to read in the one-hour averaged data files for each 24-hour period, and to use this data to generate the appropriate 
input files for FTAM, ISC3 and AERMOD.   
 
Sample Source and Receptors 
For this comparative modeling analysis a single elevated exhaust source with a height of 6 meters was selected.  The diame-
ter of the exhaust pipe was 0.5 meters with an exit velocity of 10 m/s.  The emission rate was set at 2.7 g/s PM10.  This emis-
sion rate corresponds the total emission rate from a gin operating at 18 bales per hour with a PM10 emission factor of 544 
g/bale (1.2 pounds per bale) 
 



Receptors were set up as a radial grid.  Radial lines were located every 5°, with radial rings every 100 meters out to a distance 
of 1000 meters.  Initial modeling had maximum downwind distances for receptors of 1000 meters.  Preliminary results from 
AERMOD indicated a need for further receptor distances past the 1000 meter distance.   
 
Daily 24-Hour Concentration Predictions 
Modeling was performed to predict 24-hour PM-10 concentrations using each of the three models.  Ten days of complete me-
teorological data were available for this analysis.   
 
Table 2 contains the maximum 24-hour concentrations predicted by each model, for each day.  Also presented are the down-
wind distances at which the maximum predicted concentration occurred.  Based on Table 2, the average ratios of predicted 
24-hour concentrations show that the ISC3 predicted 24-hour concentration was, on average, 130% of the FTAM predicted 
24-hour concentration, and 170% of the AERMOD predicted 24-hour concentration.  Similarly, the predicted 24-hour con-
centration from AERMOD was, on average, 80% of the  FTAM predicted 24-hour concentration. 
 
A study by Cambridge Environmental Research Consultants (CERC) (2000), the developers of ADMS (Atmospheric Disper-
sion Modeling System), compares predicted concentrations from ADMS, AERMOD and ISC3.  ADMS models atmospheric 
dispersion using methodologies similar to AERMOD.  The CERC study looked at a variety of sources, including short and 
tall stack rural sources, tall stack urban sources, and area and volume sources.  Of interest for this research are the results 
from the 5- to 10-meter rural short stack sources with flat terrain.  This scenario is similar to the source used in the compara-
tive modeling for this research.  The study reports ratios for ADMS/AERMOD and ADMS/ISC3.  The ratios reported for 
ADMS/AERMOD are 0.26, 0.34, 0.20, and 0.22.  The average ADMS/AERMOD ratio was 0.255.  Similarly for 
ADMS/ISC3, the ratios were 0.15, 0.16, 0.13, and 0.12, which averages to 0.14.  The study did not report the ratio between 
ISC3 and AERMOD, but it can be deduced using relationships in Equations 8, and 9.   
 

AERMODADMS C•255.0=C   (8) 

3ISCADMS C•14.0=C   (9) 

 
These equations mathematically represent the average ratios discussed above.  Setting the right-hand-sides of Equations 8 
and 9 together and solving for CISC3, Equation 10 results. 
 

AERMOD3ISC C•82.1=C   (10) 

 
For the CERC (2000) study, the predicted 24-hour concentrations from AERMOD for short stack rural sources were, on av-
erage, 182% of the predicted 24-hour concentrations from ISC3.  Recall that the results presented earlier for this research 
showed that ISCST3 predicted 24-hour concentrations were, on average, 170% of the AERMOD predicted 24-hour concen-
trations. 
 
1-Hour Concentration Predictions 
A comparison of the predicted 1-hour concentrations was also of interest, as the predicted 24-hour concentrations were 
merely an average of 24 1-hour concentrations.  This comparison used the same source setup.  For the 1-hour tests, the recep-
tor grid was changed to a single array of 10 samplers from 100 to 1000 meters (100 meters intervals) along the north axis.  
The meteorological data used was the same 10 days used for the 24-hour tests, with the exception that all wind directions 
were changed to north flowing winds.  This setup results in concentration predictions at each of the samplers being the 
maximum 1-hour concentrations.  Using the modified meteorological data the 1-hour concentrations for each of the 24 1-hour 
periods were predicted at each receptor by each model.  The 1-hour concentrations were then compared by determining the 
ratio of CISC3/CFTAM, CAM/CFTAM, and CISC3/CAM. 
 
where 
 

CFTAM  = FTAM predicted 1-hour concentration  
CISC  = ISC3 predicted 1-hour concentration  
CAM  = AERMOD predicted 1-hour concentration  

 
These ratios were averaged for each downwind distance receptor.  Also determined were the minimum and maximum ratios, 
and 95% confidence intervals.  All of these values are presented in Tables 3, 4, and 5. 
 
The most noticeable results from these tables are the wide ranges in the ratios between the model predictions.  On average, 
the ISC3 predicted 1-hour concentration was about 370% of the FTAM predicted 1-hour concentration and (neglecting the 
100 meter data) 700% of the AERMOD predicted 1-hour concentration.  Also, the AERMOD predicted 1-hour concentration 



was 144% of the FTAM predicted 1-hour concentration.  Examining the actual 1-hour predicted concentrations, an interest-
ing trend is observed.  During the nighttime hours, each of the models tend to predict very low concentrations near the source 
and the maximum 1-hour concentration farther away from the source.  While during the daytime, the maximum predicted 1-
hour concentration occurs very near the source.  The nighttime behavior is due to the enhanced plume rise which increases 
downwind displacement of the plume before its downward spread results in a predicted concentration at receptor height. 
 
One major point to be made here is that the FTAM model will not always predict lower 1-hour concentrations than ISC3 
(which is basically the Gaussian dispersion equation using the PG stability parameters).  In fact, the value of σyBKF can actu-
ally be larger or smaller than σPG.  This means that concentration predictions can also be larger or smaller.  What determines 
the degree of dispersion is meteorological stability. 
 
This comparison of the predicted 1-hour concentrations between FTAM and ISC3 can be extended using information devel-
oped in the analysis of the stability parameters.  For ISC3, the value of σyPG is used to predict a 1-hour concentration while for 
FTAM, the value of σyBKF is used.  For the same source and receptor layout using the same hour of meteorological data, the 
values of Q, u, σz, y, z and H would be identical for both models.  This means the difference in the predicted 1-hour concen-
trations are a result of the applied σy.  If we assume that the sampler is directly downwind of the source (y = 0), a relationship 
between CISC3 and CBKF can be determined, as shown in Equation 11.  The new term Ratiofy is equivalent to the ratio of the 
ISC3 predicted 1-hour concentration over the FTAM predicted 1-hour concentration, which is also equal to the ratio of σy60 
over σyPG.    
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Tables 6 through 10 contain the data from this analysis for each stability class, downwind distance combination, as well as 
the low and high ratios for each category, and the overall average of the mean ratios over all distances.  The overall average 
of the mean ratios for all stability classes and downwind distances is 2.6.  This means that on average, predicted 1-hour con-
centration from ISC3 would be 260% of predicted 1-hour concentrations from FTAM.  This is similar to the 370% discussed 
previously.  Examining the high and low ratios in Tables 6 through 10, the ISC3 predicted 1-hour concentration could be any 
where from 32% to 1460% of the FTAM predicted 1-hour concentration.  Again, this depends on meteorological stability. 
 
Also interesting are results based on observed trends for the 1-hour concentration predictions during daytime and nighttime 
hours.  A plot of nightime concentration predictions as a function of downwind distance for each model is shown in Figure 
12.  Observe that ISC3 and FTAM predict roughly the same concentration while AERMOD predicts lower concentrations up 
close, and higher concentrations farther out.  A plot of the daytime concentration predictions as a function of downwind dis-
tance for each model is shown in Figure 13.  Observe that AERMOD and FTAM predict roughly the same concentrations, 
while ISC3 predicts significantly higher concentrations. 
 

Discussion 
 
The initial anticipated outcome of this research was that the new model (FTAM) would result in predicted 1-hour concentra-
tions that were an order of magnitude lower than ISC3 predictions, based on previous work by Zwicke (1998) and Williams 
(1996).  The final results did in fact indicate that there were hours in which the FTAM predicted 1-hour concentrations were 
as much as 10 to 15 times lower than ISC3 predicted 1-hour concentrations.  But on average, FTAM predicted 1-hour con-
centrations were about 40% of ISC3 predicted 1-hour concentrations.  Having had little experience with the use and capabili-
ties of AERMOD, there were no anticipated outcomes; as a consequence the results were very surprising.  What was most in-
teresting was that FTAM, while tending to predict 24-hour concentrations that were higher, predicted daytime 1-hour 
concentrations that were very similar to those made by AERMOD.  On the other hand, AERMOD’s nighttime predicted 1-
hour concentrations tended to be completely different.  AERMOD tends to predict the nighttime hours maximum 1-hour con-
centrations at distances where FTAM and ISC3 predicted the lowest 1-hour concentrations.  In terms of dispersion, at night, 
AERMOD tends to account for less dispersion of the plume than do ISC3 and FTAM.  While during daytime hours, both 
FTAM and AERMOD account for greater plume dispersion than ISC3. 
 
This research only examined the horizontal dispersion characteristics due to limitations in the meteorological monitoring 
equipment.  A 3D sonic anemometer could be used to examine the vertical meteorological variation as well.  This would al-
low for the vertical stability parameter to be analyzed using the methodology developed for the horizontal distribution.  If this 
analysis resulted in findings similar to the horizontal stability parameters results, the predicted concentrations from FTAM 
could potentially be 40 to 50% lower, in some cases.  This would mean that FTAM could likely predict concentrations that 
are 20% of ISC3.  Analysis of the vertical stability may also explain the unexpected differences found in the nighttime dis-
persion estimates.   
 



It was also anticipated that the new σy (σyBKF) could be estimated as a proportion of σyPG.  This research demonstrated that σyPG 
is a step function, whereas the experimental σyBKF was continuous.  The value of σyPG is dependent upon the stability classifica-
tion while σyBKF is dependent upon the observed meteorological statistics.  The meteorological data requirement for adopting 
the σyBKF methodology meets SAPRA requirements. 
 

Conclusions 
 
This research examined the form and function of the stability parameters associated with Gaussian dispersion modeling.  
These parameters define the degree of plume spread as a function of the associated variation in meteorological conditions.  
Examining the traditional Pasquill-Gifford (PG) stability parameters, it was observed that they account for a defined degree 
of plume spread.  It was also observed that this degree of plume spread relates to time only as a function of the variation in 
meteorological conditions.  Based on analysis of small time-interval meteorological data using a parcel trajectory model, 
there is a significant level of variation in the degree of plume spread within stability class and downwind distance categories.  
Also observed was that usage of the PG stability parameters accounts only for a single point estimate of plume spread within 
each category, while the actual plume spread may in fact be greater or less.  Using this same parcel trace model a methodol-
ogy was developed allowing for the degree of plume spread (and thus the associated stability parameter in the horizontal 
plane) to be estimated using meteorological variation parameters through a regression fit.   
 
This research provides a stepping stone for developing a new model that can be used to provide fair regulation of low-level 
point sources such as cotton gins, feed mills and grain elevators.  This new model uses easily obtained meteorological data 
consistent with the present format used by most regulatory agencies.  At the same time, plume spread resulting from meteoro-
logical variation within each hourly period is taken into account.  The model purposed here is not put forward as the definitive 
model but rather as a framework for which site-specific meteorological data can be used to develop a site-representative model.     
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Table 1. Model summary statistics of regression fit on theta (θ). 
Model Adj. R2 Std. Error of the Estimate 

1 .782 8.0597 
2 .845 6.7815 
3 .891 5.6843 
4 .897 5.5358 
5 .907 5.2656 
6 .910 5.1846 
7 .910 5.1699 
8 .915 5.0176 
9 .918 4.9499 

10 .918 4.9319 
11 .919 4.9158 
12 .919 4.9053 
13 .919 4.8983 
14 .919 4.8941 

a  Predictors: (Constant), WDSD 
b   Predictors: (Constant), WDSD, WDSDCUB 
c   Predictors: (Constant), WDSD, WDSDCUB, DD 
d   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA 
e   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2 
f   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW 
g   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD 
h   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR 
i   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR, WSSDCUB 
j   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR, WSSDCUB, WSAVGSQR 
k   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR, WSSDCUB, WSAVGSQR, WSSDWDIN 
l   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR, WSSDCUB, WSAVGSQR, WSSDWDIN, DDCUBE 
m   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR, WSSDCUB, WSAVGSQR, WSSDWDIN, DDCUBE, WDDDWSLO 
n   Predictors: (Constant), WDSD, WDSDCUB, DD, WD2WSA, WDDDWSL2, DDSQRLOW, 

WSSD, WSSDSQR, WSSDCUB, WSAVGSQR, WSSDWDIN, DDCUBE, WDDDWSLO, 
WDSDSQR 

o   Dependent Variable: THETA 
 

Table 2.  Value and location of predicted maximum 24-hour concentrations of PM-10 from 
source typical of a cotton gin. 

Day 

ISC3 
Max C24 
(µg/m3) 

Downwind 
Distance 

(m) 

FTAM 
Max C24 
(µg/m3) 

Downwind 
Distance 

(m) 

AERMOD 
Max C24 
(µg/m3) 

Downwind 
Distance 

(m) 
1 174 300 155 300 151 800 
2 175 100 146 100 121 100 
3 430 100 258 100 147 500 
4 264 100 182 100 127 100 
5 215 100 153 100 103 100 
6 230 300 203 200 158 600 
7 307 200 235 200 159 100 
8 241 200 223 200 234 100 
9 285 100 233 100 159 100 

10 323 200 271 200 196 100 
 

Table 3.  Ratio of 1-hour CISC3 / 1-hour CFTAM – Average, Minimum and Maximum Values. 
Downwind Distance 

(meters) 100 200 300 400 500 600 700 800 900 1000 
Average Ratio 3.54 4.11 5.12 5.04 4.64 4.20 3.80 2.37 2.05 1.86 
95% Confidence Interval 13.6 61.9 96.2 95.7 84.9 72.9 62.1 20.3 12.1 8.6 
Minimum Ratio 0.81 0.71 0.65 0.59 0.55 0.52 0.50 0.48 0.46 0.10 
Maximum Ratio 59.3 490.6 762.5 757.7 672.9 577.7 492.5 160.8 95.2 66.7 

 



Table 4.  Ratio of 1-hour CAM /1-hour CFTAM – Average, Minimum and Maximum Values. 
Downwind Distance 

(meters) 100 200 300 400 500 600 700 800 900 1000 
Average Ratio 2.62 0.63 0.71 0.92 1.15 1.36 1.56 1.71 1.84 1.93 
95% Confidence Interval 41.3 6.4 2.9 1.9 1.9 2.0 2.4 2.6 2.9 3.1 
Minimum Ratio 0.001 0.0008 0.005 0.03 0.029 0.025 0.023 0.021 0.019 0.017 
Maximum Ratio 249.7 50.8 22.9 13.5 9.7 7.98 6.97 5.2 5.56 5.84 

 
 
 

Table 5.  Ratio of 1-hour CISC3 /1-hour CAM – Average, Minimum and Maximum Values. 
Downwind Distance 

(meters) 100 200 300 400 500 600 700 800 900 1000 
Average Ratio 120.9 32.1 6.3 3.9 3.6 3.6 3.6 3.6 3.6 3.7 
95% Confidence Interval 325.6 217.1 34.5 11.4 11.7 12.4 12.8 12.9 13.0 13.1 
Minimum Ratio 0.103 1.31 0.81 0.65 0.51 0.39 0.32 0.27 0.23 0.21 
Maximum Ratio 700.9 944.4 230.2 56.2 69.4 72.4 70.7 67.5 64.0 60.5 

 
 
 

Table 6.  Ratios of σyBKF/σyPG for Pasquill-Gifford stability class 2. 
Downwind  

Distance (m) Mean Minimum Maximum 
100 3.69 0.88 14.41 
200 2.63 0.83 7.89 
300 2.22 0.80 5.82 
400 1.98 0.78 4.78 
500 1.84 0.76 4.19 
600 1.74 0.71 3.79 
700 1.63 0.68 3.42 
800 1.54 0.67 3.12 
900 1.45 0.65 2.83 
1000 1.37 0.61 2.59 

    
Overall Average 2.01   

 
 
 
Table 7.  Ratios of σyBKF/σyPG for Pasquill-Gifford stability class 3. 

Downwind  
Distance (m) Mean Minimum Maximum 

100 2.00 0.71 3.81 
200 1.85 0.62 3.50 
300 1.74 0.55 3.31 
400 1.66 0.49 3.17 
500 1.59 0.45 3.07 
600 1.53 0.41 2.98 
700 1.48 0.39 2.91 
800 1.43 0.37 2.83 
900 1.39 0.36 2.77 
1000 1.36 0.36 2.71 

    
Overall Average 1.60   

 



Table 8.  Ratios of σyBKF/σyPG for Pasquill-Gifford stability class 4. 
Downwind  

Distance (m) Mean Minimum Maximum 
100 2.35 0.63 10.29 
200 1.99 0.52 6.53 
300 1.88 0.49 6.44 
400 1.77 0.46 5.93 
500 1.67 0.43 5.39 
600 1.60 0.40 4.96 
700 1.54 0.38 4.45 
800 1.48 0.35 3.78 
900 1.44 0.34 3.61 
1000 1.41 0.32 3.43 

    
Overall Average 1.71   

 
 
 

Table 9.  Ratios of σyBKF/σyPG for Pasquill-Gifford stability class 5. 
Downwind  

Distance (m) Mean Minimum Maximum 
100 1.88 1.05 3.70 
200 1.78 0.88 3.70 
300 1.60 0.78 3.21 
400 1.53 0.70 3.17 
500 1.48 0.64 3.12 
600 1.42 0.59 3.02 
700 1.39 0.55 3.02 
800 1.36 0.51 2.98 
900 1.27 0.46 2.73 
1000 1.24 0.44 2.73 

    
Overall Average 1.50   

 
 
 

Table 10.  Ratios of σyBKF/σyPG for Pasquill-Gifford stability class 6. 
Downwind  

Distance (m) Mean Minimum Maximum 
100 6.12 1.46 14.58 
200 5.87 1.41 13.96 
300 6.95 1.36 12.54 
400 6.84 1.32 12.29 
500 5.99 1.27 13.31 
600 5.61 1.23 11.37 
700 5.51 1.18 11.55 
800 5.43 1.14 11.46 
900 5.97 1.22 11.33 
1000 5.89 1.18 11.19 

    
Overall Average 6.02   
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Figure 1.  Graphical representation of the Gaus-
sian dispersion model (Turner 1994). 
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Figure 2.  Plot of theoretical 10-minute parcel trace in x-y plane using measured 15-second in-
terval meteorological data.  
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Figure 3.  Graphical representation of 
methodology used to calculate W using 
theoretical parcel trace data. 
 

where :  
 

P1 and P2 are initial and final (x,y) coordinates of parcels last incremental movements  
I1 is the (x,y) coordinates where P1P2 vector intersects Downwind Distance Line 
I2 is the (x,y) coordinates where Average Wind Direction line intersects Downwind Distance Line 
W is the distance between I1 and I2 
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Figure 4. Histogram and normal distribution fit of plume width val-
ues, W, as determined from theoretical parcel trace data at 100 m 
downwind (σyBKF = 18.6 m). 
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Figure 5.  Histogram and normal distribution fit of plume width values, 
W, as determined from theoretical parcel trace data at 400 m down-
wind (σyBKF = 64.32 m). 
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Figure 6. Sigma Y as a function of downwind distance. 
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Figure 7. Sigma Y as a function of standard deviation of wind direction 
(R2 = 0.4883). 
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Figure 8. Degree of plume spread (THETA) as a function of 
standard deviation of wind direction. 
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Figure 9. Degree of plume spread (THETA) as a function of downwind 
distance. 
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Figure 10. THETA (degrees) versus predicted THETA (degrees). 
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Figure 11. Unstandardized residual versus predicted THETA (degrees). 
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Figure 12.  One-hour concentration predictions from ISC3, AERMOD, 
and FTAM based on an arbitrarily selected hour of meteorological data 
measured during daytime conditions. 
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Figure 13.  One-hour concentration predictions from ISC3, AERMOD, and 
FTAM based on an arbitrarily selected hour of meteorological data meas-
ured during nighttime conditions. 
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