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Abstract 

 
Discriminant analysis is the statistical technique that is most commonly used to solve complex problems. Its use is appropri-
ate when you can classify data into two or more groups, and when you want to find one or more functions of quantitative 
measurements that can help you discriminate among the known groups.  The objective of the analysis is to provide a method 
for predicting which group a new case is most likely to fall into, or to obtain a small number of useful predictor variables.  In 
this work, the purpose is to classify cotton bales into well define groups or categories based on a training set of similar sam-
ples for grading cotton blends.  A new algorithm has been implemented using discriminant analysis and its advantages in 
quality design of cotton blends are demonstrated. 
 

Introduction 
 
Discriminant analysis is used to determine which variables discriminate between two or more naturally occurring groups. 
Discriminant analysis is capable to handling either two groups or multiple groups (three or more). When three or more classi-
fications are identified, it is known as multiple discriminant analysis. The concept of discriminant analysis involves forming 
linear combinations of independent (predictor) variables, which become the basis for group classifications. 
 
Discriminant analysis is appropriate for testing the hypothesis that the group means for two or more groups are equal. Each 
independent variable is multiplied by its corresponding weight, then the products are added together, which results in a single 
composite discriminant score for each individual in the analysis.   
 
Averaging the scores derives a group centroid.  If the analysis involves two groups there are two centroids; in three groups 
there are three centroids; and so on.  Comparing the centroids shows the distance of the groups along the dimension you are 
testing. 
 
Applying and interpreting discriminant analysis is similar to regression analysis, where a linear combination of measurements 
for two or more independent variables describes or predicts the behavior of a single dependent variable.  The most significant 
difference is that you use discriminant analysis for problems where the dependent variable is categorical versus regression 
where the dependent variable is metric. 
 
The objectives for applying discriminant analysis include: 
 

• determining if there are statistically significant differences among two or more groups, 
• establishing procedures for classifying units into groups, 
• determining which independent variables account for most of the difference in two or more groups. 

 
Discriminant analysis involves three steps: 
 

• derivation, 
• validation, and 
• interpretation. 

 
In derivation, we must first choose the variables, test the validity of the discriminant function, determine a computational 
method, and assess the level of significance. 
 
Validation involves determining the reason for developing classification matrices, deciding how well the groups are classified 
into statistical groups, determining the criterion against which each individual score is judged, constructing the classification 
matrices, and interpreting the discriminant functions to determine the accuracy of their classification. 
 
Interpretation involves examining the discriminant functions to determine the importance of each independent variable in 
discriminating between the groups, then examining the group means for each important variable to outline the differences be-
tween the groups. 



The analysis assumes that the variables are drawn from populations that have multivariate normal distributions and that the 
variables have equal variances. 
 
Computationally, discriminant function analysis is very similar to analysis of variance. 
 
To summarize the discussion so far, the basic idea underlying discriminant function analysis is to determine whether groups 
differ with regard to the mean of a variable, and then to use that variable to predict group membership. 
 
The discriminant function problem can be rephrased as a one-way analysis of variance (ANOVA) problem. Specifically, one 
can ask whether or not two or more groups are significantly different from each other with respect to the mean of a particular 
variable. 
 
In the case of a single variable, the final significance test of whether or not a variable discriminates between groups is the F 
test. F is essentially computed as the ratio of the between-groups variance in the data over the pooled (average) within-group 
variance. If the between-group variance is significantly larger then there must be significant differences between means.  
 
Usually, one includes several variables in a study in order to see which one(s) contribute to the discrimination between 
groups. In that case, we have a matrix of total variances and covariances; likewise, we have a matrix of pooled within-group 
variances and covariances. We can compare those two matrices via multivariate F tests in order to determine whether or not 
there are any significant differences (with regard to all variables) between groups. This procedure is identical to multivariate 
analysis of variance. 
 
When interpreting multiple discriminant functions, which arise from analyses with more than two groups and more than one 
variable, one would first test the different functions for statistical significance, and only consider the significant functions for 
further examination. 
 
Next, we would look at the standardized b coefficients for each variable for each significant function. The larger the stan-
dardized b coefficient, the larger is the respective variable's unique contribution to the discrimination specified by the respec-
tive discriminant function. In order to derive substantive "meaningful" labels for the discriminant functions, one can also ex-
amine the factor structure matrix with the correlations between the variables and the discriminant functions. 
 
Finally, we would look at the means for the significant discriminant functions in order to determine between which groups 
the respective functions seem to discriminate.  
 

Linear Discriminant Model 
 
For a set of p variables X1, X2, …, Xp, the general model is: 
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Where, the Xjs are the original variables and the aijs are the discriminant function coefficients. 
 
The principles to find the discriminant functions are: 
 
The first discriminant function is that which maximizes the differences between groups compared to the differences within 
group which is equivalent to maximizing F in a one-way ANOVA. 
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The second discriminant function is that which maximizes the differences between groups compared to the differences within 
groups unaccounted for by Z1 which is equivalent to maximizing F in a one-way ANOVA given the constraint that Z1, Z2 are 
uncorrelated. 
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The total (T) SSCP matrix (based on p variables X1, X2,…, Xp ) in a sample of objects belonging to m groups G1, G2,…, Gm 
with sizes n1, n2, …, nm can be partitioned into within-groups (W) and between-groups (B) SSCP matrices: 
 

T = B + W 
where: 
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and: 

ijkx
 Value of variable Xk for ith observation in group j, 

jkx
 Mean of variable Xk for group j 

kx
 Overall mean of variable Xk 

,rc rct w
 Element in row r and column c of total (T, t) and within (W, w) SSCP 

 
Analytic procedures to find discriminant functions: 
  

• Calculate total (T), within (W) and between (W) SSCPs 
 

T = B + W 
 

• Determine eigenvalues and eigenvectors of the product W-1 B.  
 

1
1 2( ) ( , , , )pλ λ λ λ− =B W K  

 
• λ i is ratio of between to within SSs for the ith discriminant function Z, 
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and the elements of the corresponding eigenvectors are the discriminant function coefficients. 
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Textile Approach 
 
Traditionally the blends were defined by the grouping of different cottons, leading in account the colour and length parame-
ters, looking for always homogeneity of micronaire. The classification of these cottons was initially done using an algorithm 
developed in the Excel.  
 
It was verified, however that these blends were not homogeneous of a point of view of regularity and constancy of properties 
related with its length and its uniformity, as well as of the resistance of the fibres. 
 



In this study we present the information's of the raw materials that are organized in knowledge bases, distributed by databases. 
 
One became, therefore, important to look to an accurate method or algorithm that allowed according to make the grouping of 
the different bales cottons following priority: micronaire, span length 2.5, strength, uniformity ratio, yellow degree, and re-
flectance. 
 
The database is composed by the parameters showed in the Table 1 that has been evaluated by the HVI systems and repre-
senting 29 bales of different african cottons. 
 
Using the conventional approach we defined 4 different blends, M1, M2, M3, M4 (the groups). 
 

Results and Discussion 
 
The most common application of discriminant function analysis is to include many measures in order to determine the ones 
that discriminate between groups. 
 
A common result that one looks at in order to determine how well the current classification functions predict group member-
ship of cases is the classification matrix. 
 
A common misinterpretation of the results of the discriminant analysis is to take statistical significance levels at face value. 
By nature, the procedures will capitalize on chance because they "pick and choose" the variables to be included in the model 
so as to yield maximum discrimination. 
 
The classification matrix shows the number of cases that were correctly and and those that were misclassified (Table2), the 
linear discriminant function for groups (Table 3), and the misclassified observations (Table 4) in the first phase. 
 
In this phase we can see that only 79.3 % of the blends are correctly classified. So, we correct this classification by introduc-
tion the new data information (predicted groups). 
 
The Tables 5, 6, and 7 present the results of the second phase of the discriminant analysis. We can verify now, that 93.1 % of 
the observations (bales) are correctly classified; only the observations 11 and 27 are misclassified. 
 
Finally, in the third step, we meet the goal of the correct classification (100 %) (Table 8) The Table 9 shows the coefficients 
of the linear discriminant function for groups. 
 

Conclusions 
 
We build a "model" of how we can best predict to which group a case belongs. The term "in the model" in order to refer to 
variables that are included in the prediction of group membership, and we will refer to variables as being "not in the model" if 
they are not included.  
 
Those variables with the largest (standardized) regression coefficients are the ones that contribute most to the prediction of 
group membership. 
 
Discriminant Analysis is a very useful tool for detecting the variables that allow the researcher to discriminate between dif-
ferent (naturally occurring) groups, and for classifying cases into different groups with a better than chance accuracy, as we 
demonstrated in data analysis of  the raw cotton blends. 
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Table 1.  Fibre Properties. 
PROPERTY/ 
VARIABLE UNITY 

Micronaire Index (Mic) 
Upper Half Mean Length (UHML) 

Span Length 50 (SL 50) 
Span Length 2.5 (SL 2.5) 

Uniformity Index (UI) 
Uniformity Ratio (UR) 

Tenacity (ST) 
Elongation (EL) 
Reflectance (Rd) 

Yellow Degree (+b) 
Colour Grade (CGrd) 

Leaf (LF) 

•g / " 
mm 
mm 
mm 

- 
- 

cN/tex 
% 
- 
- 
- 
- 

 
 
 

Table 2. Classification (Phase 1). 
GROUP M1 M2 M3 M4 

M1 
M2 
M3 
M4 

TOTAL 
N Correct 
Proportion 

3 
0 
0 
0 
3 
3 

1.000 

0 
4 
0 
0 
4 
4 

1.000 

20 
20 
12 
21 
13 
12 

0.923 

0 
4 
1 
4 
9 
4 

0.444 
N = 29, N Correct = 23, Prop. Correct = 0.793 



Table 3. Linear Discriminant Function for Group (Phase 1). 
 M1 M2 M3 M4 

Constant 
Mic 

SL 2.5 
ST 
UR 
+b 
Rd 

- 6135.0 
55- 73.9 
55275.5 
55550.4 
55537.6 
55133.2 
55521.4 

- 6278.7 
55- 76.8 
55278.4 
55551.6 
55539.1 
55137.5 
55520.4 

- 6463.5 
55- 80.9 
55280.0 
55551.7 
55541.1 
55136.5 
55521.3 

- 6357.0 
55- 78.9 
55278.4 
55551.8 
55540.7 
55138.6 
55520.3 

 
 

Table 4. Misclassified Observations (Phase 1). 
Observation True Group Pred. Group Group Square Distance Probability 

1 
 

M4 
 

M2 
 

M1 
M2 
M3 
M4 

21.094 
23.680 
18.487 
26.300 

0.000 
0.787 
0.000 
0.212 

3 
 

M4 
 

M2 
 

M1 
M2 
M3 
M4 

12.409 
21.861 
10.122 
22.443 

0.003 
0.565 
0.009 
0.423 

5 
 

M4 M2 M1 
M2 
M3 
M4 

10.170 
22.320 
23.762 
24.031 

0.010 
0.518 
0.252 
0.220 

8 
 

M4 
 

M2 
 

M1 
M2 
M3 
M4 

21.094 
23.680 
18.487 
26.300 

0.000 
0.787 
0.000 
0.212 

12 
 

M4 M3 
 

M1 
M2 
M3 
M4 

15.088 
10.466 
26.348 
27.824 

0.008 
0.079 
0.618 
0.295 

15 M3 M4 
 

M1 
M2 
M3 
M4 

20.371 
28.952 
24.154 
22.614 

0.000 
0.028 
0.308 
0.664 

 
 

Table 5. Classification (Phase 2). 
GROUP M1 M2 M3 M4 

M1 
M2 
M3 
M4 

TOTAL 
N Correct 
Proportion 

3 
0 
0 
0 
3 
3 

1.000 

0 
8 
0 
0 
8 
8 

1.000 

0 
0 

11 
22 
13 
11 

0.846 

0 
0 
0 
5 
5 
5 

1.000 
N 2= 29, N Correct = 27, Prop. Correct = 0.931 

 
 

Table 6. Linear Discriminant Function for Group (Phase 2). 
 M1 M2 M3 M4 

Constant 
Mic 

SL 2.5 
ST 
UR 
+b 
Rd 

- 8756.2 
2- 521.9 
22158.2 
22243.5 
22225.7 
22273.5 
22236.4 

- 8948.5 
2- 525.1 
22160.8 
22244.9 
22228.4 
22279.3 
22235.2 

- 9549.2 
2- 563.3 
22154.1 
22248.1 
22244.0 
22272.4 
22237.6 

- 9654.5 
2- 570.8 
22150.0 
22249.1 
22249.0 
22274.6 
22237.0 



Table 7. Misclassified Observations (Phase 2). 

Observation 
True 

Group 
Pred. 

Group Group 
Square 

Distance Probability 
11 

 
 

M3 
 

M4 
 

M1 
M2 
M3 
M4 

88.210 
62.920 
13.260 
12.480 

0.000 
0.000 
0.404 
0.596 

27 
 

M3 
 

M4 
 

M1 
M2 
M3 
M4 

82.822 
63.392 
10.161 
26.700 

0.000 
0.000 
0.151 
0.849 

 
 
 

Table 8. Summary of Classification (Final Phase). 
GROUP M1 M2 M3 M4 

M1 
M2 
M3 
M4 

TOTAL 
N Correct 
Proportion 

3 
0 
0 
0 
3 
3 

1.000 

0 
8 
0 
0 
8 
8 

1.000 

20 
20 
11 
20 
11 
11 

1.000 

0 
0 
0 
7 
7 
7 

1.000 
N = 29, N Correct = 29, Prop. Correct = 1.000 

 
 
 

Table 9. Linear Discriminant Function for Group (Final 
Phase). 

 M1 M2 M3 M4 
Constant 

Mic 
SL 2.5 

ST 
UR 
+b 
Rd 

- 14551 
2- 1100 
222171 
222103 
222452 
222266 
222231 

- 15102 
2- 1120 
22175 
22106 
22461 
22278 
22230 

- 15905 
2- 1167 
222169 
222110 
222480 
222274 

2222232 

- 16558 
2- 1198 
222169 
222113 
222493 
222285 
222232 

 
 


	screen: 
	print: 
	01: 2207
	02: 2208
	03: 2209
	04: 2210
	05: 2211
	06: 2212
	07: 2213


