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Abstract 

 
This paper describes the application of fuzzy logic to cotton color grading in an attempt to improve the accuracy of the 
machine grading for cotton colors.  Color grades of cotton are a number of classes in the (Rd, b) color space.  Adjacent color 
classes have blur and overlapping boundaries, making crisp-boundary methods ineffective for the cotton color classification.  
Fuzzy logic is specialized in dealing with uncertainty and imprecision in a decision-making process, and thus offers a new 
approach for grading cotton colors.  In this paper, we will present the procedures of constructing a fuzzy inference system 
(FIS) using fuzzy logic to classify major classes of cotton colors, and the preliminary results to demonstrate the FIS’s 
effectiveness in reducing machine-classer disagreements in color grading.  The results from the FIS have shown great 
consistency for multiple years’ cotton color data. 
  

Introduction 
 
The Nickerson-Hunter color diagram illustrates a partition of a two-dimensional color space (Rd, b) that defines the USDA 
color grades, and has been used by the colorimeter of high-volume-instruments (HVI) to grade cotton colors [(USDA, 1993)].  
The color diagram consists of one set of linear lines nearly in the horizontal directions and another set of non-linear lines 
nearly in the vertical directions, forming the boundaries of various color grades.  During the past several decades, the HVI 
color grading was not accepted by the industry, because it did not achieve a satisfactory agreement with visual grading [(Xu, 
et al., 2000), (Xu, et al., 1998)].  One of the major reasons attributing to the disagreement is that some of the color boundaries 
in the diagram, especially the one between white and light spotted color classes, do not properly separate neighboring color 
classes.  This may be due to the fact that the diagram was established more than 30 years ago and cotton fiber colors had 
chronic shifts because of changes in seed varieties and environments.  Another main reason for the disagreement is that the 
crisp, abrupt separations of color grades in the diagram do not reflect the clustering nature of cotton color classes, which 
often have blur boundaries.  Neighboring classes always overlap to some extent.  Thus, the belongingness of a sample point 
in an overlapping region is inherently ambiguous.  
 
The above analysis can be further evidenced by the color data of 2,489 bales of cotton selected from the1996’s crop.  To 
facilitate the discussion, we focused on two major color classes, white and light spotted, which are also the two most disputable 
color grades [(Xu, et al., 2000)].  Figure 1 shows the distributions of the white and light spotted classes labeled by classers (o-- 
white, *-- light spotted).  Both the white and light spotted classes seem to follow a two-dimensional Gaussian distribution.  Note 
that the real boundaries separating three major color classes, white (W), light spotted (LS) and spotted (S), were also drawn on 
the Rd-b plane.  Although the two classes have distinct populations, they overlap extensively and their intersection does not seem 
to coincide with the W-LS boundary. It is evident that the W-LS boundary does not provide a realistic separation between the 
white and light spotted classes. This mismatch brings a systematic error into the HVI’s color grading. 
 
Figure 2 shows the distributions of the white and light spotted classes classified by the HVI.  The clear split between the white and 
light spotted classes arises from the crisp boundary used by the HVI.  However, the W-LS separation by the HVI does not indicate 
the natural grouping of the cotton color data in these two classes.  It is logic to consider that the two peaks of the distribution rep-
resent two separate populations in the color data as seen in Figure 1. But the HVI did not allocate these two populations properly. 
This is the reason why the HVI tends to grade cotton colors for the white class more likely than for the light spotted class. 
 
In order to make the machine grading more realistically reflect the natural grouping of cotton colors, the Agriculture 
Marketing Service of the USDA and the cotton community agreed to adjust the boundaries of the Nickerson-Hunter color 
diagram.  This measure effectively reduced the systematic bias in the color grading with the HVI colorimeters, and therefore 
officially adopted as official grading starting from year 2000.  However, the modified color diagram does not deal with 
problems associated with blur, overlapping boundaries of color classes.  In a previous paper, we presented how to use an 
artificial neural network to reduce the machine-classer disagreements [(Xu, et al., 2000)].  The neural network acts as a black-
box classifier that does not use explicitly defined boundaries.  In this paper, we will report an investigative work of applying 
fuzzy logic to eliminating the hard boundary problems in cotton color grading.  



Fuzzy logic uses the fuzzy set theory and approximate reasoning to deal with imprecision and ambiguity in decision-making 
[(Cox, 1999), (Jang and Gulley, 1997) (Hguyen and Walker, 1999), (Lin and Lee, 1996)].  It provides intuitive, flexible ways 
to create fuzzy inference systems for solving complex control and classification problems.  For classification applications, 
fuzzy logic is a process of mapping an input space into an output space using membership functions and linguistically 
specified rules.  In this study, we take the output of the HVI colorimeter, the Rd-b data, as the input, and color grades as the 
output.  Our discussion in this paper will be limited to the classification for five major color classes, white (W), light spotted 
(LS), spotted (S), tinged (T) and yellow stained (YS).  Figure 3 presents a schematic diagram of the fuzzy inference system 
(FIS) for cotton color grading [(Jang and Gulley, 1997)]. 
 

Methods 
 
Fuzzy Sets and Memberhsip Functions 
Elements in ordinary or crisp sets have full memberships in one set and zero memberships in others.  A fuzzy set contains 
elements only with partial memberships ranges from 0 to 1 to describe uncertainty for classes that do not have sharply 
defined boundaries.  For each input and output variable of an FIS, fuzzy sets are created by dividing its universe of discourse 
(entire space) into a number of sub-regions and are named in linguistic terms.  Fuzzy sets’ linguistic terms are useful in 
establishing fuzzy rules.  In designing an FIS for cotton color grading, five fuzzy sets were selected for the input variable Rd 
and six for b.  The fuzzy sets for Rd represent five levels of brightness varying from very low (I), low (II), median (III), high 
(IV) to very high (V), and the fuzzy sets for b represent six levels of yellowness ranging from very low (I) to extremely high 
(VI).  Table I presents the ranges and other distributions parameters of the input fuzzy sets.  Each fuzzy set overlaps with its 
adjacent fuzzy sets.  The reason for adding one more fuzzy set for b is that b seems more critical than Rd in determining 
cotton major color classes (white, light-spotted, etc.).  In general, the more intermediate levels are used, the higher accuracy 
the classification would be.  But increasing the fuzzy sets will significantly increase the number of fuzzy rules in the next 
step.  The final selection on the number of fuzzy sets and their range may be determined by trial and error.  Since this FIS 
was designed to classify five major color classes, the output variable was split by five fuzzy sets named as white (1), light-
spotted (2), spotted (3), tinged (4) and yellow stained (5).  The range of the output variable was equally divided into five 
sections for the five fuzzy sets. 
 
Once the fuzzy sets are chosen, a membership function for each set should be created.  A membership function is a curve that 
maps an input element to a value between 0 and 1 showing its degree of belongingness to a fuzzy set.  The curve can have 
different shapes, such as bell (Gaussian), sigmoid, triangle and trapezoid, for different types of fuzzy sets [(Cox, 1999), (Jang 
and Gulley, 1997)].  In this study, the Gaussian distribution curve was used to build the membership functions for the input 
fuzzy sets Rd and b:  
 

222)()( σ−−=µ mxex  
 

where m and σ are the mean and the standard variation of one fuzzy set in x (Rd or b).  Finding the right parameters for the 
functions is a major task, which may be selected arbitrarily and then tweaked by using a known set of input-output data.  The 
m and σ values used in this FIS are included in Table I, and the membership functions are displayed in Figure 4.  The extent 
of overlap between the membership functions of two adjacent sets indicates the nature of the unsharp boundary between two 
color classes. 
 
For the simplicity of defuzzification, a triangular shape was used to construct the membership functions for the output fuzzy sets: 
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The shape and size of the triangular function depend on the values of a, b and c.  To make the output clear and unbiased, the 
symmetric, non-overlapping and equal-size membership functions were used for all the output sets (Figure 5).  
 
Fuzzification 
Fuzzification is a step to determine the degree to which an input data belongs to each of the appropriate fuzzy sets via the 
membership functions.  For a given input point (Rd0, b0), the memberships of all the fuzzy sets are calculated, and only the 
fuzzy sets with non-zero memberships are forwarded to the next steps.  In Figure 4, an example of determining the relevant 
fuzzy sets was shown for an input data (Rd0, b0)=(67.5, 9.0).  Rd0 belongs to the medium (III) and high (IV) sets of Rd with the  



memberships being 0.51 and 0.52, while b0 belongs to the low (II) and medium (III) sets of b with the memberships being 
0.20 and 0.82.  There are four combinations with the selected fuzzy sets: 
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These four combinations will be evaluated by fuzzy rules to determine the output fuzzy sets and the weight of each rule 
influencing the output. 
 
Fuzzy Rules 
In an FIS, fuzzy rules provide qualitative reasoning that links input fuzzy sets with output fuzzy sets.  They are a collection of 
linguistic rules of the form [(Nguyen and Walker, 1999)]: 
 

Ri: If  Rd is Ai  AND  b is Bi,  then  color is Ci,      i=1, 2, …, k 
 

where Ai, Bi and Ci are the fuzzy sets for the inputs Rd and b and the output color in the ith rule Ri, and k is the number of the 
rules.  The values of Ai and Bi are the linguistic terms such as very low (I) and very high (V), and the values of Ci are the 
linguistic terms such as white (1) and light spotted (2).  An example of such a rule may be given as follows: 
 

If  Rd is very high (V)  AND  b is very low (I),  then  color is white (1). 
 

The if-part of the rule is called the antecedent, and the then-part of the rule is called the consequent.  Since the antecedent in this 
FIS always involves two conditions (one for Rd and one for b), fuzzy operators are needed to specify the relationships of the 
fuzzy sets in the antecedent.  AND (intersection), OR (union) and NOT (complement) are the three common fuzzy operators.  
Because Rd and b should be simultaneously observed in selecting a color class, the fuzzy operator in all the antecedents must be 
AND.  For two fuzzy sets A and B, the fuzzy AND is defined as [(Cox, 1999), (Nguyen and Walker, 1999)]: 
 

A AND B: min{µA(x), µB(x)}. 
 

Fuzzy AND aggregates two membership functions by outputting the minimum value at a given input x (Rd or b).  The result 
of fuzzy AND serves as a weight showing the influence of this rule on the fuzzy set in the consequent.   
 
The fuzzy rules should be established based on both visual grading experience and the basic relationships between color data 
and color grades in the HVI color diagram.  Since there are five fuzzy sets in Rd and six fuzzy sets in b, there are 30 possible 
combinations in the antecedents when only fuzzy AND is applied.  Thus, the maximum number of the fuzzy rules that can be 
established is 30.  To simplify the fuzzy rule expressions, we designed a chart that illustrates (Figure 6).  In the chart, the five 
sets of Rd is arranged vertically and the six sets of b is arranged horizontally.  A knot (a black dot) between a horizontal line 
and a vertical line indicates an antecedent formed by the connecting fuzzy sets from Rd and b, and leads to a consequent that 
in turn gives an output fuzzy set.  The aggregated membership of the antecedent is then used as a weight factor to modify the 
size and shape of the membership function of the output fuzzy set in a way of either truncation or scaling.  Truncation is done 
by chopping-off the triangular output function, while scaling is done by compressing the function. In this FIS, the truncation 
operation was used.  If the membership function of an output fuzzy set is µ(x) and the weight generated from the antecedent 
is w, the truncated functions are: 
 

µT(x) = max{µ(x), w}. 
 

As given previously, the input fuzzy sets containing sample (Rd0, b0) have four combinations, which satisfy the four following 
rules:   
 

R1: If  Rd is median (III) AND b is low (II),   then  color is white (1); 
R2: If  Rd is median (III) AND b is median (III), then  color is spotted (3); 
R3: If  Rd is high (IV) AND b is low (II),  then  color is white (1); 
R4: If  Rd is median (IV) AND b is median (II),   then  color is light spotted (2). 

 
The four output fuzzy sets were circled in Figure 6.  The weights of the rules on the four outputs are 0.20, 0.51, 0.20 and 
0.52, respectively.  The truncated membership functions of the output fuzzy sets were presented in Figure7. 
 
Defuzzification 
After all the fuzzy rule evaluations are done, the FIS needs to output a crisp member to represent the classification result 
(color classes) for the input data.  This step is called defuzzification.  As seen in the (Rd0, b0) example, one input data may 



generate several weighted output fuzzy sets.  The multiple sets need to be aggregated into a single set in preparation for the 
defuzzification.  If those output fuzzy sets are different, the aggregation can be done simply by placing all the truncated 
functions together to form the final fuzzy set.  If two of the output fuzzy sets are identical, they can be combined by using 
fuzzy OR, which is defined as [(Cox, 1999), (Nguyen and Walker, 1999)]: 
 

A OR B: max{µA(x), µB(x)}. 
 

Fuzzy OR gives the maximum value of the two membership functions at any given point.  For example, sample (Rd0, b0) has 
two ‘white’, one ‘light spotted’ and one spotted output functions.  After the fuzzy OR operation, the two trapezoidal ‘white’ 
functions merge into one so that the agrregated curve becomes the one shown in Figure 8. 
 
The most popular method for defuzzification is the centroid calculation, which returns a grade weighted by the areas under 
the aggregated output functions.  Let a1, a2, … an be the areas of the truncated triangular areas under the aggregated function, 
and c1, c2, … cn be the coordinates of their centers on the x-axis.  The centroid of the aggregated area is given by [(Jang and 
Gulley, 1997), (Lin and Lee, 1996)]: 
 

∑∑=
==

n

i
i

n

i
ii acaG

11
 

 

The location of the centroid indicates the color class to be designated to the input data.  For sample (Rd0, b0), G is 17.1, which 
falls in the light spotted set (see Figure 8).  The location of this centriod inside the identified fuzzy set can suggest a finer rating. 
 

Experiment 
 
The constructed FIS was tested using cotton samples in 1996, 1997 and 1998 crop years.  Since the majority of the U.S. 
Upland cottons are ‘white’ and ‘light spotted’ and the most disputable grading occurs between these two classes, samples 
only in these two classes were selected for the experiment.  There were totally 2489 samples from the 1996’s crop, 1375 
samples from the 1997’s crop and 658 samples from the 1998’s crop in the selection.  The samples were firstly graded by 
official cotton classers, and then measured by the HVI colorimeters. The (Rd, b) data were converted into color grades using 
the HVI color diagram and the FIS.  We used the classers’ grades as a reference to check the consistency of the HVI and FIS 
data, since the classers’ grades were the official grades at that time and they were coincided with the natural grouping of the 
color data.  Table II presents the data showing the disagreements among the testing methods.  % disagreement was calculated 
by dividing the disagreement count with the number of the tested samples.  For the white class, 54.1% of the samples in 
1996’s crop, 61.5% in 1997’s, and 51.2% in 1998’s were graded differently by the classers and the HVI.  The amount of 
disagreements between the classers and the FIS has decreased considerably, and the FIS results are consistent for consecutive 
years.  The classer-FIS disagreement much more evenly spread between the white and light spotted classes, suggesting that 
there is no systematic bias in the FIS’s grading.  
 
Figure 9 shows the distributions of the white and light spotted color classes of the 1996 and 1997 samples classified by the 
FIS.  It can be seen that the two color classes in both years’ data were reasonably separated.  Based on the two newly 
separated data clusters, a best-fit polynomial curve was calculated (curve 2 in the figure).  This curve provides a new 
boundary that more properly reflects the segregation between the white and light spotted color classes.  The distribution for 
the 1998’s crop was not included because the number of the available samples from that year was not sufficient for drawing 
an effective distribution.  
 

Summary 
 
This paper presents the investigative work of using fuzzy logic to construct a fuzzy inference system for classifying the white 
and light spotted cottons based on their (Rd, b) color measurements. The performance of the FIS depends primarily on the 
selections of input and output fuzzy sets, the design of the membership functions and the establishment of fuzzy rules that 
guide the input-output relationships.  These parameters may be initially selected based on an analysis of a small set of data, 
and then tweaked by trial and error with more data.  The classers’ knowledge on color grading can be incorporated into the 
fuzzy rules to enhance the overall agreement with visual grading.  The FIS is able to perform consistent classifications for the 
samples from different years.  Although the generalization of the FIS could not tested more thoroughly in this study due to 
the lack of samples and other resources, the preliminary results has shown great potential for being a more reliable way of 
grading cotton colors.  
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Table I.  Parameters for the Fuzzy Sets of the Input Variables. 
 Rd b 

Fuzzy set Range m σσσσ Range m σσσσ 
Very low (I) 40-52.5 46.5 3.5 4-7 4.0 1.00 
Low (II) 45-65 55 3 4-11 7.2 1.00 
Medium (III) 54-75 64 3 7-12.5 9.5 0.80 
High (IV) 60-82.5 71.5 3.5 9-17 12.4 1.19 
Very high (V) 67.5-87.5 77.5 3.5 11-18 15.1 1.19 
Extremely high (VI)    14-18 18.0 1.19 

 
Table II.   Disagreements Between Different Grading Methods. 

Color Class White Light Spotted 
Crop Year 1996 1997 1998 1996 1997 1998 

By Classer (C) 1240 
(49.8%) 

416 
(30.3%) 

464 
(70.5%) 

1249 
(50.2%) 

959 
(69.7%) 

194 
(29.5%) 

By HVI 2350 
(94.4%) 

1200 
(87.3%) 

628 
(95.4%) 

139 
(5.6%) 

175 
(12.7%) 

30 (4.6%) 

By FIS 1161 
(46.6%) 

355 
(25.8%) 

447 
(68.0%) 

1328 
(53.4%) 

1020 
(74.2%) 

211 
(32.0%) 

C-HVI Disagreement  1347 
(54.1%) 

846 
(61.5%) 

337 
(51.2%) 

9 (0.4%) 14 
(1.0%) 

3 (0.5%) 

C-FIS Disagreement 154 
(6.2%) 

87 (6.2%) 40 (6.1%) 234 
(9.4%) 

144 
(10.5%) 

72 
(10.9%) 
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Figure 1.  Distributions of White and Light Spotted 
Colors Classified by Classers. 
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Figure 2.  Distributions of White and Light Spotted 
Colors Classified by the HVI. 
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 Figure 3.  Fuzzy Inference System for Cotton Color Grading. 
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Figure 4.  Membership Functions of Input Fuzzy Sets. 
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 Figure 6.  Fuzzy Rules. 
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