INTERACTION OF NAKED SEED LOCI Rickie B. Turley Crop Production USDA-ARS Stoneville, MS Reiner H. Kloth Genetics Research USDA-ARS Stoneville, MS

Abstract

Segregating populations were developed to evaluate the expression of the fuzzless seed alleles, N_1 and n_2 . Accession 143 of the Mississippi Obsolete Variety Collection (MOVC) carries the n_2 locus which is recessive to the seed fuzz phenotype. Data from the F_2 , BC_1F_1 , F_2 : F_3 , and BC_1F_2 populations of DP 5690 X 143 fit a two loci model for expression of the recessive fuzzless seed phenotype. Expression of the n_2 locus required a second recessive locus which we have designated n_3 . The dominant N_3 allele found in DP 5690 reverses the expression of the fuzzless seed phenotype in homozygous n_2 plants. Accession 243 of the MOVC carries the N_1 locus which is dominant to the presence of seed coat fuzz. No variation from expected ratios occurred when the 243 X DP 5690 cross segregated in the F_2 , BC_1F_1 , F_2 : F_3 , and BC_1F_2 populations. The N_3 allele had no apparent effect on the expression of the N_1 locus. In a cross between accessions 243 X 143 a wide variation in the lint percent of individual plants was observed, including lines which were completely devoid of lint and fuzz fiber (fiberless). A line was derived from an individual fiberless plant which was designated MD 17 fiberless. In a cross between DP 5690 X MD 17 fiberless, we demonstrated that three alleles, N_1 , n_2 and n_3 , were involved in the expression of the fiberless phenotype. The involvement of n_2 and n_3 in the expression of the fiberless phenotype was demonstrated in the F_2 progeny of the cross between MD 17 fiberless X 143. This was the first demonstration that N_1 , n_2 and n_3 epistatically interacted to produce fiberless seed.