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Abstract

Softcomputing is a powerful tool that is suited to handle complex problems
of modelling and optimisation. The relationships between fibres, production
parameters and spinning results is such an example. The relationships can
be modelled using neural networks, learning classifier systems and memory
based learning. A comparison is made of these techniques with the
traditional statistical regression models. For optimisation, price and
spinnability are taking into account. It is shown that the price of the cotton
blend can be reduced by several percents.

Introduction

One of the important production processes in the textile industry is the
cotton spinning process. Using cotton fibres, yarns are created by means of
a rotor or ring spinning machine. In first instance, it is important for the
industrial operator to predict if a certain machine setting and fibre quality
results in a spinnable yarn (without actually starting the production
process). If the yarn is spinnable, it is certainly as important to predict the
characteristics of the resulting yarn. Preferable, not only a prediction of
these yarn characteristics should take place, but also an optimisation
towards price versus yarn characteristics. This optimisation should predict
the corresponding machine settings and fibre blend (fibre quality) needed
to realise the optimal yarn / price.

The fibre-to-yarn production process can be seen as a specific
implementation of a more general production process f, schematically
illustrated in fig. 1.

The techniques represented in this paper are therefore also suited to other
(textile) production processes as described in the above figure. The
remainder of this paper will, however, only address the cotton fibre-to-yarn
production process.

Input vectors A and B are seldom optimal because of the large number of
different fibre characteristics and machine settings. Current industrial
configurations are based upon the subjective experience of the human
operator. A global optimal solution is highly unlikely. 

Experimental Set-Up

The fibre-yarn data used in this research is based upon 20 different cotton
fibre qualities with a wide variety of different fibre characteristics. For each
fibre, 73 fibre characteristics have been determined. During yarn
production, 5 different machine settings were systematically changed (2
navel types, 3 yarn counts, 3 twists, 2 rotor speeds, 3 breaker speeds). 
A total of (20 x 2 x 3 x 3 x 2 x 3 =) 2160 different production set-ups have
been realised. A total of 1380 were spinnable. Of all (spinnable) yarns the
corresponding strength and elongation were determined. Vector A will
consist of the aforementioned 5 machine settings, while vector B will
consist of a selection out of the 73 fibre characteristics. Vector C will hold
two components: yarn strength and yarn elongation. Price and spinnability
are additional parameters.

Prediction of the Spinnability of Fibres

No mathematical model of a spinning machine that predicts spinnability (or
part of vector C) exists. As a consequence of the large input (and possible
output) dimensions and the multiple complex interdependence between
parameters, it is highly unlikely that an exact mathematical model will ever
be developed. A black box model can be constructed by means of a neural

network using a Backpropagation learning rule. The construction and
behaviour of this neural network has been extensively described in [2]. The
data has been divided in a learn file and a test file. The test file was used
only to verify the resulting model (it was never used during learning). 90%
of the spinnable and 95% of the not spinnable configurations are correctly
classified. Less then 6% of the testing samples had a dubious classification.

Prediction of Yarn Characteristics
using Neural Networks

A first model for the predictions of yarn characteristics was constructed by
Pynkels et al.. For each yarn characteristic a separate neural network was
constructed. Post and pre filtering allowed for the reduction of input
parameters and the checking of intercorrelation between output parameters.
An extensive discussion of these filters is given in the paper. The obtained
(relative) procentual error on the predicted yarn characteristics is smaller
then 5% in more then 90% of all (unknown) test fibres. The maximum
relative error was about 10%. 

The current configuration used by the authors for the prediction of yarn
characteristics is a simplified version of the aforementioned combination
of neural networks using only one neural network with a Backpropagation
learning rule combined with a Bayesian regularisation.

Generating a Rule Set for the Fibre-to-Yarn
Production Process by means of Learning Classifier Systems

The modelling by neural networks (as described in the two previous
paragraphs) does not give any physical interpretable information about how
the model arrives at a certain prediction. However, Learning Classifier
Systems (LCS) generate a rule set by means of an automated learning
algorithm where each rule has a condition part (IF…) and an action part
(THEN…). The condition part will consist of (a selection from) the fibre
characteristics and machine settings, while the action part will consist of
spinnability or yarn characteristics.

The authors have constructed a more complex LCS, named Fuzzy
Efficiency based Classifier System which allows the modelling (creation of
a rule set) for a real production process (including continuous parameters,
errors, fuzzy values, long time memory, etc.).

Using FECS the spinnability was predicted with an accuracy of 94%,
resulting in a rule set of 123 physical interpretable rules. The 20 most
important rules predicted 58% of all presented samples. A typical rule looks
as follows (the rule with the largest number of selections for k=3):

00 0# 1 0# 0 0 # 0 # # 0

can be interpreted as: 

IF the yarn count and the rotor speed is low (00) (0)
AND twist and breaker speed are low (00) or medium (01) 
AND a carved navel (1) is used 
AND fibre length and strength is low (0)

THEN micronaire, uniformity and elongation don’t matter (#)
AND the resulting yarn strength will be low (0)

The advantage of this technique is that it can generate rules for cases that
do not follow the general rules of the majority of examples. Moreover the
rules have a clear physical meaning.



Memory Based Reasoning (MBR)

(also known as Instance Based Reasoning)

MBR is similar to human reasoning based upon experience:

1. Identifying similar cases from experience (opposite to the
other techniques, that learn from all examples)

2. Applying the obtained information from these cases to the
new problem

It is one of the more thoroughly analysed algorithms in machine learning
due to its simplicity and its age (1967, Cover and Hart, early theoretical
results).

MBR only uses two operators:

1. Distance function between any two cases (records)
2. Combination function to arrive at an answer

First training samples are stored in a database as separate records. No
immediate generalisation is done. When a new query is submitted, the
relation (distance function) to the stored records is examined. A target
function (or combination function) is assigned based on aforementioned
distance. Most of the time this will include only a limited number of records
‘close’ to the query.

Advantages of MBR:

1. The ability to model complex target functions by a collection
of less complex local approximations

2. Training examples are never lost (all training examples are
explicitly stored).

Some disadvantages of MBR are:

1. High computing cost during classification (calculation of
distances + construction of combination function is done at
the moment of the query). Other learning methods construct
their target function before the query (high computing cost
during learning phase) but can afterwards immediately
evaluate a query.

2. The distance function basically considers all attributes of a
record as equal (including less important or useless
attributes). If dependant on only a few attributes ‘similar’
instances could be a large distance apart, resulting in a wrong
choice of records to build a local target function. A possible
solution to overcoming this problem is to weight each
attribute differently when calculating the distance between
two instances. 

The results of using this technique are equal for modelling yarn
characteristics to neural networks, but for spinnability MBL is problematic
(due to the discrete assessment of spinnability (0/1).

Comparison of Modelling Techniques

Multiple linear regression: correlation 91% for considered case
+ few data required
+ well known and widely available
+ fast (training and recall)
- not for complex cases

Neural networks: correlation 95% for considered case
+ excellent for complex cases
+ widely applicable
+ excellent generalising properties
- black box: no insight in model
- more art than science
- many data required
- learning phase time consuming

Learning classifier systems: correlation 94% for considered case
+ easy interpretation (rules)
+ capable of generating separate rules for deviating cases
- configuration of rules is critical factor
- learning phase time consuming

Memory based learning: correlation 95% for considered case
+ looks at relevant examples only
- time consuming
- not always applicable.

Optimisation of the Yarn Characteristics

Due to the high dimensionality (vector A + vector B + vector C) of the
production process and the fact that an exact mathematical approach
(model) is not feasible, a genetic algorithm was used to obtain a multi
dimensional optimisation of vector C. Genetic algorithms. For ann
extensive introduction to genetic algorithms and possible applications we
refer to literature .

Using the model (obtained in paragraph 4) a specific blend can be
determined (fibre qualities) and corresponding machine settings for a
certain (optimal) yarn strength and elongation. As the optimisation is multi
objective, the genetic algorithm has been expanded to include Pareto
optimisation and a ‘sharing’ function. The sharing function allows the
search for several optima (a set of optima), while the Pareto optimisation
allows the optimisation of a multi dimensional output.

The aforementioned genetic algorithm (GA) allows calculating a group of
optimal yarns (a so called Pareto front) for which the corresponding fibre
qualities and machine settings are known (fig. 2). In the first GA
implementation, the calculated fibre qualities were unlikely to correspond
with any of the original 20 cotton fibre qualities (the neural network had no
restraints on the diversity of fibre characteristics). An approximation to
these predicted ‘ideal’ fibre characteristics was done by calculating an
optimal blend of the 20 available fibre qualities. This blend, together with
the predicted machine settings was used to produce a yarn (in a real
production environment). A procentual accuracy of 96% for the elongation
and 92% for the strength when compared to the predicted Pareto front of
optimal yarns.

Global Optimisation Towards Yarn
Characteristics, Spinnability and Price

The aforementioned optimisation model still had several shortcomings:

1. Although a corresponding price could be calculated (based on
the blend), the solution itself was not optimised versus price.

2. The predicted optimal blend was not verified versus
spinnability (simulations have shown that for lower
elongation and tenacity yarns, the calculated blend was not
spinnable).

3. No realistic constraints (as can be expected in a real
production environment due to limited availability, planning
schedules, etc.) are taken into account.



To remedy these shortcomings several of the previous techniques and
models (as seen in paragraph 3 to 5) have combined into one global
structure as shown in figure 3.

Two new added (or extended) components can be distinguished within the
fibre-to-yarn model:

• The optimisation towards spinnability, yarn tenacity,
elongation  and price. To this end, a sequential quadratic
programming algorithm was used. As the importance of each
parameter may not be equal, weight factors can be attributed.

• Realistic constraints have been added to the optimisation. If
Ci are the procentual blend coefficients corresponding with
fibre quality i, then a basic general constraint is:

= 1.0 with 0.0 < Ci < 1.0   (1)i
i

c∑

This corresponds with the fact that the sum of the procentual blend
coefficients should correspond to a total of 100% and that each coefficient
should be no lower then 0.0 % or higher then 100%. If a certain fibre
quality j is not available an additional constraint Ci = 0.0 can be added.
Constraints can easily be changed to implement practical production
limitations. For example: if a certain fibre quality has to be included a
minimum (higher then 0.0) or even a fixed procentual blend coefficient can
be set. 

Using the above constraint(s), each optimisation result corresponds with a
totally realistic (and controllable) configuration, which has no need for any
further approximations. The result of such an optimisation is presented in
Fig. 4.

Finally, a real production test case (from an existing spinning mill) was
implemented:

• 20 new (existing) cotton qualities with their corresponding
prices (between 40 and 50) from a spinning mill were taken
as input parameters

• Constraints were defined: no single quality could have more
then 10% or less then 0% within a certain blend.

• A target elongation of 8% and tenacity of 15.7cN/tex was
determined  

The model suggested a blend of 12 qualities: 8 cotton qualities with a
contribution of 10% and 4 cotton qualities with a contribution of 5%. The
yarn was predicted as highly spinnable with a predicted strain of 7.5% and
tenacity 15.4cN/tex. The final price of this blend was 41ct/lb. These results
were compared with current production settings in the spinning mill. The
resulting fibre characteristics of the blend and the predicted machine
settings all corresponded very well with the settings at the spinning mill (as
determined by a human expert). However, the final price of their blend was
at a higher level: 42.5ct/lb.

Conclusions

Several techniques are available to model complex production processes,
such as the fibre-to-yarn process. The best technique depends on the type
of data, the available number of data, the expectations of the user, the use
of the model, technical and mathematical knowledge of the user. For the
case considered, neural networks (with backpropagation learning srategy)
gives good results, both for quality and for processability as a function of
fibre parameters and machine settings.

A global optimisation of the fibre-to-yarn production process has been
presented in this paper. Price, yarn characteristics, spinnability and
production constraints have all been taken into account to determine an
optimal blend of fibre qualities. When the results were compared to the

blends and settings of an existing spinning mill (optimised by a human
expert) strikingly similar predictions were made. However, the blends
suggested by the human expert, had a higher price (3.7%). 

Future research will concentrate towards guaranteeing continuity of all the
aforementioned fibre-to-yarn optimal settings in time, as the current
optimisation present an immediate solution without taking into account
stock limits or the arrival of new qualities within the near future.
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Figure 1.  Structure of the basic process

Figure 2.  Optimisation of price and quality of a cotton blend

Figure 3.  Global optimisation structure of the fibre-to-yarn production
process

Figure 4.  Result of the global optimisation – real case Spinnability: * good,
0 average, . weak


