EVALUATION OF REMOTE SENSING FOR PLANT GROWTH REGULATOR AND DEFOLIANT APPLICATIONS

J. E. Hanks USDA-ARS

Application and Production Technology Research
Stoneville, MS
G. D. Wills and E. J. Jones
Mississippi State University
Delta Research and Extension Center
Stoneville, MS

Abstract

Field studies were conducted at Stoneville, MS in a field approximately ten acres in size with cotton grown on 38-inch row spacing under normal production practices. Each plot was eight rows wide and 780 feet long planted in an east-west direction with soil variations ranging from silt loam (CEC 17.9) on the east end to clay (CEC 35.3) on the west end. Plots were randomized according to a randomized complete block design with three replications. Field boundary, plot boundaries and four geo-referenced data collection points per plot were mapped with a global positioning system (GPS). Data collected at each point included: plant height, number of nodes, percent vegetation ground cover, plant tissue analyses, percent boll opening, and percent defoliation. Soil analyses were from 1-acre georeferenced grid sampling and a geo-referenced Veris device. Aerial multispectral imagery was collected at various times throughout the season. Variable rate plant growth regulator and defoliant applications were applied with a John Deere 6500 high-clearance sprayer equipped with a GPS controlled Spraying Systems Model 844 spray controller. All variable rate applications were based on field data collected at geo-referenced points and mapped using Agis (Delta Data Systems) geographical information system (GIS). Preliminary results indicate good correlations with multi-spectral remote imagery; bare soil imagery correlated much better with Veris data than with 1-acre grid sampling and high vegetative areas were easily distinguished from areas of sparse vegetation with remote imagery. Similar prescriptions for variable rate applications could be made using multispectral imagery.