ASSOCIATIONS OF FIBER QUALITY AND WITHIN BOLL YIELD COMPONENTS IN NEAR LONG STAPLE UPLAND COTTON

Chris Braden and C. Wayne Smith Texas A&M University College Station, TX

Abstract

Seven diverse genotypes of upland cotton were evaluated for within-boll yield components at College Station, TX during 1998 and 1999. These seven genotypes included two sister lines, TAM 94L-25 and TAM 94M-14, that exhibited fibers approximately 16 percent longer than those of the shortest genotype. These lines, along with three cultivars and two other experimentals, were planted in a RCB field design with four replications. Cultural practices were normal for the locale with furrow irrigation. The objective was to determine if selection for exceptionally long fibers affected within-boll yield components, especially the number of fibers per unit of seed surface area. Conclusions were: 1. The number of fibers per cm² of seed surface area of TAM 94L-25 and TAM 94M-14 were not different than Tamcot CAMD-E nor SureGrow 125, both commercial cultivars; 2. Acala Maxxa had fiber bundle strength and number of fibers per cm² of seed surface area exceeding that of all other genotypes, suggesting that these two traits can be increased simultaneously, at least up to the levels exhibited by Maxxa; 3. correlation analyses suggest, however, that increasing fiber quality and the most basic fiber yield component remains problematic; and 4. the association of AFIS data and within-boll yield components suggest that increasing the number of fibers per cm² of seed surface area will be associated with increased immature fibers and an increase in the number of fibers less than 12.5 mm.

Acknowledgments

The authors thank Cotton Incorporated and The Texas Food and Fibers Commission for financial support of this research.