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Abstract

This paper discusses the identification of various trash types
in cotton (non-lint material/foreign matter) using soft
computing techniques, such as, Fuzzy Logic and Neural
Network based approaches.  Trash identification provides the
basis for computing the trash content in ginned cotton.  The
effectiveness of a hybrid neuro-fuzzy structure, namely the
Adaptive Network-Based Fuzzy Inference System, to classify
trash types is compared with other techniques.  A correlation
between trash content computed by Agricultural Marketing
Service and those computed by the Southwestern Cotton
Ginning Research Laboratory is presented.

Introduction

The Southwestern Cotton Ginning Research Laboratory
(SWCGRL) is part of the United States Department of
Agriculture, Agricultural Research Service (USDA-ARS).
SWCGRL is involved in various aspects of cotton ginning
research.  The industry needs a capability to classify cotton
based on trash content in real time, i.e., at video rates, and to
develop a system capable of defining trash types for possible
use by textile processors and in grading cotton.  SWCGRL is
working in conjunction with USDA-Agricultural Marketing
Service (AMS), and other ARS laboratories to develop such
a system.

Traditionally, cotton grade has been based on four physical
properties: color, trash, preparation, and extraneous material
(USDA-AMS, 1999).  The reflectance (Rd) and the degree of
yellowness (+b) describe cotton color.  Trash is a measure of
the amount of non-lint material, such as leaf and bark, in
cotton.  The term preparation describes the smoothness of the
sample, i.e., lack of lumps and twists.  Cotton in its raw form
contains lint and non-lint material.  Lint is the cotton fiber,
non-lint or foreign matter is essentially everything other than
lint.  The term ginning refers to the process of separating lint
from cottonseeds.  A commercial gin also cleans non-lint
material from the fibers.  This non-lint material can consist of
bark, leaf, pepper, hulls, seed coat fragments, and motes left

behind in the sample.  Pepper refers to broken or crushed
pieces of leaf, hulls are the outer coverings of the cotton boll,
and motes are immature cottonseeds. Current techniques to
identify these trash objects include classical statistics, Linear
Vector Quantization (LVQ) (Lieberman, 1997), clustering
algorithms, Neural Networks (NN’s) (Lieberman, 1994) and
Adaptive Network-Based fuzzy Inference System (ANFIS)
(Siddaiah, 1999a).

Currently 15 to 19 million bales of cotton are produced in the
United States each year; and 98% of these are classed by the
USDA-AMS.  Since each bale of cotton produced in the
United States is classed in a classing office, an on-line
automated system capable of identifying both trash types as
well as assigning a class grade is of great importance to AMS.
With the addition of trash identification, the criteria for
grading ginned cotton can be improved.  The current task
includes identifying trash and categorizing it as bark1, bark2,
leaf, or pepper. In our research, we differentiate bark in terms
of bark1 and bark2.  Stringy pieces of bark objects are
referred to as bark1.  Pieces of bark with no filaments are
referred to as bark2.  The objectives are (1) identify a
segmentation technique to separate non-lint material from lint
material; (2) identify features to recognize trash in cotton
samples; (3) evaluate the performance of a recognition system
to accurately identify the stated trash types; and (4) compute
the trash content in ginned cotton. 

This paper presents a methodology for identifying various
types of trash objects using soft computing techniques and
computation of trash content (by percent area) in cotton
samples. Using area, solidity, and extent as features of the
various trash types, it is possible to identify objects in cotton
samples as bark1, bark2, leaf, and pepper. These features
provide the necessary inputs to train the various classifier
systems, examined in this paper, i.e., back propagation neural
network, fuzzy clustering algorithm (fuzzy C-means), and the
Adaptive Network-Based Fuzzy Inference System (ANFIS).

Approach to Classification
of Trash Types

The problem of pattern classification is generally considered
to be a high-end task for computer based image analysis. The
complexities range from locating and recognizing isolated
objects of known types, to recognizing objects in poorly
defined classes, to much more open-ended problems of
recognizing possible overlapping objects or classes and
properly handling shadows, empty regions and poorly
prepared samples.

Sample Domain Description
Problem domain specifications have a major impact when
designing a classification system. The population of all lint
and non-lint material present in ginned cotton defines the
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problem domain.  For trash identification, this domain is
reduced to a sample domain of prepared samples of trash
placed on bleached cotton. Identification is limited to four
common types of trash, namely, bark1, bark2, leaf, and
pepper.  These categories are not distinct, as they do not have
well defined separating boundaries.  For example, leaf and
pepper types are actually a continuum with an arbitrary
separation boundary.  Test samples were cotton samples
extracted randomly from bales.  For trash content
measurements, the sample domain was 18 AMS trash level
check boxes.

Preprocessing
Images (640 x 480 pixels) were acquired using a 3-chip CCD
Sony® color camera. The imaging hardware consists of a
Matrox® IM-1280 imaging board and IM-CLD acquisition
board. Image frame-grabber acquisition timing was adjusted
so both horizontal and vertical pixel resolutions are 0.005 in.
The acquired images are flat field corrected to remove spatial
illumination nonuniformity. Trash objects were separated
from the cotton lint background (segmented) using a simple
threshold on the intensity plane in HLS color space to obtain
a binary image where each trash object is identified. A
unique, automatically chosen threshold was used for each
image. A set of 3 features was measured with Visilog® image
analysis software by NorPix, Inc. (formerly Noesis Vision)
for each object in the segmented image.

Feature Hyperspace
For each object, a set of features is computed. These features
form the basis for a component feature vector that defines a
point in multi-dimensional feature space. The classifier
partitions this multi-dimensional hyperspace into specific
regions, where each region corresponds to a type of non-lint
material. Each classification system forms a unique
hypersurface separating the feature space into object regions.
The image analysis software provide the following features:

i. Area A: Area of object in a binary image, the
number of nonzero pixels in an object.

ii. Ferrets Xf and Yf : Projection of an object along
image edges.

From these basic features the following additional features
were computed (Russ, 1994).

i. Convex Area: Area of a 32-sided irregular
polygon bounding the object.

ii. Bounding box area: Product of the ferrets Xf and
Yf  when object has been rotated with long axis
horizontal or 45 degrees.

iii. Solidity: Ratio of Area to Convex Area.
iv. Extent: Ratio of Area to Bounding Box Area.
v. Edif: Difference in extent at 0 degrees and 45

degrees.

Figure. 1 shows examples of the trash objects with the feature
measurement values shown in Table 1.  All trash objects with
an area less than 10 pixels (2.5 x 10-4 in2) were considered as
noise and ignored.  Pepper is the only trash type that can be
distinguished from the others using one feature, namely
"area". All objects with area less than or equal to 200 pixels
(5 x 10-3 in2) can be considered pepper. The convex area for
bark1 objects is significantly larger than the actual area of the
object.  Solidity for bark1 objects are typically less than 0.5
in comparison to leaf and bark2 objects, which have solidity
values closer to 1 as the convex area for leaf and bark2
objects are closer to their actual area.  Area and solidity are
independent of rotation in the image plane for the trash types.
However, the extent for bark2 objects varies with the
orientation of the objects. For a bark2 object, when the object
edge is oriented horizontal to the image axis, the bounding
box area is very close to the actual area of the object
(Lieberman, 1999). This results in a value for extent that is
closer to unity. However, when these objects are oriented at
an angle of 45 degrees, the bounding box area is maximum
resulting in values for extent that are lower. The difference
between the extent at 0 and 45 degrees orientation (Edif)
provides a distinguishing characteristic between leaf and
bark2 trash types (Siddaiah, 1999a).

Classification Methods

In this section, various classification techniques used to
identify trash types in ginned cotton are presented. Different
trash types were placed on bleached cotton and used to
collect the training data. Images (640 x 480 pixels) were
acquired and flat field corrected to improve spatial
uniformity. The flat field corrected images are 512 x 480
pixels. Each acquired color image (RGB) is converted into
the hue, luma (intensity), and saturation (HLS) color space.
The intensity plane is used to obtain the threshold for
separating non-lint material from lint. Automatic threshold
values are determined using an entropy measure on the
intensity plane of the image. The thresholded images are used
to mask all lint from the cotton image. Any object that
touches the boundary of the image is removed from the
image. All remaining objects are numbered as blobs and
transferred to a label image for the collection of data. Fig. 2
through 5 represent training samples for various trash types
and their respective thresholded binary image. Area and
ferrets are measured; convex area, bounding box area, extent,
solidity, and Edif are computed for all the blobs in the binary
image.

Three techniques were examined for their effectiveness in
identifying the various trash types.

Fuzzy Clustering
A fuzzy clustering algorithm (Lin, 1996) is used on the data
set to obtain the fuzzy center for each trash type.  Based on
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fuzzy centers obtained from the training data, trash objects in
two test images (Fig. 6 and 7) are classified.  The minimum
distance criteria was used to classify the trash types.  The
classification results for the two test images are summarized
in the results section.

Back-Propagation Neural Network 
A three-layer back-propagation neural network (Medsker,
1994) is trained using inputs area, solidity, and Edif. The
input-output training pairs of data consist of 212 patterns
(features from the training images). Based on the weight
vectors obtained from the training data, the trash objects in
two test images (Fig. 6 and 7) are classified.  The
classification results for the two test images are summarized
in the results section. 

Adaptive Network-Based Fuzzy Inference System
(ANFIS)
ANFIS is based upon a set of fuzzy rules originally proposed
by Takagi, Sugeno, and Kang, commonly referred to as TSK
rules.  The consequents of these rules are linear combinations
of their preconditions (Jang, 1996). The TSK fuzzy rules can
be expressed as follows:

where xi is the input variable, y the output variable,  areAi
j

linguistic terms of the precondition part, and with
membership functions of  where  areµ

Ai
j xi( ), ai

j ∈ R

coefficients of linear equations  andf j x x xn( , , , )1 2 �

j M i n= =1 2 1 2, , , ; , , , .� �

Consider the input variables area, solidity, and Edif. The
outputs of the network are fuzzy singletons. For the given
input-output training pair, the premise parameters, namely the
centers (means), and the widths of the fuzzy membership
functions are updated using the hybrid learning algorithm.
The generalized bell functions shown in Figs. 8 through 13
were used as membership functions.

The TSK rules for the given input-output data pairs can be
expressed as shown in Table 2.  The initial and final
membership functions of the premise parameters are shown
in Figures 8 through 13 (Siddaiah, 1999b). The classification
results for the two test images(Figures 6 and 7) are
summarized in the results section.

Trash Content

Trash Content is defined as the ratio of the total trash area to
the image area, i.e.,

The trash content for 18 AMS box samples with various trash
levels were computed. The box samples were rotated over the
image plane and 10 imags (reps) of each sample were
acquired.  Six of the 18 samples were used to compute the
ratio between AMS measurements and  SWCGRL
measurements.  The mean value of these ratios were used to
compute the trash content of the remaining 12 AMS samples.

Results

Classification
Classification results for the trash objects contained in test
samples #1 and #2 using back propagation neural network,
fuzzy C-means, and ANFIS are shown in Table 3 (Siddaiah,
1999c). Comparing classifier performances, it is seen that
ANFIS provides far superior results. The neural network
classifier appears to provide better results than the fuzzy C-
means. The misclassification of a bark2 object as pepper
objects in test sample #1 is due to segmentation (blobs 13 and
22 in Fig. 6). The ANFIS parameter optimization method
used for training the fuzzy inference system yields better
convergence compared to the back propagation neural
network.

Trash Content
The trash content for 6 AMS box sample images were
computed to obtain the ratios of the AMS to SWCGRL
measures.  Fig. 14 and Fig. 15 represent the images of the
AMS trash boxes with the lowest and highest trash content of
the six box samples.  The mean value of the ratio is used to
compute the trash content and the correlation coefficient
between the AMS and SWCGRL trash content of the
remaining 12 AMS trash boxes.  Figs. 16, 17, and 18 are
three images of the 12 samples shown for illustration.  Table
4 represents the SWGGRL and AMS measures for the six
samples.  A total of 10 reps of each sample were used to
compute the trash content. Table 5 shows the mean values of
the computed percent trash and the AMS percent trash. The
correlation coefficient between AMS values and SWCGRL
values is 0.9988.

In the identification of trash types in cotton samples, the trash
objects lying on the periphery (edges) of the images are
removed from the segmented image since any such object
may result in misclassification. For instance, if a bark2 object
is on the periphery, it may appear as a leaf object and result
in misclassification.  However, in the computation of trash
content it is necessary to include all objects in the camera's
field of view (FOV) to measure the total trash area. In the
computation of trash content in this research effort, all pixels
in the FOV were used to measure the trash area.  All objects
with area less than 10 pixels were considered as noise and
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removed from the images before the computation of trash content.

In Table 4, the ratios for all samples but #6 are within ±1
standard deviation of the mean of all 6 samples.  The reason
for this discrepancy is that not all the trash objects in sample
#6 surface can be acquired when rotating an image, resulting
in a lower trash area.  This is evident in Fig. 15.  To correct
this, all trash in an AMS trash box would have to be within a
2.5-in. circle.

Conclusions

Results indicate superior performance in the classification
compared to previously employed methods. The classification
rates are superior with the ANFIS and back propagation
neural networks. The proposed approaches can be used in
developing a classification system capable of identifying
various trash types in real time. The computed percent trash
is consistent with AMS percent trash measurements.

Footnote

Mention of a trade name, proprietary product, or specific
equipment does not constitute a guarantee or warranty by the
U.S. Department of Agriculture and does not imply its
approval to the exclusion of other products that may be
suitable.
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Table 1.  Feature Measurements.
Trash type Bark1 Bark2 Leaf
Area 1526 1578 581
Convex area 3242 1734 651
Bounding box area 4879 3990 858
Solidity 0.4707 0.9100 0.8925
Extent_0 0.3287 0.7599 0.6952
Extent_45 0.1728 0.2777 0.6439
Edif 0.1559 0.4822 0.0513

Table 2. TSK Fuzzy Rules.

Rule
If area

is
And solidity

is
And Edif

is
Then trash type

is
R1 Small Small Small Pepper
R2 Small Small Large Pepper
R3 Small Medium Small Pepper
R4 Small Medium Large Pepper
R5 Small Large Small Pepper
R6 Small Large Large Pepper
R7 Large Small Small Bark1
R8 Large Small Large Bark1
R9 Large Medium Small Bark1
R10 Large Medium Large Leaf
R11 Large Large Small Bark2
R12 Large Large Large Bark2
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Table 3. Summary of classification results.
Trash types
Classifier Bark1 Bark2 Leaf Pepper Correct(%)
Neural 
Network Bark1

Bark2
Leaf
Pepper

4
1
0
0

0
0
1
0

0
0
5
1

0
1
3

89

93.33

Fuzzy
C - Means Bark1 0 1 2 1

86.67Bark2 0 1 0 1
Leaf 0 0 0 9
Pepper 0 0 0 90

ANFIS
Bark1 4 0 0 0

98.10Bark2 0 1 0 1
Leaf 0 1 8 0
Pepper 0 0 0 90

Table 4. Ratio of AMS to SWCGRL trash content.

Sample No.
AMS

Values
SWCGRL

Values
Ratio AMS to 

SWCGRL Values
#1 0.2716 0.6258 0.4345
#2 0.4209 1.0284 0.4196
#3 0.9006 2.1106 0.4275
#4 1.4160 2.9832 0.4754
#5 1.7370 3.4957 0.4970
#6 2.8687 5.5055 0.5212

Mean 0.4625
Std. Dev. 0.0416

Table 5. Mean values of AMS and SWCGRL trash content.
Sample No. AMS Values SWCGRL Values

#7 0.1010 0.1014
#8 0.2903 0.2921
#9 0.4428 0.4798

#10 0.6791 0.6923
#11 1.1573 1.1019
#12 1.9060 1.8245
#13 0.1066 0.1069
#14 0.2727 0.2753
#15 0.4344 0.4428
#16 0.7009 0.6507
#17 1.1077 1.0171
#18 0.4422 0.4476

Correlation coefficient 0.99875

Figure 1. Trash types with feature measurements.

Figure 2. Bark1 training sample.

Figure 3. Bark2 training sample.

Figure 4. Leaf training sample.

Figure 5. Pepper training sample.
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Initial Area Membership Functions

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Area

M
em

be
rs

hi
p 

A
ss

oc
ia

tio
n 

Small Large

Final Area Membership Functions

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Area

M
em

be
rs

hi
p 

A
ss

oc
ia

tio
n

LargeSmall

Initial Solidity Membership Functions
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Figure 6. Cotton test sample #1.

Figure 7.  Cotton test sample #2.

Figure 8. Input variable-Area.

Figure 9. Input variable-Area.

Figure 10. Input variable-Solidity.

Figure 11. Input variable-Solidity.
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Initial Edif Membership Functions
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Figure 12. Input variable-Edif.

Figure 13. Input variable-Edif.

Figure 14. AMS box sample #1 (Trash Content = 0.27).

Figure 15. AMS box sample #6 (Trash Content = 2.87).

Figure 16. AMS box sample #7 (Trash Content = 0.1).

Figure 17. AMS box sample #11 (Trash Content = 1.15).

Figure 18. AMS box sample #18 (Trash Content = 0.44).


