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Abstract

Problems that are difficult to model in other mathematical
ways, because of their complexity, have sometimes show
difficulties when the results are compared to those obtained
from neural networks.

Examining the history of using knowledge based
engineering systems and other artificial intelligence related
methods, a special conclusion can be drawn: neural
networks have not been widely applied to the analysis of
textile spinning processes.

In cotton spinning, problems can be divided into those that
have an impact on the technology including machinery and
control, affect the properties of materials, and determine the
quality.

This paper discusses this field and develops proper
approaches and by giving examples of applications of
neural networks too real cotton spinning processes.

Introduction

Neural networks, a mathematical modeling which originated
from the modeling of the functioning of real biological
neural network, is being widely accepted in technical
sciences. In recent years, different applications of this
method to manufacturing processes have been published in
several fields. In these applications, neural networks
showed a potential for process monitoring, modeling and
decision making.

Back-Propagation Algorithm

The architectural layout of a multilayer perceptron is
presents in Fig. 1. The corresponding architecture for back-
propagation learning, incorporating both the forward and
backward phases of the computations involved in the
learning process, is presented in Fig. 2. The multilayer
network shown in the top part of the figure accounts for the
forward phase.

In Fig. 2 we have L = 3; we refer to L as the depth of the
network. The lower part of the figure accounts for the
backward phase, which is referred to as a sensitivity

network for computing the local gradients in the back-
propagation algorithm 

While the network of Fig. 2 is merely an architectural layout
of the back-propagation algorithm, it is found to have
substantial advantages in dynamic situations where the
algorithmic representation becomes.

Earlier we mentioned that the pattern-by-pattern updating of
weights is the preferred method for on-line implementation
of the back-propagation algorithm. For this mode of
operation, the algorithm cycles through the training data
{[x( n),d(n)]; n = 1, 2,..., N} as follows.

Initialization: Start with a reasonable network
configuration, and set all the synaptic weights and threshold
levels of the network to small random numbers that are
uniformly distributed.

Presentations of Samples: Present the network with an
epoch of samples. For each sample in the set ordered in
some fashion, perform the following sequence of forward
and backward computations under points 3 and 4,
respectively.

Forward Computation: Let a sample in the epoch be
denoted by [x(n),d(n)], with the input vector x(n) applied to
the input layer of sensory nodes and the desired response
vector d(n) presented to the output layer of computation
nodes.

Assuming the use of a logistic function for the sigmoidal
nonlinearity, the function (output) signal of neuron j in layer
l is,

if neuron j is in the first hidden layer (i.e., l=1), set

where xj(n) is the jth element of the input vector x(n). If
neuron j is in the output layer (i.e., l=L), set

Hence, compute the error signal

ej(n) = dj(n) - oj(n) 

where dj(n) is the jth element of the desired response vector
d(n).
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Backward Computation: Compute the /’s (i.e., the local
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for neuron j in hidden layer l 

Hence, adjust the synaptic weights of the network in layer
l according to the generalized delta rule:

where ç is the learning-rate parameter and . is the
momentum constant.

Iteration: Iterate the computation by presenting new epochs
of training examples to the network until the free parameters
of the network stabilize their values and the average squared
error 1AV computed over the entire training set is at a
minimum or acceptably small value.

The order of presentation of training examples should be
randomized from epoch to epoch. The momentum and the
learning-rate parameter are typically adjusted (and usually
decreased) as the number of training iterations increases.

Materials and Methods

We decided to ‘model’ one production line of combed
cotton yarns. The data consider yarns from Ne 30/1 to Ne
60/1, with twist multiplier ranging from 3.4 to 4.2. Our
historical database is composed of 80 different blends.

The fiber characteristics are evaluated with the HVI/HVT
systems and their database concerning the following
properties: upper half mean length (UHM), micronaire, SL
50%, SL 2.5%, uniformity ratio (UR) and uniformity ratio
(UR), elongation and the strength (cN/tex), reflectance
degree (RD), yellow content (+B), area, count, trash weight,
color grade (CGRD) and final grade, for the fibers. The
yarn's properties have been evaluated by the USTER’s
systems and the database content the following
characteristics: twist multiplier, evenness (U %), hairiness,
thick and thin points tenacity (RKM - cN/tex) and the count
(Ne).

Results and Discussion

For a first approach, we applied linear regression to ‘see’
the most important parameters that influence the tenacity of
the yarns. The results are shown in the Table I.

Using an artificial neural network, we predict the
parameters of the different mix for 4 different yarn counts.
We used the ‘twist’ and the count to ‘define’ the
characteristics of the yarns. These properties are the ‘inputs’
(I) of the neural network.

In Table II we represent the prediction of it of the
‘optimum’ characteristics of the cotton blends. They are the
‘outputs’ (O) of the neural network.

Another question to solve, it was the ‘uneveness’. We
decide to define one ‘new’ specification of quality for these
cases, considering ‘tenacity’ specifications and a broad
range of counts. The results are shown in Table III.

Conclusions

Neural network applications permits obtain good
predictions for quality assurance purposes in cotton
spinning processing. If the data are just noisy gives
excellent results, much better than conventional multivariate
statistical procedures.

Artificial neural networks are a very good tool for spinning
engineering design, and quality assurance purposes in
cotton spinning.

We intend to use this prediction technique, in others fields
of spinning engineering.
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Figure 1.  Architectural graph of a multilayer perceptron with two hidden
layers 

Figure 2.  Architectural graph of three layer feedforward network and
associated sensitivity network (back propagating error signals)

Table I - Regression analysis of spinning data.
Variable Coefficient

twist 2.051
CGRD - 0.239

+B 0.234
Ne -0.174

STR  0.098
UR  0.065

Multiple R Square Multiple R
0.943 0.889

Table II - Prediction of Mix Properties
O O O O O O O O I I

Mike UHM UR STR RD +B Neps cN/tex twist Ne
4.4 28.4 50.3 25.1 74.0

3
10.9 58.8 16.7 3.3 30.0

4.2 26.4 49.1 25.9 80.0 11.7 71.1 16.5 3.4 36.0
3.7 29.0 49.9 26.3 76.0 10.3 94.9 19.7 3.9 50.0
3.6 28.2 46.0 27.7 76.0 10.3 118.2 19.4 4.0 60.0

Table III - Prediction of Mix Properties with Uneveness and Tenacity
O O O O O O I I I I

Mike UHM UR STR RD +B CV U cN/te
x

Twist Ne

4.3 27.5 47.5 25.2 72.0 10.9 12.4 16.5 3.3 30.0
4.1 28.2 48.2 26.0 76.0 11.0 12.9 17.2 3.4 36.0
3.7 28.6 49.7 26.2 76.0 10.2 13.2 18.5 3.9 50.0
3.4 29.0 50.2 27.9 79.0 10.2 14.3 18.9 4.0 60.0


