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Abstract

The status of video cotton trash and cotton color
measurement work at Southwestern Cotton Ginning
Research Laboratory (SWCGRL) is presented.  New
accomplishments are in the areas of video measurement of
absolute color in CIE XYZ and Hunter’s Rdab color spaces
and improvements of bark trash type identification.  

Introduction

The need for this research is best seen in the context of how
the cotton industry is measuring cotton color and trash
content for marketing and process control.  United States
cotton is High Volume Instrument (HVI) graded before
entering the cotton marketing system.  But this grading
happens after the fact.  The cotton has already been ginned,
baled, and is ready to enter the cotton market.  Any chance
for the ginner or farmer to effect lint quality has passed.  A
gin based color/trashmeter able to indicate possible USDA-
Agricultural Marketing Service (AMS) HVI grade is
expected to improve the ability of any gin to optimize
control and to communicate seed cotton problems to the
farmer.  This system is not meant to replace the current
AMS HVI color and trash measurement systems.  The AMS
system should be maintained.  A method for relative
measurements within a gin is being suggested. In addition,
with a system that can identify bark, process control could
decrease the bark component of the final product.  

Zellweger Uster† sells a process control system (PCS) that
currently uses color/trashmeter sub-systems derived from
their HVI systems, (Anthony-90).  Global sample color,
total sample trash, and trash count are used as inputs to the
PCS.  In addition to these features, the proposed system
measures lint-only color, identifies trash type, and can
accumulate information about each type of trash.  A single
instrument is used to measure both color and trash.  

But why the need to identify trash types?  This instrument
would give more information to the PCS.  Knowing relative
and total bark amount could permit the ginner to better
choose the equipment mix for improving final product

value.  For instance, removing relatively more bark might
decrease bark discounts.  

If this system’s "barky" calls correlate with AMS', then
AMS might evaluate the system for classing office use.
Textile mills could use the system to better categorize cotton
going into a laydown.

Approach

The approach is divided into three parts, general, color
measurement, and trash identification.

General
The measurement techniques should be transportable and
reproducible, so problems like the differences between the
early MCI® and Spinlab® systems do not re-occur.  For this
work, an MCI stand-alone color/trashmeter was modified to
use (1) a Sony® m/n 930, 3-chip color camera with ½ CCDs,
(2) quad fiber optic spotlights with defocusing lenses placed
at 45 ( left and right, and (3) an Illumination Technologies®

3900 fiber optic light source. Two different Matrox® IM-
1280 Framestores, IM-CLD frame grabbers, and computers
were used as two systems (\\486 and \\brg).  Acquired
images were 640 by 480 pixels although only the central
512 by 480 pixels were used to make our predictions.  The
images have three planes, red, green, and blue (RGB).

Color
Since a high resolution 3-CCD color camera has been used
for our trash identification work (Lieberman 95), the system
could be designed to measure total sample and lint-only
color in CIE LAB (L*a*b*) (CIE 86, Hunter 87) or
Hunter’s Rdab (Hunter 87) color spaces at little extra cost.
There would then be only one instrument to maintain in a
gin environment rather than two. 

A system design parameter was instrument stability over
more than 24 hours without recalibration.  Thomasson (92)
suggests a calibration interval of four hours with the current
trashmeters.  The stability of the system was evaluated by
tracking mean image levels and level standard deviations
every six-minutes over 2½ days.  After the stability had
been characterized, the absolute color test was begun.

Absolute Color Measurement
The first step in developing an absolute color measurement
system was to obtain color-stable samples.  These were
measured by a method traceable to a national standard.
These color-stable samples were then used to configure CIE
XYZ and Rdab measuring systems, (Pratt 91; Hunter 87).
Evaluation consisted of comparison between the measured
Rd, a, and b values and the traceable values.  Repeatability
was evaluated by comparing multiple measurements on one
imaging system to each other and then measurements on one
system to the other system.  Accuracy was evaluated by
comparing measurements to the traceable values.  
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The color conversion test used 28 ceramic and 2 porcelain
tiles.  These were sent to Hunter's Laboratory and measured
on instruments traceable to the NIST.  (NIST performs the
functions of the former National Bureau of Standards.)  CIE
XYZ and Rdab measurements from both a
spectrophotometer and colorimeter were acquired, (Hunter
Labs 96).  On some of the tiles, we also have AMS Rd and
+b values.

This test consisted of 8-measurement repetitions on 30 tiles.
Four measurements were made with each of the two systems
presented earlier (\\486 and \\brg). The tile was rotated 90(
between acquisitions.  Four-repetitions were first acquired
on the imaging computer \\486.  The next day, four
repetitions were similarly acquired using imaging computer
\\brg.

Trash
There are two components to the trash work, identification
of the types of trash and measuring percent trash.  For trash
identification, eight training images (two each of pepper,
leaf, bark, and bark2) were used.  Bark and bark2 are both
“bark”, but they have different ranges of the measured
features (described below).  One might call bark: hairy-bark
and bark2: solid bark.  Operators identified the trash in each
test image. A back propagation neural network (Lieberman
94) was used to train the system.  Five actual cotton samples
were used for testing. 

Results and Evaluation

In any lighting system there are two obstacles to good
measurements: spatial and temporal non-uniformity.  Spatial
non-uniformity refers to cases where lighting is brighter in
one region than another.  This has been addressed, in
previous years, at this conference (Lieberman 95).  Briefly,
a reference image was acquired and used to define the
spatial non-uniformity.  The reference image was
normalized; i.e., all pixels in each color plane were divided
by the plane’s mean value.  Every new image was then
divided by this normalized shape image.  The improvement
was demonstrated by evaluating the standard deviation in
levels for the image.  If lighting was uniform, the reference
tile was uniform over its whole surface, all camera pixels
were identical, and the optics caused no distortion then the
standard deviation of level in each image plane should be
zero.  Ours is not a perfect world, hence, the need for the
correction.   The plots in Figure 1 and Figure 2 must be
discussed before evaluating the improvement in standard
deviation, (Figure 3).  Many identification tasks using
imaging rely on relative gray level or color level
information, keyword relative.  Making absolute color
measurements, traceable to some standard, is a very
different ball game. 

Temporal non-uniformity is a problem and is where lighting
level changes over time in either total amount or relative
amount among the colors. Figure 1 through Figure 5 show

measurements on an 80%-white reference tile.  A tile image
was acquired and processed every six minutes over 2½
days. The vertical line located near midnight Sunday shows
a flawed image and its subsequent bad data.  This was
caused by the loss of one of two fields in one image frame.
This condition is easily recognized and the system would
have the image retaken.  All of these figures show six traces
versus time.  These traces consist of two sets of three image
planes of information.  For example, The raw red, green,
and blue (RGB) levels from the camera are shown in Figure
1.  These RGB traces start at 160, 174, and 170,
respectively. The corrected RGB signals start at 156, 158,
and 160, respectively. Since the variation in raw RGB is so
much larger than the corrected RGB, just the corrected RGB
and target RGB are shown in Figure 2.  Target values are
the measurements produced by Hunter Laboratory or values
derived from those numbers.  The trend of the corrected
curves is much flatter during the first 24-hours than the
latter part of the time.  This implies a limit of 24-hours
between calibrations, but this should be looked at again, in
the future.

Evaluating the effect of the correction is shown in Figure 3.
In this figure, the standard deviation of the quarter million
pixels in each image plane is plotted over time.  The two
sets of traces are raw-image standard deviations using the
left axis, and corrected-image standard deviations using the
right axis.  Raw-image standard deviations for red, green,
and blue are about 22.8, 24.2, and 25, respectively.  The
corrected values are 3.2, 3.1, and 4.5, respectively, an
improvement of about a factor of 5.

The AMS Rd, +b color space used for cotton color is meant
to be identical to Hunter’s Rdab.  Hunter’s Rdab color space
is defined in terms of the CIE XYZ color space (Hunter 87,
CIE 86).  The CIE XYZ color space can be defined in terms
of various RGB color spaces.  An XYZ value was computed
for each pixel in an RGB image.  The mean CIE XYZ
image levels are shown in Figure 4.  It can be seen that the
Z signal has the most variation.  This will be a factor in the
Rdab plot.  Besides the measured values, the Hunter values
of X, Y, and Z are shown.

Rdab pixel values were computed from the XYZ pixels.
Figure 5 shows mean level information in the Hunter’s Rdab
color space.  The cotton classing system currently uses only
the Rd and +b components.  Besides the measured values,
the Hunter Rd, a, and b values are shown; Rd uses the left
axis, a and b uses the right.

Over the first 32 hours of the test, the a and b components
varied less than 0.25 units.  However, the b signal shows a
bias, which is being evaluated.  AMS has color tolerances
on their colorimeters of 1.0 and 0.5 respectively. Rd changes
less than 0.2 peak to peak over 2½ days (Figure 5).  The +b
change is less than 0.25 peak to peak most of the time and
less than 0.35 for the whole period.
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Accuracy/Repeatability
At an initial level we can handle for temporal and spatial
lighting variations.  Next, the system’s ability to measure 30
tiles in Hunter's Rdab color space within AMS tolerances
was evaluated. Figure 6 shows the results of eight
repetitions plotted around an AMS color chart.  The most
obvious aspects of the plot are points that have “missed” the
AMS chart.  That was done on purpose.  Points outside of
the nominal AMS region were included to improve the
accuracy of our equations.

Each apparent single triangle actually consists of eight
triangles, one per repetition.  PROC CORR (SAS CORR)
was used to acquire the correlations among Hunter’ values
of Rdab, values for each repetition (8-each), the means of
the four-repetitions from each image processing system and
the mean of all 8 repetitions.  All Pearson correlation
coefficients were essentially the same.  All correlations
among the eight repetitions were above 0.999 with most
above 0.9999.  But, AMS does not use single repetitions for
their measurements; they use the mean of four.  The
correlation among the Hunter values and the mean-of-four-
runs from each of two different systems is shown below.
Tables for Rd, a, b are located in Table I through Table III
Points to notice are, the two systems correlate very well
with one another (0.9993, 0.9994, and 0.9991) for Rd, a, and
b respectively.  The correlations between the target and the
mean test sets are 0.99923 ±0.00020, 0.99608 ± 0.00032,
0.99400 ± .00065 for Rd, a, and b, respectively.  The lower
correlation for b than for Rd agrees with the fact that more
of the error in Figure 6 is in the b direction. 

There is a correlation among the different measures for
Rdab.  Now we see if there is a predictive capability. Table
IV and Table V show the coefficient of determination (r2)
for numerous cases were our data was compared to the
target Hunter Laboratory values.  All of the measurements
presented until the end of the color section have a
confidence level of 99.99%.  The first data line of Table IV
reports how well the Hunter Rdab values are predicted from
using the 8-repetitions of 30 tiles as one data set.  The next
two lines report how well the mean of 4-repetitions for each
system (called \\486 and \\brg) performed.  Of course, one
performed better than the group of 240 and one worst, but
what is beneficial is that all three were essentially the same
in their ability to predict Hunter’s Rdab.  The fact that the
mean of 8-repetitions and the set of 240 individual
measurements is not surprising.  It was mentioned in the
discussion of Figure 6 that all of the eight repetitions were
essentially equal. The last line of the table, where the mean
of one system is compared with the mean of the other,
confirms this consistency.  Table V contains similar
information for tiles that are located within the AMS color
diagram.  There was improvement in the regression
coefficients for Rd and b, but a performance was not as
good. 

This says there is no simple correction and our accuracy still
needs more work.  There appears to be a trend that the error
increases with +b.

Trash Identification
There are numerous methods to identify regions of a cotton
image as trash (segment the image).  Image levels were
adjusted to imitate spatially uniform lighting and responses.
Flat-field correction (Lieberman 95) was used to
compensate for spatial effects caused by lighting, cell
sensitivity and other problems.  Correcting for spatial non-
uniformity enables the use of thresholding, abet with
different levels for segmenting each image.  Changes of
illumination level over time are less of a problem as our
methods find a threshold unique for each image. Trash
objects were segmented from lint background by
thresholding.  The results of this are shown in the leaf-
training sample (Figure 8).  Once objects are identified,
simple features are acquired from the imaging hardware.
After previous experimentation, area, shape factor (4p * area
/ perimeter2), solidity, and extent (Russ 94) were chosen
Figure 7.  Solidity is the ratio of actual area to convex area.
Convex is the technical term; rubber-band area seems more
descriptive; the convex perimeter is the shape a rubber band
takes around the trash object.  Convex area is within that
perimeter.  Convex area versus actual area for a number of
objets is shown in Figure 7.  Convex area is constant, within
digitization errors, when an object is rotated in an image.
Since both area and convex area are constant, solidity is
rotationally invariant.  Extent is the ratio of actual area to
bounding box area.  If an object rotates in the image, the
size of the bounding box changes drastically for objects like
bark and bark2, but not for leaf.  The minimum and
maximum extent provides information that is useful for
classification.  An example of how these measures might be
used for classification can be seen in Table VI.  Solidity for
bark is usually less then 0.5.  Once bark is removed, extent
can then be used to separate leaf from bark2.

One further comment, Figure 7 shows that the silhouette of
a short bark2 would look like a leaf silhouette.  Also, the
silhouette of oblong leaf would look like a bark2 silhouette.
This observation will be used later. 

Training
A back propagation NN was used to train the system on
sample images (Lieberman 94; Lieberman 97).  The NN
generated weights were incorporated into the imaging
system.  The trash type of each trash object is computed as
a function of the relevant weights and features.  There were
two sample images for each trash type, pepper, leaf, bark,
and bark2.  Again referring to Figure 8 showing a raw
cotton image and segmented cotton image, each black
region of the segmented image represents one trash object.
Figure 9 shows a segmented and numbered image.  These
numbers were software generated.  The operator used
numbers while identifying trash type.  Note that not all trash
objects are numbered.  There are three reasons for not
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numbering an object common to all training images.  1)
Objects with an area less than 10-pixels were considered
noise and removed from the database.  (Optics and camera
timing were adjusted so each pixel was 0.127 mm (0.005
in.), 10 pixels have an area of 0.16 mm² (250) in²).) Object
“northwest” of object 11 is an example of this.  2) Object 42
is large enough, but it is made from two joined objects.  3)
For training, only objects of one type were retained in a
given image’s database.  We consider pepper and leaf to
differ only by size.  A trigger point of 200 pixels was used
to separate these for training; 200 pixels have an area of
3.23 mm² (0.005 in²). In the pepper images, objects greater
than the trigger point were removed from the database.  In
the leaf images, objects less then the trigger point were
removed from the database.  

Testing
The system was trained and self-tested to identify features
to be used.  Once the best set of features was found, the
system was tested on five actual cotton samples. Figure 10
shows test sample 5. Figure 11 shows the same sample with
the objects numbered and with unnumbered objects deleted.
Objects deleted from the database were not numbered.  The
classification results of 245 trash pieces contained in five
test images is shown in Table VII.  There were 223
classified properly (Table VIII).  The 22 mis-classified
objects will be evaluated.  These are the Type I errors where
a known object is mis-classified (Table IX).  There was a
trivial amount of pepper mis-classified.  Leaf on the other
hand has 50% mis-classification into two categories: pepper
and bark2. 

In previous years, at this conference, it had been shown that
hierarchical clustering could help.  If an area threshold is
used to remove most pepper before NN classification
(Lieberman 97), leaf called pepper error will be minimized.
In the best system, it is expected the pepper called leaf and
leaf called pepper errors to be equal.  Leaf was called bark2
(19%) also bark2 was called leaf (50%); more work is
needed here.  As pointed out previously, shape related
parameters might not be sufficient for leaf and bark2
separation or bark2 called pepper error.  If a threshold
reduces the leaf called pepper error, then this error should
decrease also.

Figure 10 /Figure 11 results can be evaluated to show some
of these errors (Table VII).  Objects 87, 88, 91, and 94
appear as pieces of leaf or pepper in Figure 11.  However,
they are all part of a piece of bark (Figure 10).  Object 45 is
called stick, but the human observer believes it is leaf. 

Conclusion

The technique to measure color works as an indicator of
color not as an accurate absolute measurement.  The method
for trash identification works well for bark and pepper.  The
overlap between leaf and pepper is understood and should
be corrected.  The overlap of bark2 with leaf and pepper

requires further evaluation.  Using color might be a tool to
help differentiate these classes

Future Research

Color
These measurements related to the Hunter Laboratory
colorimeter Rdab color space.  We plan to see how well we
can predict AMS color.  Currently, we need to get some
calibration tiles measured in AMS color space.  This
preliminary test should be repeated using two different
imaging systems (different lighting geometry, different
camera types). The next step would then be to apply the
Rdab measuring system to cotton samples to produce
measurements equivalent to current AMS Rd and +b.  A
parallel step is to get the lint-only color.  The color and
range of color would be evaluated as factors in identifying
"difficult to identify" trash. Some researchers have found
lint-only color does not give statistically better color
information than sample color, (Thomasson, 93).  That
research was done with a different configuration and will be
repeated using our technique.  

Trash
Now that trash can be identified, a method to measure AMS
percent trash should be developed.  The prior probability of
pepper versus leaf, bark, and bark2 should be more
representative of our test samples.  Our sample had 211
pepper and 32 all other types. Eventually, AMS percent
trash should be computed as the ratio of area of all trash
objects to the image area.  The minimum area threshold
and/or trash type might be a factor to enable AMS system
results to be duplicated.  Bark discount might be computed
by relating bark count and area to all trash area for each
color region. The classes of trash that we can identify could
be expanded to include such things such as grass, hairy seed
coat fragments (scf) (outer surface of scf), smooth scf (the
inner side of scf), pea vine, grease, man-made material, and
other trash items of interest.  Detection of light spot could
be evaluated.  Since bark can be identified, a method to
predict bark discount should be developed. The use of color
to help differentiate among bark2, leaf and pepper should be
evaluated. 

Footnotes

† Mention of a trade name, proprietary product, or specific
equipment does not constitute a guarantee or warranty by
the U.S. Department of Agriculture and does not imply its
approval to the exclusion of other products that may be
suitable.
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Figure 1.  Mean raw and corrected levels.

Figure 2.  Corrected and target mean levels.

Figure 3.  Standard deviation of RGB image planes.
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Figure 4.  Mean CIE XYZ levels.

Figure 5.  Hunter’s Rdab mean levels.

Figure 6.  Evaluation of tile Rdab.

Figure 7.  Examples of solidity and extent.

Figure 8.  Leaf training sample, raw and segmented images.

Figure 9.  Leaf image segmented/numbered.
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Figure 10.  Test sample 5, raw and segmented images.

Figure 11.  Test sample 5, trash numbered.

Table I.  Hunter’s Rd correlation results.
Source Hunter Rd System \\486 Rd System \\brg Rd

Hunter Rd       1.00000      0.99938       0.99903
      0.0      0.0001       0.0001

System \\486 Rd       0.99938      1.00000       0.99993
      0. 0001      0.0       0.0001

System \\brg Rd       0.99903      0.99993       1.00000
      0. 0001      0.0001       0.0

Table II.  Hunter’s a correlation results. 
Source Hunter a System \\486 a System \\brg a

Hunter a       1.00000      0.97574       0.97641
      0.0      0.0001       0.0001

System \\486 a       0.97574      1.00000       0.99994
      0.0001      0.0       0.0001

System \\brg a       0.97641      0.99994       1.00000
      0. 0001      0.0001       0.0

Table III.  Hunter’s b correlation results. 
Source Hunter b System 1 b System 2 b

Hunter b       1.00000       0.99334       0.99465
      0.0       0.0001       0.0001

System \\486 b       0.99334       1.00000       0.99991
      0.0001       0.0       0.0001

System \\brg b       0.99465       0.99991       1.00000
      0.0001       0.0001       0.0

Table IV.  Coefficients of determination for the 30 tile regressions.
Hunters Rdab versus Rd a b
240 points (30 tiles x 8 repetitions) 0.9999 0.9402 0.9964
Mean of 4 \\486 repetitions 0.9999 0.9391 0.9959
Mean of 4 \\brg repetitions 0.9999 0.9414 0.9969
Mean 8 repetitions 0.9999 0.9403 0.9964

Predicting each other
Mean \\486 versus mean \\brg 1.000 .9999 0.9999

Table V. Coefficients of determination for the 13 tile regressions.
Hunters Rdab versus Rd a b
104 points (13 tiles x 8 repetitions) 1.0000 0.9147 0.9981
Mean of 4 \\486 repetitions 1.0000 0.9171 0.9979
Mean of 4 \\brg repetitions 1.0000 0.9125 0.9983
Mean 8 repetitions 1.0000 0.9149 0.9981

Predicting each other
Mean \\486 versus mean \\brg 1.0000 0.9998 1.0000

Table VI. Examples of solidity and extent.
Convex

area
Bounding
box areaTrash type Area Solidity Extent

bark 1526 3242 4879 0.4707 0.3128
bark2 1578 1734 3990 0.9100 0.3955
leaf 581 651 858 0.8925 0.6772

Table VII.  Trash identification results.
Classified

Pepper Leaf Bark Bark2
Total Known 210 17 10 8
211 Pepper 204 5 0 2
16 Leaf 5 7 1 3
10 Bark 0 1 9 0
8 Bark2 1 4 0 3

Table VIII.  Identification: percent accuracy.

Pepper Leaf Bark Bark2

Known trash identified correctly 96.68 43.75 90.00 37.50

Identified trash that is correct 97.14 41.18 90.00 37.50

Table IX.  Trash identification Type I errors.
Classified

Total Known Pepper Leaf Bark Bark2
211 Pepper - 2.37 0 0.95
16 Leaf 31.25 - 6.25 18.75
10 Bark 0 10 - 0
8 Bark2 12.5 50 0 -
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Table X.  Classification results
Actual Classified

Pattern Blob_ID Trash Type 0 Degrees 0, 30, 60 Degrees
1 0 Pepper Pepper Pepper
2 6 Bark Leaf Leaf
3 10 Pepper Pepper Pepper
4 16 Pepper Pepper Pepper
5 17 Bark Stick Bark
6 19 Pepper Pepper Pepper
7 21 Pepper Pepper Pepper
8 22 Stick Leaf Leaf
9 28 Pepper Pepper Pepper
10 34 Pepper Pepper Pepper
11 42 Pepper Pepper Pepper
12 44 Pepper Pepper Pepper
13 45 Leaf Stick Stick
14 59 Pepper Leaf Pepper
15 62 Bark Bark Bark
16 63 Pepper Pepper Pepper
17 65 Pepper Pepper Pepper
18 66 Pepper Pepper Pepper
19 73 Pepper Pepper Pepper
20 78 Pepper Pepper Pepper
21 82 Pepper Pepper Pepper
22 87 Stick(Broken) Leaf Stick
23 88 Stick(Broken) Pepper Pepper
24 91 Stick(Broken) Pepper Stick
25 94 Stick(Broken) Leaf Pepper


