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Abstract

In this part of the series, two color grading systems were
developed using expert system and neural networks. Both
grading systems have two modes of operation, classification
mode and training mode. In the training mode, the expert
system can be trained by a statistical method based on
Bayes’ theorem or genetic algorithm. For neural network
approach, the grading system can be trained by
backpropagation algorithm or probabilistic neural network.
Using 100 cotton samples from USDA, the agreement with
classer can be improved from the original 50% from HVI
grading to 86% - 100% depending on the training method
and the training samples. The relative contributions of each
measurement on color grading were also investigated using
stepwise discriminate analysis. 

Introduction

Color is vitally important to manufacturers and an accurate
call on color is extremely important.  As a result,
instrumented color systems have been developed that
attempt to make this call which cotton classers have made
for many years.  Assuming that the cotton classer can
correctly evaluate color grade, a goal becomes one where
High Volume Instrument (HVI) color grade matching with
classer grade is predicted in all cases.  Unfortunately, this is
not the situation and much effort has been put forward to
identify instrument system factors that enhance
predictability of classer grade. 

In Part I [1], color measurement was discussed using both
a spectrometer CIE-based average color measurement and
a color uniformity measurement using image analysis. The
purpose of these efforts is to improve the accuracy of the
measurement and to provide additional measurement for
color grading. In this paper, we discuss the development of
an expert system and a neural network based grading system
that use these additional measurements to improve the
agreement between cotton classer and instrument grading.

Current Color Grading System

Classers Grade is composed of trash, preparation and color.
The color grade reflects the varying amount of yellow color.
In the process of grading, the classer visually compares the
cotton samples with a set of standard cottons under standard
illumination. The classer not only observes the color shade,
but also variation in color, trash, yellow spot distribution
and other visual effects in the process of grading. The HVI
grades cotton based on a color/grade translation chart
(Nickerson-Hunter color diagram). The color/grade
translation chart is a 2-D graph of Rd versus +b, on which
is overlaid the cotton classer’s color grade (white, light
spotted, spotted, tinged and yellow stained) and scale
preparation (GM, SM, M, SLM, LM, SGO and GO).  The
HVI system currently provides Rd and +b parameters
obtained from an average response of reflected and color-
filtered light that is translated into a number representative
of color grade. Figure 1 illustrates the HVI color chart used
in color grading. For example, the number 43-3 indicates
SLM for grade on higher side and spotted for color on
lower side.

Expert System and Neural Networks for Color
Grading

Expert System 
An expert system is a computer-based system that uses
knowledge and reasoning techniques to solve problems that
normally require the abilities of human experts. The
knowledge the expert system uses is made up either of rules
or experience information about the behavior of the
elements of a particular subject domain. Rules generally
give descriptions of a condition, followed by implications
of that condition. Experience information is a collection of
experiences on a particular subject. The reasoning technique
often used by expert systems is inferencing. An answer to
a question posed to the expert system is inferred from the
knowledge and facts presented to the expert system. Expert
systems have been structured in many ways. The various
expert system architectures include different components.
However, certain components are common to most expert
systems: a knowledge base and an inference mechanism. 

HVI systems have been used in cotton grading for over 20
years, without necessarily replacing the cotton classer.
During this period, experience has told us that if there is a
disagreement between the HVI colorimeter and cotton
classer, the cotton classer usually will assign the sample to
a lower color grade than was assigned by the colorimeter.
This is attributed to the fact that the human eye can see
more detail than can the colorimeter. Therefore, we choose
to develop an expert system that will use our experience to
grade samples. Figure 2 illustrates the block diagram of the
grading system. The inputs are HVI color grade,
spectrometer redness (a*), variance and contrast of color,
and percent area of yellow spots and trash. The expert
system has two modes of operation - classification mode
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and training mode. In the classification mode, based on HVI
color grade, the expert system will evaluate a set of rules to
make a decision whether it should be downgraded or not
based on additional information. The decision boundaries
are determined by a training module in training mode using
two techniques, Bayesian and genetic algorithms (GA). The
first decision-making technique used in this research is a
statistical approach. A set of characteristic measurements,
denoted features, is extracted from the input data and is
used to assign each feature vector to one of the classes. The
goal of any classifier is to minimize the number of errors
made, or to maximize the likelihood of making a correct
class assignment. This can be done using Bayesian theory.
Alternatively, decision boundaries can be determined by
genetic algorithms. A genetic algorithm (GA) is a directed
random search technique, invented by Holland. Natural
selection is a process by which nature causes those
chromosomes that encode better characteristics to reproduce
more often than those that encode poorer characteristics.
Natural selection is the process that causes genetic
algorithms to produce near-optimal solutions when the
selected chromosome is decoded. This process involves
creation of many chromosomes by reproduction, crossover,
mutation and the survival of the chromosomes with the
better characteristics. Successive generations of
chromosomes improve in quality. The fitness evaluation
function acts as an interface between the GA and the
optimization problem. Where a mathematical equation
cannot be formulated for this task, a rule-based procedure
can be constructed for use as a fitness function or, in some
cases, both can be combined. The fitness function in this
case uses the same rules in classification mode. In each
evaluation process, the fitness function executes the rules
and returns the error of classification. After the selection
and reproduction process, the classification error is reduced
in successive iterations. The evolution process will be
terminated if there is no significant improvement in a pre-
specified number of iterations.  

Neural Networks
Historically, the two major approaches to pattern
recognition are the statistical and syntactic approaches.
Recently, the emerging technology of neural networks (NN)
has provided a third approach for pattern recognition
algorithms. To some extent, the NN approach is a non-
algorithmic, black-box strategy, which is trainable. We hope
to ‘train’ the neural black box to learn the correct response
or output for each of the training samples. This strategy is
attractive to the classifier designer, since the required
amount of a priori knowledge and detailed knowledge of
the internal system operation is minimal. Furthermore, after
training we hope that the internal structure of the artificial
implementation will self-organize to enable extrapolation
when faced with new, yet similar, patterns on the basis of
‘experience’ with the training set. 

Multi-layer Perceptron (MLP) is perhaps the best known
type of feedforward networks. Neurons in the input layer

only act as buffers for distributing the input signal to
neurons in the hidden layer. Each neuron in the hidden layer
sums up its input signals after weighting them with the
strength of the respective connections from the input layer
and computes its output using a sigmoid function of the sum
of the weighted inputs. The backpropagation algorithm is
the most commonly adopted MLP training algorithm.
Iteratively, beginning with the output layer, the error term is
computed for neurons in all layers and weight updates
determined for all connections. The weight updating process
can take place after the presentation of each training pattern
(pattern-based training) or after the presentation of the
whole set of training patterns (batch training). In either case,
a training epoch is said to have been completed when all
training patterns have been presented once to the MLP. The
probabilistic neural network provides a special neural
network for solving pattern classification problems. The
PNN is a neural network implementation of Bayesian
classifiers. It has been shown that the probabilistic neural
network (PNN) approaches the Baysian classifier if the
training set is large. PNN is fairly specialized, not having
the wide applicability of the MLP. PNN is intrinsically a
classifier and the advantage of this network model is that a
byproduct of its computations is Bayesian posterior
probabilities. 
 

Experimental 

Descriptive Statistics of the Samples
One hundred cotton samples were provided by USDA for
which HVI color grade agrees and disagrees with classer
grade, respectively. Among the 100 samples, 50 samples
show agreement between HVI colorimeter and the classer,
whereas the remaining 50 samples show disagreement. The
cottons do not cover the whole range of classer grades, but
are restricted to White, Light Spotted and Spotted.  The
discrepancies are wholly between the first two
classifications and, hence, very localized for overall
color/grade translation.

Table 1 lists the categorized means and standard deviations
for these 100 samples. Generally, mean values of L*
decrease, whereas mean values of a* and b* increase as
color grade goes down from white to spotted. These mean
values are well separated in different color grades. For color
variations, both L* variance and b* variance increase with
the decrease of the grades as expected, but the mean value
separation in L* is small in light spotted and spotted grade.
Similarly, b* contrast shows good separation, but not L*
contrast. Trash area and yellow spot area increases with the
decrease in color grade. The mean values are well separated,
but the standard deviations are high also. It should be noted
that the variance of the sample is very important.
Specifically, one can ask whether or not two or more groups
are significantly different from each other with respect to
the mean of a particular variable. If the means for a variable
are significantly different in different groups, then we can
say that this variable discriminantes between the groups.
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Table 2 lists the correlation matrix of the variables. The
highest correlation among the variables is between a* and
b* with an R-value of 0.80. Thus when a sample has higher
yellowness value, it usually also has higher redness value.
Therefore, if more precise description of the sample is
needed, a* should not be ignored. Correlation between a*
and L* comes next with an R-value of –0.63. The negative
R-value means that the lower the lightness, the higher the
redness.

Procedure
An optical spectrometer, manufactured by Ocean Optics,
was used to obtain CIE L*, a* and b* means.  Because the
spectrometer measures the entire visible spectral
distribution, the means for L*, a* and b* are superior to the
scanner approach. A color scanner has been used to obtain
color images from which yellowness variation [variation in
b* in CIE standardization] and yellow spot area can be
obtained. The color scanner image is converted pixel-by-
pixel in an algorithmic translation of  R, G and B
parameters to CIE color space parameters L*, a* and b*.
Color uniformity, contrast, and trash/yellow spot content
were obtained by software we developed and described in
Part I of the series.

The inputs to expert system are HVI color grade and the
additional measurements described in Part I to make
adjustment on the initial HVI color grade. The neural
network based grading system does not use the color
translation chart.  Instead, the raw measurements such as L*
and b* are used together with additional measurements.

A flow chart of the process of designing a learning machine
for classification is illustrated in Figure 3. The first step is
the selection of architecture of the classifier. Once the
architecture is determined, the next step is the feature
selection process. The collected experimental data will be
divided into two sets, one for training and the other for
testing. In each of these two sets are 25 samples for which
there is HVI and classer agreement and 25 samples for
which there is disagreement between HVI and classer. If the
testing result is good, the system is said to be trained and
ready for use.  Otherwise, the architecture must be modified
or the features need to be refined.

Results and Discussion

Feature Selection
The objective of feature selection is to reduce the number of
measurements we require. What one would like to do is to
select the best m variables where ‘best’ implies lowest error
rate. This is similar to the variable selection problem in
regression analysis where one attempts to find the best m
variables to predict the dependent variable. The most
common methods are stepwise forward and stepwise
backward discriminate analysis. Usually, the measures used
in stepwise methods are partial Wilks’ lambda, F- ratio and
tolerance. In general, Wilks’ lambda is the standard statistic

that is used to denote the statistical significance of the
discriminatory power of the model. Its value will range from
1.0 (no discriminatory power) to 0.0 (perfect discriminatory
power). A Partial Wilk’s lambda is the Wilks’ lambda for
the unique contribution of the respective variable to the
discrimination between groups. One can look at this value
as the equivalent to the partial correlation coefficients
reported in Multiple Regression Analysis. Because a lambda
of 0.0 denotes perfect discriminatory power, the lower the
value, the greater is the unique discriminatory power of the
respective variable. The conditional F-ratio is the univariate
F-ratio, associated with a particular variable, testing the
difference between the group means conditional on the
variables already entered in the equation. It is a measure of
how much a given variable contributes to the group
differences given the variables already included. The F-ratio
is proportional to the ratio of the between groups sums of
squares and the within groups sums of squares and, hence,
it is easy to see that large values of F correspond to well
separated groups. The tolerance value is defined as 1 minus
R-square of the respective variable with all other variables
in the model, and this value gives an indication of the
redundancy of the respective variable. It ranges from 0.0 to
1.0 with 0.0 representing 100% redundancy.

The results of stepwise forward analysis are presented in
Table 3. Among the 10 variables, 8 of them were selected
by stepwise analysis with the criteria of an F value greater
than 1.0 to enter the model. Redness (a*) was selected as
the most significant variable in contributing to the
discrimination with a ‘Partial Lambda’ value of 0.659
(significantly lower than the rest) and an F value of 23.25
(significantly higher than the rest). Yellowness (b*) comes
next with a ‘Partial Lambda’ value of 0.831 and an F value
of 9.12. Trash area, b* variance, and Yellow spots area take
the third, forth and fifth places in contributing
discrimination power with closer ‘Partial Lambda’ values
and F values. The remaining variables - a* variance, L*
variance and L* contrast - contribute only a little in
discrimination with higher “Partial Lambda’ values and
lower F-values. It is a little surprising that lightness (L*)
and yellowness contrast were not selected during the
stepwise analysis because of low F values (< 1.0). From the
tolerance value, the results show that there are no redundant
variables. 

It is important to realize that, although the stepwise forward
and stepwise backward methods are very similar in their
appearance, they can produce different results even when
using the same measure of goodness. The result of stepwise
backward analysis is presented in Table 4. The results are
very similar to stepwise forward analysis. The contribution
in discrimination are in the order of a*, b*, trash area,
yellow spots area, b* variance, a* variance and L* variance.
L* contrast was not selected in stepwise backward when
comparing with the stepwise forward. Yellowness (b*)
variance ranked third place in stepwise forward, but it was
ranked fifth in stepwise backward. Similar to stepwise
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forward, L* and b* contrast were not selected because of
the low F values.

Combining the results from both stepwise forward and
backward, a*, b*, b* variance, yellow spots area, trash area,
a* variance and L* variance were selected as the inputs to
the neural networks. The reason that L* was not selected by
the stepwise analysis may come from the narrow regions of
the samples. With a wider range in samples, L* might be
expected to be an important parameter and, therefore, it is
included in the input vector to the neural networks.

Expert System Training and Classification
The training set was trained separately by both statistical
and genetic algorithms. After training, another set was
tested on the expert system and compared with their
opposing group.  The results are presented in Table 5. 
When we used set #1 for training and set #2 for testing, a
100% agreement between HVI and classer was obtained for
the testing set, for the expert system trained using the
statistical approach. If set #2 was used for training, a 98%
agreement was obtained for testing set #1. 

For the expert system trained using the genetic algorithm,
where we trained the expert system using set #1, a 92%
agreement was obtained between HVI and classer for set #2.
If set #2 was trained, an 86% agreement was obtained for
set #1. This result shows that the Bayes approach performs
better than the genetic algorithms approach, for the samples
we investigated. This is not surprising because the Bayes
classifier is an optimized classifier for a sample distribution
following a normal distribution. The training sample size is
small and that also limited the performance of the genetic
algorithms approach. This study is an exploration of the
feasibility of the two approaches. Additional samples should
be tested before drawing final conclusions. 

It is also found that the training sample is very important.
Training samples should be representative and sample size
should be large enough to ensure unbiased classification.
The most encouraging result is that this study demonstrates
that the agreement between HVI grading and that of the
cotton classer can be significantly improved using
additional measurements discussed in Part I of the series,
provided the classifier is properly trained.

Neural Network Training and Classification
Data set #1 was trained separately by both MLP and PNN.
After training, set #2 was tested and compared with their
opposing group. In training the MLP network, some
parameters need to be identified which are important to the
performance. These parameters include the number of
hidden layers, the number of neurons in the hidden layer,
learning rate and momentum coefficients. The input layer
has eight neurons that are connected to the eight
measurements selected by the feature selection process. The
output layer has five neurons representing each of the five
color grades. It has been proven that a network with only

one hidden layer can compute any arbitrary function of its
inputs; therefore, one hidden layer will be used. The number
of neurons in the hidden layer will be determined by
experiment. With too few hidden neurons, the network may
be unable to create adequately complex decision
boundaries. However, if there is a large number of hidden
neurons, it is more difficult for the trained network to create
a generalized mapping using the training data.  The network
will perform well on training data, but fail on the unseen
data set. Learning rate and momentum are also important
parameters in training a MLP network. We use a low
learning rate with a high momentum for the starting point
considering the noise in the data set. 

The classification result on the testing set is illustrated in
Figure 4. The lowest error rate was found when the hidden
layer has six neurons. The error rate increased when the
number of neurons were either increased or decreased.

PNN incorporates a parameter, 1, which is a smoothing
factor that applies to the probability density estimate.  There
is no universal, mathematically rigorous method for
choosing the best value of 1, yet it is crucial to competent
performance. The optimal value of 1 for every problem is
different. It may be on the order of 1, or it may be on the
order of 0.001. Figure 5 illustrates the classification error at
three 1 values from the testing set. A choice of 1 that is
either too low or too high will result in higher classification
error. The lowest error rate was found for a smoothing
factor of 0.1. Compared with the lowest error rate from
MLP, it is higher (12% vs 6%). 

It should be noticed that the training sample set is small.
Therefore, it is not easy to draw a firm conclusion for the
broadest application across color grading at this time. But
this research has explored the feasibility of MLP and PNN
to color classification schemes. In order to draw solid
conclusions, more samples should be tested. In general,
both approaches improved agreement between cotton
classer and instrument grading. The agreement was raised
from 50% to 88% or 94% depending on the neural network
structure.

Conclusions

The feasibility of color grading using expert system and
neural networks have been explored. Based on additional
measurements and advanced training algorithms, the
grading system can grade cotton color very close to that of
the experienced human classer. Training sample selection
and sample size is very important for classifier performance.
The training samples should cover a wide range of features
and should be representative of the population.  In addition,
the sample size should be sufficiently large.

Although this study is limited by the small amount of
samples, its success is impetus for the pursuit of further
studies to achieve higher classification rates. The neural
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network training process is very important. Parameters such
as the number of neurons in the hidden layer for MLP and
the smoothing factor for PNN should be carefully
determined to achieve optimum performance.

From the stepwise discriminate analysis for feature
selection, redness (a*) was found to be the most important
factor in color grading and yellowness (b*) to be next.
Yellowness variance, yellow spot area and trash area also
contribute in a smaller way to color grading.
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Table 1. Categorized Mean and Standard Deviation of the Samples.
Classer Color Grade

White Light Spotted Spotted
Measurement Mean Std. Mean Std. Mea

n
Std.

L* 95.25 2.09 92.62 1.97 89.89 2.57
a* 1.80 0.24 2.49 0.24 3.08 0.28
b* 8.70 0.83 9.97 0.76 12.10 1.16
L* Variance 10.26 3.82 11.53 3.77 11.80 3.90
a* Variance 0.92 0.49 0.80 0.35 0.64 0.28
b* Variance 0.72 0.23 1.07 0.40 1.46 0.34
L* Contrast 12.30 5.53 13.96 4.84 13.24 6.47
b* Contrast 52.57 1 9 .8

8
57.37 20.96 61.86 38.49

Trash Area % 0.076 0.11 0.10 0.05 0.199 0.11
Yellow Spots % 0.005 0.02 0.029 0.05 0.131 0.11

Table 2.1 Correlation Matrix.
L* a* b* L* _v a*_v

L*  1.00
a* -0.63  1.00
b* -0.32  0.80 1.00
L*_v -0.29  0.08 -0.1  1.00
a*_v  0.61 -0.12  0.11 -0.25  1.00
b*_v -0.27  0.43  0.33  0.19 -0.04
L*_c -0.01  0.08  0.11 -0.10  0.13
b*_c -0.04  0.06  0.03 -0.03  0.19
T% -0.46  0.21  0.03  0.55 -0.33
Y% -0.31  0.45  0.47  0.24  0.01

Table 2.2 Correlation Matrix.
b*_v L*_c b*_c T% Y%

L*
a*
b*
L*_v
a*_v
b*_v  1.00
L*_c -0.05  1.00
b*_c  0.22  0.45 1.00
T%  0.24 -0.07 0.10 1.00
Y%  0.41  0.01 0.20 0.18 1.00
L*_v --- L* Variance
a*_v --- a* Variance
b*_v --- b* Variance
L*_c --- L* Contrast
b*_c --- b* Contrast
T%   --- Trash Area%
Y%  --- Yellow Spot Area%

Table 3. Results from Stepwise Forward Analysis, F Value to Enter: 1.00.
Variable Partial  

Lambda
F value p-level Tolerance

a* 0.659 23.25 0.0000  0.72
b* 0.831 9.12 0.0002  0.55
L* Variance 0.948 2.48 0.0893  0.60
a* Variance 0.921 3.86 0.0247  0.76
b* Variance 0.858 7.45 0.0010  0.89
L* Contrast 0.961 1.82 0.1678  0.94
Yellow Spots 0.870 6.75 0.0019  0.84
Trash Area 0.865 7.04 0.0014  0.62

Table 4. Results from Stepwise Backward Analysis, F Value to Remove:
1.00.
Variable Partial

Lambda
F value p-level Tolerance

a* 0.659 23.52 0.0000 0.74
b* 0.831 9.24 0.0002 0.55
L* Variance 0.950 2.41 0.0951 0.60
a* Variance 0.928 3.54 0.0331 0.78
b* Variance 0.870 6.81 0.0017 0.91
Yellow Spots 0.870 6.82 0.0017 0.84
Trash Area 0.865 7.11 0.0013 0.62

Table 5. Result from expert system.
Training Method Bayes GA

Training Testing Training Testing
Set #1 96 100 94 92
Set #2 100 98 100 86
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Figure 1.  Color / grade translation chart

Figure 2.  Block diagram of the expert system for color grading.

Figure 3.  Steps involved in the design of a typical pattern recognition
system.

Figure 4.  Error rate on testing set using MLP.

Figure 5. Error rate on testing set using PNN.
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