WEAVING PERFORMANCE FROM THE COUPLED LINT CLEANER: A PRELIMINARY REPORT J. B. Price USDA, ARS, MSA Southern Regional Research Center New Orleans, LA M. N. Gillum USDA, ARS, SPA SW Cotton Ginning Research Laboratory Mesilla Park, NM

Abstract

A mill study determined the spinning and weaving performance of fiber produced by the Coupled Lint Cleaner. This report discusses the spinning results only. Fiber was processed into carded and combed ring and rotor yarns. When compared to a standard saw gin stand followed by two saw-type lint cleaners, fiber from the Coupled Lint Cleaner produced yarn that was stronger (carded and combed rotor and ring yarn), and had fewer irregularities and imperfections (carded and combed ring yarn).

Introduction

The cotton ginning industry is continually looking for new and improved methods of separating seed cotton into fiber and seed. One machine that has shown considerable potential is the Coupled Lint Cleaner. This machine was developed at the USDA-ARS Southwestern Cotton Ginning Research Laboratory in Mesilla Park, New Mexico. The latest prototype of the Coupled Lint Cleaner consists of a standard Lummus Imperial 108 saw gin stand coupled directly to two saw-type lint cleaners. The lint cleaning section of the machine was originally built by the Lummus Corporation, but modifications have been made to the machine while at the Cotton Ginning Laboratory. Figure 1 shows a section view of the Coupled Lint Cleaner.

The configuration of the Coupled Lint Cleaner has several advantages. First, less energy is required to gin and clean the fiber since some of the fans and condensers that transported the fiber are no longer needed. Secondly, fewer components of air pollution control equipment are needed since considerably less air is used to transport the fiber between the gin stand and lint cleaners. And lastly, the traditional feed bar that sets the fiber on the saw cylinder has been replaced with a mechanism that causes less fiber damage.

The superior quality of fiber produced by the Coupled Lint Cleaner is well documented. When compared to a standard high-capacity saw gin stand followed by two saw-type lint cleaners, the Coupled Lint Cleaner produces fiber that is longer, has fewer short fibers, and contains less trash (Hughs et al, 1990). However, it is unknown how fiber from the Coupled Lint Cleaner performs with respect to spinning and weaving. This paper discusses the results of the carded and combed rotor and ring spinning tests that were performed on fiber produced by a standard saw ginning/lint cleaning setup, and the Coupled Lint Cleaner.

Discussion

The ginning test was run in the Spring of 1995 and consisted of two treatments times three replications for a total of six one-half bale-sized lots. The control treatment consisted of a high-capacity saw gin stand followed by two saw-type lint cleaners. The experimental treatment consisted of the Coupled Lint Cleaner. All cotton used on the test was first-pick Acala 1517-91. The six ginning lots were sent to the Southern Regional Research Center (SRRC) for fiber testing and then processing into yarn and cloth.

The fiber properties were determined by the High Volume Instrument (HVI) and Advanced Fiber Information System (AFIS). Sliver preparation included processing each of the lots through opening and cleaning machinery emerging from a single card as sliver. All wastes were collected and weighed.

After one pass of drawing, about one third of the sliver was retained for lap forming prior to combing. After combing, two passes of drawing were performed prior to the production of roving. Residual combed sliver from the roving process was retained for rotor spinning. The remaining carded sliver was drawn a second time, then split into two approximately equal quantities. One half was converted into roving in preparation for ring spinning. The other half provided feedstock for rotor spinning.

Nominal yarn numbers of Ne16, Ne22, Ne30, and Ne36 were spun from the carded sliver by both ring and rotor methods. Combed stock was spun into nominal yarn numbers Ne22, Ne30, Ne36, and Ne42 by rotor spinning, whereas Ne30, Ne36, Ne42, and Ne50 were produced by ring spinning. Yarns were characterized in terms of Skein strength, single yarn tensile properties (Uster Tensorapid), and non-uniformity and imperfection properties (Uster Evenness).

Summary

Table 1 lists the fiber properties on fiber after lint cleaning (in the bale). The only properties significantly different due to ginning treatment were length and short fiber content with the Coupled Lint Cleaner being better in both cases. The HVI upper half mean length averaged 1.095 and 1.129 inches, and the AFIS upper quartile length averaged 1.137 and 1.180 inches for the control and experimental treatment,

Reprinted from the *Proceedings of the Beltwide Cotton Conference* Volume 2:1705-1708 (1998) National Cotton Council, Memphis TN

respectively. Short fiber content averaged 14.6 and 11.4 percent for the control and experimental treatment, respectively. Other fiber quality measurements showed advantages to the Coupled Lint Cleaner but the differences were not statistically significant. These measurements included strength, elongation, nep count, and seedcoat nep count. These results are consistent with other experiments of the Coupled Lint Cleaner (Hughs et al, 1990).

Table 2 lists the fiber properties on fiber after the card and comber slivers. Some of the results are the same as those found on fiber in the bale. Fiber from the Coupled Lint Cleaner had an increased upper quartile length and a reduction in short fiber content after the card sliver and comber sliver. The number of seed coat neps were reduced to almost zero by combing for both treatments. There were no changes in terms of nep or seed coat fragment size due to combing.

Table 3 lists the waste products from the cleaners. The wastes are calculated as percentages of the total collected material. With the exception of sweepings, all of the waste products were different between treatment. The Coupled Lint Cleaner had reduced wastes extracted at each major cleaning point, reduced total process wastes extracted, and reduced combing noils.

Tables 4 through 7 list the yarn properties. The tables are divided up according to sliver and spinning-frame type. The treatment means that are significantly different due to ginning treatment are shown in bold print. In general, the Coupled Lint Cleaner is more favorable with respect to yarn properties, but because of the greater dispersion in most of the data most of the differences are not statistically significant. Therefore, only general observations can be made.

The Coupled Lint Cleaner produced fiber with the following yarn properties:

• An increase in Skein strength (CSP) in carded and combed ring and rotor yarns. The strength increase in carded ring yarns was proportionately greater than other increases in strength (3.9% versus about 2.2%). The increases in strength are probably due to the

Fiber Prooffertence in fiber leftsthydistiobalityperioeteveterOSL combinations of gin anad mill treatments. Ring HVI: spinning is acknowledged to be more sensitive Strength fiber length than rolls19spinnin29.9 NS 4.90 4.90 Elongation, NS Upper Half interease eingthearn 1.695 acity in 129 ded and 0352 in combed ring and rotor yarns (significantly Uniformifferent on carded rang5and rot82.Ne36 yarnsNS Micronainde creating Ne503varn). 4.3 NS Reflectance. % Rd 77.2 77.6 NS 9.84 10.0 NS Yellowness, +b units Leaf, grade 3.4 3.4 NS

- An increase in yarn elongation at break in carded and combed rotor yarns, but not in ring yarns.
- An increase in the specific work to break (SWR) yarns, the exception possibly being carded ring yarns.
- A reduction in the irregularity (CV of evenness) of carded and combed ring yarns.
- A reduction in the total number of neps and imperfections in carded and combed ring yarns (total imperfections = thin places + thick places + neps). Several of these differences were significantly different.
- No improvement in either irregularity or imperfections on rotor yarns. This is possibly due to the fact that neps can be ejected at the rotor spinning machine, or they can be buried in the yarn structure. Also, rotor yarns are more regular and less sensitive to changes in fiber length.

Work yet to be completed includes spinning performance data in the production of warp and filling yarns (Ne36) for high speed weaving, and weaving performance of carded and combed ring and rotor yarns.

References

Hughs, S. E., M. N. Gillum, C. K. Bragg, and W. F. Lalor. 1990. Fiber and yarn quality from coupled lint cleaner. Transactions of the ASAE. Vol. 33(6):1806-1810.

Acknowledgments

The authors would like to thank Dr. William F. Lalor, Senior Vice President, Agricultural Research, Cotton Incorporated, and Mr. D. W. Van Doorn, Senior Vice President, Lummus Corporation, for their support of the Couple Lint Cleaner project.

Table 1. Fiber properties, after ginning, from conventionalginning and the Coupled Lint Cleaner.

Total Extract, %	5.35	4.16	0.0010		
Combing:					
Noils, %	17.8	15.8	0.0037		
OSL = Observed Significance Level					
NS = Non Significant at the 5% level					

Table 4. Yarn properties after the carded sliver and ringframe.Treatment means shown in bold print aresignificantly different due to treatment at the 5% level.

	Nominal Yarn Size					
	Ne16	Ne22	Ne30	Ne36		
Property	Con. Exp.	Con. Exp.	Con. Exp	Con. Exp.		
Skein CSP	2306,2448	2304,2381	2149,217	1953,204		
			6	2		
Tensorapid:						
Tenacity,g/te	14.3,14.5	14.1,14.3	13.4,13.6	11.8,12.6		
х						
Elongation,%	5.55,5.40	5.08,4.89	4.93,4.76	4.33,4.24		
SWR,%	.394,.383	.353,.339	.324,.314	.245,.258		
CV of	15.0,16.2	17.4,16.8	19.5,18.8	20.3,21.3		
Work,%						
Modulus,g/te	411,444	461,474	442,490	467,500		
х						
Evenness:						
CV of	16.9,15.9	17.4,17.0	19.7,18.7	21.3,20.7		
Even,%						
Thin,/1000yd	141,78.4	87.4,71.7	235,161	410,337		
Thick,/1000y	348,238	631,511	1172,921	1601,127		
d				7		
Nep,/1000yd	23.1,16.0	64.7,59.6	142,95.8	214,163		
Imp./1000yd	512,332	783,642	1550,117	2224,177		
- •			8	7		
$\overline{\text{Con.}} = \text{Conversion}$	entional Sav	v Ginning				
	Julional Dav	, Shining				

Con. – Conventional Saw Onning
System
Exp. = Experimental Coupled Lint
Cleaner
CSP = Count Strength Product
SWR = Specific Work of Rupture
CV = Coefficient of Variation
Imp. = Total Imperfections

Table 5. Yarn properties after the carded sliver and rotor frame. Treatment means shown in bold print are significantly different due to treatment at the 5% level.

Nominal Yarn Size				
	Ne16	Ne22	Ne30	Ne36
Property	Con.	Con. Exp.	Con. Exp	Con. Exp.
	Exp.			
Skein CSP	2261,229	2112,2145	1895,1939	1783,1816
	2			
Tensorapid:				
Tenacity,g/tex	13.6,13.8	12.9,13.1	11.8,11.7	11.3,11.7
Elongation,%	4.64,4.81	4.58,4.76	4.27,4.39	4.12,4.25
SWR,%	.334,.352	.305,.322	.255,.262	.233,.249
CV of	14.9,13.6	17.4,15.8	19.1,19.0	20.5,19.0
Work,%				
Modulus,g/tex	581,543	526,506	540,500	521,483
Evenness:				

 Table 2. Fiber properties after the card sliver and comber sliver.

Fiber Property (AFIS)	Conventio	Experiment	OSL
	nal	al	
Card Sliver:			
Mean Length, in	0.887	0.923	0.0015
Length Coeff. of Var., %	39.9	37.7	0.0350
Upper Quartile Length, ir	n1.113	1.153	0.0011
Short Fiber Content, %	14.5	12.0	0.0045
Nep Count, per grain	45.7	45.0	NS
Nep Size, μ m	490	474	NS
Seedcoat Nep Count, per	8.7	5.0	NS
gram			
Seedcoat Nep Size, μm	592	602	NS
Comber Sliver:			
Mean Length, in	0.987	1.007	0.0132
Length Coeff. of Var., %	34.8	33.7	0.0131
Upper Quartile Length, ir	n1.207	1.227	0.0013
Short Fiber Content, %	7.7	6.5	0.0028
Nep Count, per grain	16.7	18.7	NS
Nep Size, μ m	468	468	NS
Seedcoat Nep Count, per	2.0	1.7	NS
gram			
Seedcoat Nep Size, µm	512	514	NS
AFIS = Advanced Fiber I	nformation		
System			
OSL = Observed Significance Level			
NS = Non Significant at t	he 5%		
level			

Table 3.	Waste materials collected prior to carding.	
----------	---	--

Cleaning Point	Convent	Convention Experiment OSL			
	al	al			
Cleaning Line:					
Superior, %	0.28	0.12	0.0015		
Fine Opener, %	1.30	0.88	0.0079		
Total Cleaning	1.58	1.00	0.0029		
Filter:					
Card and Airborne	3.35	2.68	0.0072		
Wastes, %					
Sweepings, %	0.42	0.48	NS		

CV of Even,%11.6,11.5 12.3,12.2	13.7,13.7	14.5,14.5
Thin,/1000yd 1.60,0.93 3.83,2.77	25.8,24.4	53.1,42.4
Thick,/1000yd9.93,7.20 14.5,12.0	40.0,45.9	71.6,72.4
Nep,/1000yd 4.87,2.27 13.0,7.87	38.8,34.4	71.3,64.5
Imp./1000yd 16.4,10.4 31.3,22.6	105,105	196,179
Con. = Conventional Saw Ginning s	system	
Exp. = Experimental Coupled Lint		
Cleaner		
CSP = Count Strength		
Product		
SWR = Specific Work of Rupture		
CV = Coefficient of Variation		
Imp. = Total		
Imperfections		

Table 6. Yarn properties after the combed sliver and ring frame. Treatment means shown in bold print are significantly different due to treatment at the 5% level.

Nominal Yarn Size				
	Ne30	Ne36	Ne42	Ne50
Property	Con. Exp.	Con.	Con. Exp	Con.
		Exp.		Exp.
Skein CSP	2340,2413	2266,232	2187,2188	2037,209
		1		9
Tensorapid:				
Tenacity,g/tex	14.7,15.2	13.9,14.4	13.5,14.0	12.8,13.3
Elongation,%	4.88,4.94	4.63,4.60	4.51,4.44	4.17,4.18
SWR,%	.352,.364	.306,.317	.289,.298	.267,.264
CV of Work,%	17.8,17.6	18.5,20.4	18.4,22.3	20.9,21.9
Modulus,g/tex	532,552	561,531	599,592	588,690
Evenness:				
CV of Even,%	14.7,14.3	15.9,15.6	16.9,16.3	18.1,17.4
Thin,/1000yd	17.1,14.9	46.1,40.9	89.0,66.4	201,118
Thick,/1000yd	162,114	292,236	431,335	659,504
Nep,/1000yd	17.7,13.3	36.0,24.2	44.1,32.5	67.8,48.9
Imp./1000yd	197,142	374,301	564,434	928,672
Con. = Conventional Saw Ginning				
system				
Exp. = Experimental Coupled Lint				
Cleaner				
CSP = Count Strength				
Product				
SWR = Specific Work of				
Rupture				
CV = Coefficient of				
Variation				

Table 7. Yarn properties after the combed sliver and rotor frame. Treatment means shown in bold print are significantly different due to treatment at the 5% level.

Imp. = Total Imperfections

Table

Nominal Yarn Size				
	Ne22	Ne30	Ne36	Ne42
Property	Con. Exp.	Con. Exp.	Con. Exp	Con.
				Exp.
Skein CSP	2192,2250	1984,2026	1863,19111	1735,1788
Tensorapid:				

Tenacity,g/tex 13.5,13.8 12.7,12.8 12.2,12.4 11.5,11.6 Elongation,% 4.75,4.77 4.48,4.57 4.26,4.40 4.10,4.21 SWR.% .333,.329 .287,.296 .263,.271 .233,.240 CV of 16.1,15.6 18.1,17.6 19.6,18.9 24.0,22.0 Work.% Modulus,g/tex 590,564 536,502 571,577 555,614 Evenness: CV of Even,% 12.6,12.4 13.9,13.8 14.7,14.8 15.7,15.6 Thin,/1000yd 5.03,4.70 23.5,29.0 64.4,64.6 129,134 Thick,/1000yd 22.1,17.7 45.4,44.6 71.4,83.8 122,119 Nep,/1000yd 9.53,12.1 26.6,26.9 50.7,50.9 87.4,100 Imp./1000yd 36.6,34.4 95.4,100 186,199 339,354 Con. = Conventional Saw Ginning system Exp. = Experimental Coupled Lint Cleaner CSP = Count Strength Product SWR = Specific Work of Rupture CV = Coefficient of Variation Imp. = Total Imperfections

Air intake Upper LC2 Sa Moting Trash Exi 6 LC1 Brush LC2 7, ash C1 Sav Brush Gin 6 Brus Lint flue

Figure 1. Section view of the Coupled Lint Cleaner.