GENETIC VARIATION FOR STOMATAL CONDUCTANCE IN AN INTERSPECIFIC COTTON POPULATION R.G. Cantrell and M. Ulloa New Mexico State University Las Cruces, NM R. Percy USDA-ARS Maricopa, AZ E. Zeiger and Z. Lu UCLA Los Angeles, CA

Abstract

Lint yield of cotton, particularly Pima (Gossypium *barbadense*) can be reduced by high temperatures during peak flowering periods in irrigated Southwestern conditions. High stomatal conductance (G_s) may confer adaptive advantage to genotypes that experience supraoptimum temperatures by its association with elevated leaf cooling to reduce canopy temperatures (1). Interspecific differences for G_s has been well established. The objective of this research was to practice divergent selection for G_s in a population derived from G. hirsutum X G. barbadense introgression (TM1 X NM24016). TM1 is a typical G. hirsutum and NM24016 (2) is a introgressed line derived from G. hirsutum X G. barbadense hybridization program. Divergent selection for G_s was practiced on the $F_{2,3}$ generation in Maricopa, AZ in 1996. DNA was isolated from all 118 F₂ plants in 1995 for genetic mapping experiments and QTL analysis of G_s. Replicated field experiments of selected $F_{2.4}$ progeny (10 high G_8 and 10 low G_s) were grown in Maricopa, AZ and Las Cruces, NM in 1997. G_s was measured at both locations at peak flowering as described by Radin et al. (3). Based on F_3 and F_4 data the realized H for G_s was estimated to be 0.41 in Maricopa. This is reflected in the significant difference between the mean of the high GS $F_{2,4}$ lines (n=10) 552 mmol m⁻² s⁻¹ and the low G_s lines (n=10) 457 mmol m⁻² s⁻¹ at Maricopa in 1997. The difference at Las Cruces was non-significant (314 for high G_s vs 282 for low G_s). The absence of supraoptimum temperature at Las Cruces relative to Maricopa probably explains this difference. Correlated response in lint yield was observed in Maricopa but not Las Cruces. The high G_s lines were significantly higher yielding than the low G_s lines at Maricopa even though the only selection has been for G_s. Composite Interval Analysis was conducted on the F2.3 progeny in Maricopa utilizing DNA markers (RAPDs and SSRs). Two QTLs (LOD = 2.0 and 3.8) were detected for G_s at Maricopa. These QTLs explained about 12% of the variation in the trait. Both intervals were from NM24016 and negatively affected G_s. It is suspected, but not yet verified, that these regions are derived from *G. barbadense*. This is one of the first physiological traits that have been subjected to QTL analysis. G_s is a heritable trait and seems to be significantly associated with lint yield in heat stress environments.

References

Lu, Zhenmin, R.G. Percy, C.O. Qualset, and E. Zeiger. 1998. Stomatal Conductance Predicts Yields in Irrigated Pima Cotton and Wheat Grown at High Temperatures. Journal of Experimental Botany (<u>In Press</u>).

Tatineni, V., R.G. Cantrell and D.D. Davis. 1996. Genetic Diversity in Elite Cotton Germplasm Determined by Morphological Characteristics and RAPDs. Crop Sci. 36:186-192.

Radin, J.W., Z. Lu, R. Percy, and E. Zeiger. 1994. Genetic Variation for Stomatal Conductance in Pima Cotton and its Relation to Improvement of Heat Adaptation. Proceedings of the National Academy of Sciences, USA. 91:7217-7221.

Reprinted from the *Proceedings of the Beltwide Cotton Conference* Volume 1:485-486 (1998) National Cotton Council, Memphis TN