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Abstract

Cotton was one of the first crops to be modeled with the
objective of aiding profit-oriented commercial agribusiness.
The GOSSYM-COMAX (Baker et al. 1983; McKinion et
al. 1984; Sequeira and Jallas 1995) system is the only
system currently being used in commercial agriculture.
GOSSYM is a dynamic, daily simulation of the
development and growth of the cotton plant.  Baker et al.
(1983), Jallas (1991) and Sequeira and Jallas (1995)
published the descriptions of the theoretical background and
most mathematical functions of GOSSYM.  The model is
divided into two daily, independent subsystems linked by a
partitioning process.  The first subsystem calculates the
carbohydrate supply and the second subsystem calculates
the carbohydrate demand.  During each daily time step, the
partitioning process –that drives the yield components and
storage– balances the whole system.  This explains the term
“materials-balance” often used to describe this model.

By coupling an expert system (COMAX) with the
simulation model GOSSYM, McKinion and Lemmon
(1985) provided GOSSYM’s users with expert decision
support. COMAX uses an expert system rule base to
determine the optimal actions to perform, given a projected
or set of projected weather scenario.  COMAX provides
advice to irrigation, nitrogen, or plant growth regulator use.
These algorithms have been described by Bridges et al. (in
press) based on early designs by McKinion and Lemmon
(1985) and Lemmon (1986).

Whereas COMAX has been used successfully for a number
of years it has been proven sub-optimal.  An alternative
approach is proposed, in which a Genetic Algorithm (GA)
is used to evolve an irrigation schedule. GA’s are computer
based optimization and search techniques that mimic natural
selection to efficiently search very large solution spaces.
They are based on the biological concepts of evolution
through mechanisms such as selection and genetic crossover
and mutation.  The GA doesn’t contain explicit
representation of horticultural or botanical knowledge.
Simply, it utilizes simulation results from the GOSSYM

model to evolve “chromosomes” which represent (encodes)
irrigation schedules similar to that produced by the expert
system.  A population of many chromosomes, which
compete with one another in a “survival of the fittest”
competition, evolves over time to produce better and better
irrigation schedules.  At the end of the evolutionary process,
the population’s best-fit irrigation schedule is displayed.  A
comparison with the irrigation schedules produced by the
COMAX expert system indicate that the GA approach is
able to produce better schedules, which increase the
profitability of the cotton crop.

Introduction

The use of agricultural models (crops and insects) for
prediction and management dates to the XVIII century when
de Reaumur formulated the first temperature-dependent
models to predict when a plant would reach a new
phenological stage (cited by McFarland et al., 1992).  Crop
modeling based on computer-based simulation originated
during the late 1960's and early 1970's with the application
of quantitative methods developed in the area of the
physical sciences to biology.  Pioneering work in modeling
and simulation in biology was conducted in England (Lokta
1932; Southwood 1966), France (Volterra 1931), the
Netherlands (de Witt and Brouwer 1968), the United States
(Duncan et al. 1967; Garfinkel 1962).  After more than 25
years of research starting in the early 1970s, computer-
based crop models migrated from research laboratories to
farmers’ “tool boxes”.  

Today, quantitative, mathematical computer-based
simulation models are common in decision making.  The
decision-making process relies on using the model as a
surrogate for real experimentation.  Recently other modes of
model-based decision-making have been investigated.
Indeed, some of the early leading ideas in modern biology
(the mechanisms underlying the processes of evolution, for
example) are re-emerging in the bio-sciences and finding
innovative applications in agriculture through the discipline
of Artificial Intelligence.  This is the case of evolutionary
algorithms, such as the Genetic Algorithms technique.

Genetic Algorithms are computer based optimization and
search techniques which mimic natural selection to
efficiently search very large solution spaces.  They are
based on the biological concepts of evolution through
mechanisms such as selection and genetic crossover and
mutation.  This basic biological metaphor has been
formalized into the emerging discipline of Genetic
Algorithms (or, more generally, Evolutionary Programming)
as an effective method for search and as a key mechanism
for machine learning.

Holland (1975) formulated the original ideas behind GAs.
Even if GAs are part of the “weak” AI techniques (this is
because no formal heuristics or other explicit “human-like
knowledge” are used in a traditional GA) they are a good
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alternative to traditional optimization (Holland 1992) and
discovery.  They have been used efficiently in many
different domains such as medicine (Fitzpatrick et al., cited
in Goldberg 1989), industry (San Martin and Knight 1993),
telecommunication (Davis et al. 1993) and crop modeling
(Sequeira et al. 1994; Sequeira et al. 1995).

GAs are not currently used in agriculture to make
recommendations or for decision-support. Another AI
technique, rule-based Expert Systems (Olson and Sequeira
1995) is more commonly used in decision support, despite
its constraints.  Expert Systems are considered to be a more
“intelligent” AI technique than GAs because they use an
intensive knowledge approach (Luger and Stubblefield
1993).  In Expert Systems, knowledge and search
techniques are separate.  Knowledge is stored in a database
and the search technique, the ‘inference engine’, uses the
knowledge to determine a solution for problems which are
submitted to the expert system.  Expert systems can be
associated with crop models in order to make
recommendations to the farmer.  The GOSSYM-COMAX
system is one example of such a link (Bridges et al., in
press).  

The sequence of farmer practices and the level of the input
(e.g., amount of irrigation) can be seen as an adaptation
problem.  With this approach it becomes obvious that GAs
may have a role in decision-making.  Specifically, a farmer
must adapt to different inputs, levels, soil substrates,
weather, and plant behaviors, as well as interactions
between these factors, in order to maintain a sustainable
level of production.  Several questions may be raised.  Why
use intensive knowledge approaches when adaptive
techniques can be used?  Do the latter represent a tangible
improvement over the former or not?  The main objective of
this study was to integrate a GA to the GOSSYM model,
representing the dynamic agent subject to adaptation, and
compare results produced by this GA with results produced
by the COMAX Expert Systems.

Methods

The Genetic Algorithm
Detailed theoretical descriptions of GAs and their
mathematical foundations are well explained in Goldberg
(1989), Holland (1992), Davis (1991), and Michalewicz
(1992).  Briefly described, GAs involve techniques called
representation, selection, reproduction (including crossover,
mutation, and inversion), and replacement.  In GAs,
possible solutions to a problem are often represented as bit
strings (although many alternative representations are used).
When the solution to a problem is the combination of a set
of parameters, for example:
 

15-.25- blue - 1-true
the solution may be represented in binary form, as:

1111- 0000 - 1000 - 0001- 1

The representation of a possible solution is called a
“chromosome”.  The representation of a parameter is called
a “gene”.  Each chromosome represents an approach to
solving the problem.  Since any proposed solution to a
problem may be rated as better or worse than other
solutions, each chromosome has a comparative rating.  This
rating, the value of an individual chromosome relative to
others, is often referred to as the “fitness value” of the
chromosome.  GAs manipulate chromosomes with
evolutionary operators (selection, crossover, mutation,
inversion, and replacement) and “evolve”, generation after
generation, better solutions, tending towards
improvement/adaptation as the evolutionary process
continues (Goldberg 1989).

During the reproduction process, the crossover operation
exchanges chromosome parts and the mutation operation
changes the value of a gene (Figure 1).  Selection is used to
select the parents for the next generation (e.g.,
probabilistically, the “best” members of the population)
(Koza 1992). 

The code used for the GA was a modified version of the
GENESIS code, which is a Genetic Algorithm (GENESIS
© 1986, 1990 by John J. Grefenstette, in: Davis, 1991).
This code, developed in C, has many useful options and
allows the user to easily develop a specific fitness function.
The key issue for this phase of our research was to link the
GA to the GOSSYM model.  Because of the modular
structure of both GOSSYM and the GA, this procedure was
straightforward. 

Each chromosome was constructed with 200 genes that
represented the amount of irrigation from day 1 after
emergence until day 200.  The daily amount irrigation was
allowed to vary from 0 to 1.25 inches.  This range was
divided into 32 increments of 1.25/32.  Thus we could code
each gene on 5 bits.  Each chromosome was thus composed
of 1000 bits.  For example, a gene of “00000” represented
an amount of irrigation between 0 to 0.039 inches, 00001
any amount between 0.039 to 0.078, and so on. To avoid the
effect of Hamming cliffs linked to the binary representation,
the Gray code approach (Forrest 1993) was used.  To
illustrate this problem, consider the representations 01111
and 10000 that correspond to increments 15 and 16; they
differ by only 0.039 inches of water but differ in 5 of their
bits.  The gray code represents mathematically adjacent
values by bit patterns that differ by a single bit.  For
example here 15 will represented by 01000 and 16 by
11000.

In this study, the fitness function was determined by our
specific problem, and simply corresponded to the economic
value of a given irrigation schedule.  This value was the
difference between the cost of the irrigation and the direct
gain procured by it.  The fitness function was:
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where fitness is the fitness value, yield is the simulated yield
(in pounds of fiber per acre), number_irrigation is the
number of irrigations scheduled, 3.5 is the cost per acre of
one irrigation in pounds of fiber, and H2O(i), is the amount
of water for the ith day in inches.

Different population sizes were tested, varying between 10
to 100 chromosomes per generation.  The main limiting
factor in carrying out this study appeared to be the use of
the GOSSYM model that took about 15 seconds to simulate
a complete growing season (less than 200 days).  It thus
takes 2.5 minutes to evaluate a generation composed of 10
chromosomes, 12.5 minutes for a generation of 50
chromosomes, and 25 minutes for a generation of 100
chromosomes.  During the experiment the running time of
the system varied between less than 2 hours to 20 days
depending how fast the solution converged.

The selection method used was the roulette wheel method,
which assigns a probability to a specific chromosome to be
used for reproduction based on its fitness.  We added to this
selection method the elitist strategy that guarantees that the
best structure always survives to the next generation
(Beasley et al. 1993).

Different mutation rates were tested, varying from 0.001,
which gives a chance to 1 genes per chromosome to be
mutated at each generation, to 0.05 which a chance to 50
genes per chromosome to be mutated.  Tested crossover
rates varied from 0 to 80%.  A lethal condition was added
to take into account the irrigation constraint: if two
irrigations or more were scheduled by the GA in a period
less than the user-indicated minimum time between two
irrigations, then the chromosome was destroyed and
replaced by one valid.  Different replications were
conducted, starting with the same random population but
with different random seed for selection, crossover and
mutation processes.

When the GA was stopped, because the solutions converged
or it run 10000 generations, the chromosome with the
highest fitness value represented the “best” irrigation
schedule for the environmental conditions of the
experiment.  This irrigation schedule was compared to the
irrigation schedule obtained from the COMAX system
running under the same environmental conditions.

The GOSSYM-COMAX System
GOSSYM is a dynamic, daily simulation model of the
development and growth of the cotton plant.  Baker et al.
(1983), Jallas (1991) and Sequeira and Jallas (1995) have
published the descriptions of the theoretical background and
most mathematical functions.  The system is based on the
‘mechanistic process’ paradigm, which tries to maximize the

number of causal relations present in the model and to
minimize empiricism for a given level of observation.  To
achieve this, the model is divided into two daily,
independent subsystems linked by a partitioning process.
The first subsystem calculates the carbohydrate supply.  The
second subsystem calculates the carbohydrate demand.
During each daily time step, the partitioning process – that
drives the yield components and storage – balances the
whole system.  This explains the term “materials-balance”
often used to describe this model.  Thus the partitioning
process balances the total supply and demand in the model.
The model’s structure includes developmental and
morphogenetic rate equations for inter-nodes, leaves, fruits,
etc.

COMAX is a decision support system coupled by McKinion
and Lemmon (1985) with the simulation model GOSSYM.
Bridges (personal communication) later reengineered this
expert system and today provides users with expert decision
support (Baulch et al. 1995).  These algorithms have been
described by Bridges et al. (in press) based on early designs
by McKinion and Lemmon (1985) and Lemmon (1986).
COMAX uses an expert system rule base to determine the
optimal actions to perform, given a projected or set of
projected weather scenario.  If COMAX has been invoked,
COMAX monitors the GOSSYM simulation in order to
detect stress symptoms.  If COMAX detects stresses, it may
recommend different practices to solve the problems.
GOSSYM output includes graphs of the daily mass
accumulation and number of organs produced for different
plant parts.  Additionally, soil Nitrogen, soil water, stress
factors, leaf area index, weather summaries, and other
variables are also output.  COMAX output includes
recommendations for irrigation, nitrogen use, and for the
application of plant growth regulators.

COMAX proposes three kinds of irrigation advisors: 

& a short-term irrigation advisor which informs
the user if his crop needs irrigation within the
next two weeks,

& a long-term irrigation advisor which develops
an irrigation schedule for all of the growing
season, and

& a water conservation advisor which make its
recommendations based on the evaporative
demand of the crop.

Input requirements for these irrigation advisors are
identical.  The user must specify the maximum amount of
water that can be applied per irrigation, the application
method (furrow, sprinkler, or drip), the minimum number of
days between irrigation applications, and start and stop
criteria for irrigation.  These start and stop criteria are
examples of user-modified rules.  The start criterion tells
COMAX when to begin considering the possibility of
scheduling irrigation.  This does not schedule the first
irrigation, but sets the earliest possible date for the first
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irrigation recommendation.  There are four possible user-
defined start criteria: a calendar date, the number of days
after emergence, the number of days after the first square,
or the number of days after the first bloom.  The stop
criterion tells COMAX when to stop considering the
possibility of scheduling irrigation.  There are four user-
defined choices: a calendar date, the number of days after
the first open boll, the percentage of open bolls, and the
number of days before harvest.

The three irrigation advisory systems use an average value
of -0.5 bars for soil water potential as a trigger for the
initiation of irrigation.  The rule for deciding whether to
apply irrigation with all three advisors can be summarized
as follows:

If  today the current soil water potential is less than -0.5
bars and,

If today’s date is greater than or equal to the first day
to consider irrigation, and today’s date is less than or
equal to the last day to consider irrigation, and the
minimum number of days between irrigations has
elapsed since the last irrigation,

Then
make an irrigation application.

Because the short-term irrigation advisor is meant to be
used to know whether the crop will need to be irrigated
within the next two weeks, it cannot be used in conjunction
with any other advisors.  The two other advisors running on
a long-term period are often used in conjunction with other
advisors (e.g., fertilizer and plant growth regulator).

The main difference between the long-term advisor and the
water conservation advisor is that the long-term irrigation
advisor will always apply the maximum application amount
of water specified by the user.  In contrast, the water
conservation advisor will use the evaporative demand
simulated from a first run of the model to determine the
amount of irrigation that should be used for each
application.  This amount is the minimum of: (1) the
demand simulated from “today” to the next scheduled
irrigation, times 1.66 (it is assumed that the efficiency of the
irrigation is only 60%), and (2) the maximum application
amount.

Experiments were made with both long term and water
conservation irrigation advisors.

Experimental Conditions
In order to conduct a plant simulation, four main categories
of external variables are needed: weather, soil, technical
itineraries, and within-season plant sampling for “mid-
season model adjustment” (plant mapping).  The first three
of these categories are required.  In our experiments we did
not use the fourth category.  We used validated files
provided with the software and corresponding to
Mississippi conditions.  We will describe here the first three
categories of external variables needed for a GOSSYM
simulation.

The soil, a Commerce type, is composed of three horizons
with no water table.  We considered that there is runoff with
rain and irrigation.  Table 1 shows the key characteristics of
the soil used in the GOSSYM simulation.  Characteristics
may be variable at different soil depths as shown in the
table.  For this soil, layers become increasingly sandy.  The
“q” values, which are volumetric water contents at different
matrix suction (see Hillel 1988), refer to the soil’s ability to
retain water.  The initial soil conditions, prior to planting,
are shown in Table 2 for different soil layers (soil depths).
Residual nitrogen in all forms decreases with soil depth.

Table 3 summarizes the technical itinerary (cultural
practices or agronomic management) for the simulated field.
The variety (Cultivar) used represented “mid-season”
cultivars, that is, cultivars with a season duration (planting
to 50% open boll) of 140 days.  The latitude is equivalent to
that of Starkville, MS.  The row spacing used was standard
for mechanically cultivated cotton (around 120,000.00
plants/ha or 50,000 plants/acre).  Fertilization was applied
broadcast on three different dates using a urea-ammonium
nitrate (UAN) formulation because the model simulates
only the effect of nitrogen fertilizer. 

Climatic variables are the basic driving data for all
mechanistic growth models.  The following weather
information is input into the model:

& the daily solar radiation, which is the motor of
photosynthesis;

& the minimum and maximum daily temperatures,
which are mainly used to simulate soil
processes, growth, and development;

& the daily precipitation, which is the first input
for the water balance;

& the average wind speed (to which the model is
not very sensitive).

Figures 2 to 5 summarize environmental conditions for the
cotton-growing season simulated in this study.  Figure 2
shows that temperatures peaked at 40°C and averaged 32°C
during the growing season (05/09 to 11/22).  Figure 3 shows
the cumulative degree-days during the cropping season:
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In the previous formula the Growth Threshold is 15°C.  The
maximum rate of DD accumulation occurred from 06/01 to
09/01.  Figure 4 shows that solar radiation peaked during
April to July (xë = 25) and thereafter decreased.  Figure 5
shows a bimodal rain distribution with a total rainfall during
the growing season of 576 mm.

Results and Discussion

The goal for both the GA and the COMAX expert system
is to adjust irrigation scheduling, using the GOSSYM
simulation, to optimize profit.  This approach does not
correspond necessarily to maximizing yield since there are
irrigation costs and irrigation technical constraints (for
example, it may not be possible to irrigate every single day
due to equipment limitations).

Regular Simulation
First the model was run to provide benchmark for
comparisons with the schedules evolved by the GA and
produced by COMAX.  Figures 6 and 7 show the behavior
of the model given the observed rainfall (with no
supplemental irrigation).  The rainfall during the season
provides 576 mm of water but only 536.5mm are actually
available for cotton growth (GOSSYM simulates 39.5 mm
of runoff).  The effects of water stresses are clear from
figure (7) which show stress indices below 1 (1 = optimal)
during long periods.  The crop is stressed after about two
months, when the flowering period starts.  The simulation
predicts water stress starting only after first bloom.  The
growth is sub-normal (26 nodes, 18 fruiting branches) and
the yield is adequate (1031 kg of lint per ha). 

Results from the COMAX Expert System
Table 4 shows the results for the COMAX expert system.
Each row in the table represents two outcomes for two
COMAX consultations corresponding to the two water
management strategies tested: long term (LT) and water
conservation (WC).  The irrigation amount was set to
varying levels from 6.3 to 177.8 mm of water (0.25 to 7.00
inches) to be applied whenever the stress level of the plant
justified irrigation as invoked by COMAX.

As expected, when the maximum possible amount of
irrigation increased, the total number of irrigations
decreased from 12 to 4 using the LT strategy and from 12 to
7 using the WC strategy.  The WC strategy shows a relative
reduction in number of irrigations when the amount of
irrigation applied increases.  Plant height reached its
maximum value at 127 mm of water per irrigation for the
LT irrigation strategy and around 25 mm for the WC
irrigation strategy.  In both water management strategies the
yield increases from 6.3 to 30.5 mm per irrigation, then
stays stable as the amount of water applied increases to the
maximum of 177.8 mm per irrigation.  The crop reaches its
potential with 310 mm from irrigation in the WC strategy
and with 302 mm from irrigation in the LT strategy.  To
these irrigation amounts must be added the 536 mm water

from rainfall.  Thus the total amount of water supplied to
the system is between 838 to 846.  The main interesting
result is that the maximum yield was obtained in both
strategies with the same number of irrigation (8) and about
the same amount (300 mm).  Figures 8 show the irrigation
schedules recommended by COMAX where both strategies
give the same schedule which start during the dry period. 

GA Results
GA experiments were run using input files as described for
the “regular” simulation.  Figure 9 shows the best irrigation
schedules evolved by the GA.  This graph is contrasted with
Figure 8.  In graph 9 the GA shows its overall better value
for decision support compared to the COMAX expert
system.  Unlike COMAX, the GA proposed an irrigation
schedule with large variations in amount of irrigation,
number of irrigations, and timing.  In Figure 9, the irrigation
schedule planned important irrigations during critical
growth stages; the blooming and boll filling periods which
corresponds to the dry season.  Like COMAX, it doesn’t
recommend irrigation at the beginning of the cropping
season because there is enough residual water in the soil
during this period of the crop.  But unlike COMAX the GA
recommended a small supply to complement rainfall just
before the squaring and blooming periods.

In the experiments, as demonstrated by results in Table 5,
the GA found a better solution than the expert system.  This
solution is not necessary the best solution in the space of all
the possible solutions.  Although it is a good enough
solution, a human can still produce an even better solution
once the GA results are obtained.  The main limiting factor
in the use of this technique is the time requirement needed
to obtain a good solution.  We made several experiments
with different population sizes, mutation rates, crossover
rates and random number seeds.  It took between 2 hours to
20 days to run the GA on a Pentium 200.  And the best
solution was found in a run of 19 days which is obviously
too long for a decision support system in agriculture.  Table
5 shows that compared to the COMAX expert system, the
evolved irrigation is better both in terms of total yield and
in terms of optimality.  That is, the schedule evolved
resulted in reduced costs while manipulating the timing of
irrigations such that the yield was not only maintained, but
also increased.

Conclusion

We conclude that this new approach to irrigation scheduling
is an improvement over the existing expert-system method.
Importantly, the GA-approach is generic in the sense that it
is applicable to any conditions and to any cropping
situation.  This is not the case with the expert system
approach.  The knowledge base developed for the expert
system is applicable only to the conditions considered by
the experts.  The adaptive, dynamic, and evolving nature of
genetic algorithms are the key to their robustness.
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The second conclusion is that if the GA is a very good
optimization tool, it is also, in connection with a simulation
model, a very good knowledge discovery tool.  For example
in our case we can now evolve new rules for our expert
system.  In automating this process we can build a learning
machine.  This result is possible because we are using a
simulation model which represents deep knowledge.  The
GA gives us the possibility of exploiting the value of this
knowledge.  In GOSSYM, there are more than 300 original
equations describing all biological cotton processes.  It is
very difficult, or even impossible, for a human being to
follow all the interactions in the represented system (a
cotton crop and its environment).  But with the GA, it is
possible to search the “right” part of the space of solutions
for a given question and obtain a good solution.  Then we
can go back to the model to better understand and explain
the result.  This feature gives to the present tool, represented
by the integration of a GA and a mechanistic model, a
power previously unavailable.
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Figure 1

Table 1.  Main Hydrological Soil Characteristics.
Hor.
NO. 

Depth
(cm)

ëat
Sat.

ë at
F.C

ë at
P.W.P

B.D. %
San
d

%
Clay

1 23 0.569 0.263 0.141 0.98 37 12
2 48 0.425 0.286 0.194 1.40 24 24
3 200 0.465 0.288 0.205 1.28 44 13

Table 2. Soil Initial Conditions.
Residual N

dept
h 

(cm) 

nitrat
e

kg/ha

ammoni
a kg/ha

organic
matter (%)

H2O content 
 % of the

F.C.
0 12.3 1.2 0.74 100

15-
30 

6 0.6 0.72 100

30-
45 

4.6 0.4 0.67 100

45-
60 

3.4 0.3 0.43 100

60-
75 

3.4 0.3 0.37 100

75-
90 

3.4 0.3 0.30 100

90-+ 2.2 2.2 0.00 100

Table 3. Technical Itinerary and Simulation Conditions.
Simulation Conditions
Start Simulation 05/09/92
Stop Simulation 12/20/92
General Crop Conditions
Emergence 05/13/92
Season Length 226
Variety     Mid season
Latitude     34°
Density Conditions
Row Spacing (cm) 96
Plant Spacing (cm) 3.5
Plants per Ha 118700
Fertilization Conditions
Date Description Rate Units Method
278 UAN 447.7 kg/ha Broadcast
06/1
5

UAN 6.7 kg/ha Broadcast

06/3
0

UAN 167.9 kg/ha Broadcast

Figure 2.  Temperature maximal and minimal in °C.  1992
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Figure 3.  Sum of degree days (base 15°C)

Figure 4. Global Radiation during 1992

Figure 5.  Rain pattern

Figure 6. Yield components

Figure 7.  Soil water components
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Table 4. Responses of Long Term and Water Conservation
COMAX advisors.

Max.
Amou

nt

No. of
irr.

Qt. of irr. in
mm

Yield 
kg/ha

Plant height 
in m

LT W LT WC LT WC LT WC
 6.3 12 12 68.5 68.5 1283.5 1283. 0.94 0.94

12.7 12 12 144.7 144. 1440.4 1440. 0.94 0.94
19 12 12 220.9 220. 1507.7 1507. 0.97 0.97

25.4 12 12 297.1 297. 1647.8 1647. 1.02 1.02
30.5 10 10 304.8 294. 1687.0 1692. 1.02 1.02
31.7 9 9 285.7 285. 1687.0 1687. 1.02 1.02
33 9 9 297.1 294. 1687.0 1687. 1.02 1.02

38.1 8 8 302.2 294. 1698.3 1698. 1.02 1.02
44.5 7 8 309.8 307. 1698.3 1692. 1.02 1.02
50.8 7 8 355.6 309. 1698.3 1698. 1.02 1.02
63.5 6 8 381.0 309. 1698.3 1703. 1.02 1.02
88.9 5 8 444.5 304. 1687.0 1698. 1.02 1.02
127 4 7 505.4 289. 1681.4 1698. 1.04 1.02
178 4 7 711.2 292. 1687.0 1698. 1.04 1.02

Figure 8.  COMAX water conservation and long term
irrigation schedule

Figure 9.   Best GA's evolved schedule

Table 5.  Comparison of “best” schedules proposed by
COMAX and the GA, for a maximum amount of irrigation
of  31.7 mm (1.25 inches per irrigation application).
Treatme
nt

Number
of

Irrigation

Amount
of 

Irrigation

Yield Fitness

COMA
X

9 285.75 1687.09 1462.25

GA 13 354.37 1714.70 1470.19


