EFFICACY OF VARIOUS INSECTICIDE TREATMENTS TO CONTROL COTTON APHIDS AND PREVENT ECONOMIC LOSS IN OKLAHOMA IN 1995 M.A. Karner, J.R. Goodson & Mark Payton Cooperative Extension Service Oklahoma State University

Abstract

Insecticides at different rates and combinations were used to produce different populations of cotton aphids infesting cotton in Oklahoma. The test was delayed until aphid densities neared 100 aphids/leaf. The E.P.A. established this threshold of 100 aphids/leaf to justify use of Furadan 4F to control mid-season cotton aphid infestation throughout the U.S. under the Section 18 Emergency Exemption Label. Efficacy varied greatly between treatments leading to a wide range of aphid densities which persisted up to 14 DAT. Variation in aphid densities and duration of the infestation after spraying allowed the impact of aphids on boll weight and yield to also be measured. High aphid densities had adverse effects on boll weight and yield, but not on lint grade or strength. There was no negative linear, or negative curvilinear relationship between aphid densities and boll weight or yield 1 DBT. However 3 DAT, 7 DAT, and 14 DAT a significantly negative curvilinear relationship with boll weight and a significantly negative linear relationship with yield occurred. Increased aphid levels reduced boll weight and yield. Significant yield loss occurred by waiting to spray until the E.P.A.'s established action threshold was Action thresholds should be lowered to reached. compensate for time needed to initiate treatment. Maintaining Oklahoma's current economic threshold of 50 aphids/leaf should allow ample time for reaction to initiate control keeping aphid levels below 100 aphids/leaf averting significantly yield loss in infested fields.

Introduction

Widespread cotton aphid populations developed across the Rolling Plains of Texas and Oklahoma in 1995. Many factors are involved in the development of economically important populations. Besides indiscriminate use of insecticides without regard for economic thresholds and development of organophosphate resistance, there are many interactions that affect population trends. Slosser, et.al. 1989, concluded that an interaction between bioclimate and plant nutritional status stimulated initial population increases.

The relationship between late-season aphid populations found in Oklahoma and yield is not well understood. This

experiment was conducted to determine the efficacy of insecticides to control cotton aphids. The test was delayed until aphid densities neared 100 aphids per leaf. The E.P.A. established this threshold of 100 aphids/leaf to justify use of Furadan 4F to control mid-season cotton aphid infestation throughout the U.S. under the Section 18 Emergency Exemption Label. Efficacy varied greatly between treatments leading to a wide range of aphid densities which persisted up to 14 DAT, allowing the impact of aphids on boll weight and yield to also be measured.

Methods and Materials

The dryland field was planted to Paymaster HS 26 on June 9, 1995, and was located southwest of Granite, OK, in Greer County. A rapidly developing population of cotton aphids was noticed on July 31, 1995. For easy reference, plants sampled were flagged. Sampling began on August 16, 1995, the day before initiation of the test (DBT). Aphid numbers were estimated weekly by sampling 15 leaves from three zones located within the canopy. In addition to flagging plants, leaves were also tagged to allow rapid follow up assessments 3, 7 and 14 days after treatment (DAT). The top position leaf sampled was the first fully expanded leaf (located 3 to 4 nodes below the plant terminal). The middle position leaf sampled was located 5 nodes below the top leaf and the bottom position leaf sampled was located 5 positions below the middle leaf. Aphids/leaf is an average of 3 sampling zones. Pretreatment counts taken on August 16, 1995, revealed aphid numbers ranging between 66 aphids/leaf to 111 aphids/leaf. The check averaged 98 aphids/leaf. Plot size was 4 rows by 100 ft arranged in C.R.B. design with 3 replications. Insecticide treatments were applied by ground rig on August 17, 1995. The CO₂ sprayer was calibrated to deliver 10 gallons finish spray/acre using 8002 nozzles at 22 psi. at 4 mph.

In addition to monitoring aphid levels, 20 bolls located at 6 and 10 nodes below the plant terminal were picked and weighed on September 7, 1995. For convenience of discussion boll weight (ounces) is the average weight of both the 6 and 10 position bolls. Cotton yields were determined by hand-harvesting 13.0 ft of row in each plot on October 24, 1995. Cotton samples were ginned at the Oklahoma Research and Extension Center at Altus, OK, and lint qualities were determined by the USDA Cotton Classing Office at Abilene, TX.

Aphid numbers (number/leaf), boll weight (ounces), yield (lbs/acre) and lint qualities were statistically analyzed using the Duncan's Multiple Range Test at the 95% level of probability unless specifically noted. In addition the data was analyzed to determine the coefficient correlation (R) between aphid density, boll weight and yield.

Reprinted from the *Proceedings of the Beltwide Cotton Conference* Volume 2:1054-1057 (1997) National Cotton Council, Memphis TN

Results and Conclusions

Prior to treatment aphid populations exceeded 66 aphids/leaf in all plots on 8/16/1995 (Table 1). Aphid populations remained high in the check ≥ 98 aphids/leaf 1 DBT, 3 DAT, and 7 DAT. Aphid numbers surpassed 100 aphids/leaf in 4 treatments 3 DAT and in 6 treatments 7DAT. Aphid numbers declined rapidly in all plots. Aphid numbers remained above 50 aphids/leaf in seven treatments 14 DAT. Beneficial insects reduced aphid levels in the check to 24 aphids/leaf 14 DAT.

Precent control ranged from - 16% for Endosulfan 1.0lb. AI/acre to 99% for Furadan .125lb. AI/acre, 3 DAT (Table 2). Percent control increased or remained constant for 11 of the 18 treatments 7 DAT. Only five of the 17 insecticide treatments provided greater than 80% control for all three sampling dates.

Boll weight varied among treatments (Table 3). Greatest boll weight (.58 ounces/boll) occurred in Furadan .25lb AI/acre (significantly greater boll weight occurred in eight of the nine treatments with low aphid-densities than the Check other treatments with higher aphid numbers). Boll weight in these eight treatments were significantly different from the remaining 9 treatments including the Check.

Lint yields are also shown in Table 3. The lower-density aphid plots had produced greater yields than higher-density aphid plots. Bidrin .25lb. AI/acre + Provado .02 AI/acre produced 223 lbs. lint/acre which was significantly different than Endosulfan .5lb. AI/acre 123 lbs. lint/acre and Lorsban .50lb. AI/acre 122 lbs. lint/acre. Aphid numbers have no significant impact on lint quality.

No negative linear relationship existed 1 DBT between aphid numbers and boll weight or yield (Figure 1 and Figure 5). However a significant negative linear relationship occurred between aphid densities and boll weight and yield 3 DAT, 7 DAT and 14 DAT. A slightly better fit (R^2) occurred when the boll weight data was compared to aphid densities in a curvilinear relationship (Figure 2, 3 and 4). Boll weight decreased as aphid numbers increased at all three dates until aphids exceeded 80 to 100 aphids/leaf when boll weights improved slightly.

Increase in aphid numbers resulted in a similar yield reduction trend at all three dates. Little difference in yields occurred if aphid numbers remained light (below 20 aphids/leaf). Noticeable yield loss occurred when aphid numbers exceeded 50 aphids/leaf 3 DAT, 7 DAT, or 14 DAT (Figure 5,6, and 8).

To prevent economic loss from occurring, resistant cotton aphid infestations must be sprayed before density levels reach 100 aphids/leaf. Significant injury occurred within 3 days after populations reached and exceeded 100 aphids/leaf. Action thresholds justifying control should be lowered to compensate for time needed to initiate treatment. Maintaining Oklahoma's current economic threshold of 50 aphids/leaf should allow ample time for reaction to initiate control keeping aphid levels below 100 aphids/leaf averting significantly yield loss in infested cotton fields.

This research was partially funded by Cotton Incorporate State Support Funds.

Literature Cited

Slosser, J.E., W.E. Pinchak and D.R. Rummel. 1989. A review of known and potential factors affecting the population dynamics of the cotton aphid. Southwestern Entomol. 14(3): 302-312.

Table 1. Aphid population trends, Kruska Farm, Oklahoma, 1995

	_	Aphids/Leaf				
Treatment	Rate	1 DBT ¹	3 DAT	7 DAT	14 DAT	
	Lbs AI/Acre					
Furadan	0.25	88a	1e	1d	0c	
Ovasyn/ Provado	0.125 0.02	93a	15de	6cd	2c	
Bidrin	0.5	66a	12de	2cd	1c	
Lorsban/ Provado	0.5 0.02	104a	25de	13cd	бс	
Bidrin/ Ovasyn	0.25 0.125	89a	20de	1cd	1c	
Bidrin/ Curacron	0.25 0.25	91a	19de	3cd	4c	
Bidrin/ Provado	0.25 0.02	95a	14de	8cd	1c	
Provado	0.04	105a	57bcd	5cd	4c	
Provado	0.02	71a	18de	9cd	5c	
Check		98a	119a	111b	24bc	
Dibrom	1.0	89a	1de	30cd	64abc	
Lorsban	0.5	84a	117ab	151ab	86ab	
Ovasyn	0.125	84a	104ab	144ab	65abc	
Lannate	0.25	96a	44cde	32cd	52abc	
Endosulfan	0.5	79a	101ab	134ab	77ab	
Endosulfan	1.0	112a	122a	170a	57abc	
Curacron	0.5	82.a	81abc	157a	94a	
Dimethoate	0.25	81a	56bcd	50c	32abc	

 1 DBT = Days before treatment and DAT = Days after treatment. 2 Silwet 80z/Acre added to all treatments.

Table 2. Efficacy of insecticide treatments to control cotton aphids, Kruska Farm, Oklahoma, 1995.

Table 3.	Impact	of	varying	aphid	populations	on	boll	weight	and	lint
production	. Kruska	ı Fa	rm Okla	ahoma	1995					

		Percent Control			
Treatment	Rate Lbs AI/Acre	3 DAT	7 DAT	14 DAT	
Furadan	0.25	99a	99a	100a	
Ovasyn/ Provado	0.125 0.02	87a	95a	86a	
Bidrin	0.5	90a	96a	79a	
Lorsban/ Provado	0.5 0.02	73ab	80abc	-75a	
Bidrin/ Ovasyn	0.25 0.125	84a	98a	97a	
Bidrin/ Curacron	0.25 0.25	83a	97a	79a	
Bidrin/ Provado	0.25 0.02	86a	93a	92a	
Provado	0.04	61ab	94a	61a	
Provado	0.02	81a	86a	86a	
Check					
Dibrom	1.0	72ab	71abc	-212a	
Lorsban	0.5	-8d	-72cde	-1114a	
Ovasyn	0.125	0cd	-126e	-1969a	
Lannate	0.25	60ab	63abc	-186a	
Endosulfan	0.5	6cd	-69bcde	-1902a	
Endosulfan	1.0	-16d	-149e	-1769a	
Curacron	0.5	23bcd	-94de	-1526a	
Dimethoate	0.25	51abc	36abcd	-360a	

Treatment	Rate Lbs AI/Acre	Boll Weight (ozs)	Yield Lbs/ Acre	Lint Grade
Furadan	0.25	.582a	196ab	41
Ovasyn/ Provado	0.125 0.02	.579a	207ab	41
Bidrin	0.5	.576a	173ab	41
Lorsban/ Provado	0.5 0.02	.576a	201ab	41
Bidrin/ Ovasyn	0.25 0.125	.573a	212ab	41
Bidrin/ Curacron	0.25 0.25	.536a	196ab	41
Bidrin/ Provado	0.25 0.02	.531a	223a	41
Provado	0.04	.528a	153ab	41
Provado	0.02	.509ab	210ab	41
Check		.455bc	157ab	41
Dibrom	1.0	.441bc	186ab	41
Lorsban	0.5	.441bc	122d	41
Ovasyn	0.125	.431c	145ab	41
Lannate	0.25	.423c	154ab	41
Endosulfan	0.5	.417c	123d	41
Endosulfan	1.0	.410c	137ab	41
Curacron	0.5	.401c	132ab	41
Dimethoate	0.25	.397c	176ab	41

Figure 1. Effect of cotton aphids 1 D boll weighKruska farm, Oklahoma 1995

Figure 3. Effect of cotton aphids 7 D boll weightKruska farm, Oklahoma 199

¹Boll wt. = Average weight of bolls located 6 and 10 positions below plant terminal sampled 9/7/95.

Figure 4. Effect of cotton aphids 14 I boll weight Kruska farm, Oklahoma 19

¹Boll wt. = Average weight of bolls located 6 and 10 positions below plant terminal sampled 9/7/95.

¹Yield = Lint pounds per ac

¹Yield = Lint pounds per ac