PENETRANCE OF GENES ASSOCIATED WITH GENES FOR INCOMPATIBILITY Claude L. Rhyne and Jack C. Carter Geneticist and Emeritus Professor of Biology, Respectively Georgia Southwestern College Americus, GA

Abstract

Cultivars cross with incompatible cottons producing hybrid seed that are lethal. Incompatibles have gene le_1 of a wild Ecuadorian and the independently inherited Le2^{dav} of wild diploid Gossypium 2D₃. Even if these genes are extant in Upland background, they carry associated genes of the donor species. Among these are tufting of seed but breeders have selected for n_1 that confers fuzzy seed. The F₁ of a naked seed le₁ N₁ stock x the Stoneville 907 cultivar Le_1Le_2 was challenged by an incompatible yielding viable that were naked seeded except one non-naked. An earlier attempt had yielded one non-naked. Together, $le_1 n_1$ recombination was 3.8 cM. The recombinant produced seed ranging from a low grade tufted to uniformly fuzzy, indicating a range in expressivity of the $le_1 n_1 / le_1$ tufting phenotype. Advancing the genotype resulted in S_1 and S_2 that were uniformly fuzzy, nectariless gland-free and pollen fertile. This infrequent event localized recombination rendering the genotype $gl_2 le_1 n_1 ne_1 Ms_8$. The genotype was combined with Le2^{dav} - Ne2 Ms9. Since Le2^{dav} was associated with Ne2 and recombined with ms9 the order of genes is similar to those of the $le_1 n_1$ recombinant. The gene at the N₂ locus is similar to the gene of fuzzy seeded cultivers. Inheritance and expressivity of genes for tufting was investigated showing a range in fuzz amount and location on seed. Evidence for complementary genes at independent loci and for a gene of variable expression was obtained. Phenotype tufted at the tip deteriorated to bare spots on seed otherwise fuzzy in individual plants, even if the common expression of the heterozygote was a barren seed with a green tuft of fuzz at the small end. Other nonhirsutum genes of the linkage group, Ms₁₁ le₁ tufting Ne₁ also varied in expressivity.

Introduction

Conversion of cultivars to incompatible has been complicated by linkage of the le_1 gene with genes having a range in expressivity or in penetrance. Rhyne and Carter (3) indicated unwanted tufting of seed was associated with le_1 that was linked with Ne₁, also a gene of variable expressivity. Two genes were associated with tufting of seed and one of these linked with Ne₁. Presumably this tufting allele was at the N₁ locus. The le_1 N₁ linkage has been reported earlier at 5 cM frequency and no recombination of $le_1 n_1$, the common gene of fuzzy cultivars, has been reported in the literature (5). They utilized two F_1 hybrids of compatibles crossed with Stoneville 907 cultivar and challenged with incompatible to detect recombinant $le_1 n_1$. One non-naked viable indicated a recombinant $le_1 n_1$ / incompatible. The objective of the present study was to verify the indicated recombinant and repeat the procedure in order to obtain a better estimate of recombination of le_1 with n_1 . Further investigation of genes associated with tufting and le_1 provides information on inheritance, penetrance and expressivity.

These studies were undergirded by the Samora, Stelly, and Kohel formal publication (5) as well as the considerable efforts of numerous researchers on glanding, nectariless, male sterility and incompatibility.

Methods and Materials

The gene le₁ is common to compatible and incompatibles as it is the one that originated in the donor Ecuadorian <u>barbadense</u>. Because of tight linkage, other genes of the donor accompany le₁. Somora, Stelly, and Kohel (5) proved the gl₂le₁ centromere order for the long arm of chromosome 11 and Rhyne and Carter (2) placed N₁ Lf Ne₁ proximal the centromere. They (3) infer that a gene for tufted seed is closest to le₁ because they (2) obtained a rare recombination of le₁ N₁. Our compatibles have genotype gl₂le₁? ne₁ms₈; gl₃le₂ - ne₂ ms₉ if pollen sterile. Our incompatible has genotype gl₂ le₁? Ne₁Ms₈; gl₃Le₂^{dav} - Ne₂ Ms₉ and has pollen fertility. The ? indicates an unassigned allele for tufting. Cultivars have Gl₂ Le₁ n₁ ne₁ Ms₈; Gl₃ Le₂ - ne₂ Ms₉ if nectariless as Stoneville 907 Cv is.

A compatible is crossed with a cultivar and the F_1 challenged by the incompatible. Most plants that live have le_1 in the parental association but some viable have le_1 with a gene of the cultivar. Using two compatible versions of male - sterile that were crossed with 907 Cv, the F_1 was challenged by a common incompatible. Viable with naked seed, or tufted, or fuzzy were observed in the challenge. Exceptional plants were advanced to verify which genes are now associated with le_1 . The $le_1 n_1$ was sought. Gene expression has varied. Lethality of Le genes (beginning with Lee (1) has been investigated rigorously elsewhere. Tufting of seed, production of leaf nectaries, and pollen fertility are our concerns in this study.

In a progeny critical phenotypes rather than frequencies are reported. Frequencies are reported for significant progenies; all is variable, its significance depends on the number of plants that are needed for recovery of a gene. For example, all have a common phenotype when 1 of 10 would prove the second phenotype in a TC.

Reprinted from the Proceedings of the Beltwide Cotton Conference Volume 1:619-622 (1996) National Cotton Council, Memphis TN

Results and Discussion

Table 1 indicated one exceptional plant on the first line. The testcross was repeated again yielding one exceptional plant. It was easily detected by seed not being naked and lacking fuzz. However, seed in the first boll of the 1995 population were tufted. Later bolls had fuzzy seed; genotype $le_1 n_1 / le_1$? Ne₁ Ms₈ ($le_2 - ne_2 / Le_2^{dav}Ne_2$) had a phenotype ranging from a low grade tufted to uniformly fuzzy. However $le_1 n_1$ recombination occurred at a low frequency. The expression of the recombinant varied for 1994 and 1995.

This fuzzy-seed plant of 1994 of Table 1 was advanced to S_1 . One portion of ten was observed at the Cotton Winter Nursery and a larger portion in the field in Georgia in 1995. Table 2 shows S_1 plants and four were nectary-free and all seed were fuzzy. Two were nectaried and had low-grade tufted-seed; 56 were nectaried and had fuzzy seed. The expected genotype $2le_1 n_1 le_2$ was present in the S_1 . The S_2 of the 10 S_1 at the winter nursery shows nectary-free plants and this is significant.

A second significant S_2 , being fuzzy but showing a large nectary as an S_1 , contained only fuzzy seed but segregated in the expected ratio 3 nectaried to 1 nectariless. This was the easily detected Ne₂. Two S_2 were nectaried, the seed were a low grade tufted. Four S_2 yielded nectary-free fuzzy seeded plants. A challenge of such plants indicated all were 2 le₁ le₂. The significant S_2 having Ne₂ was challenged and all Ne₂- plants produced lethality. Its genotype must be 2 le₁n₁ne₂; le₂ - ne₂ ms₉ / Le₂^{dav} - Ne₂ Ms₉ for the heterozygote. This significant linkage combination is advanced further in a following section.

The S_1 for typical viable having naked seed are also shown in Table 2. The key marker N_1 was present; if not, the plant was either low-grade tufted or normally fuzzy, not n_1n_1 ; if nefree, a plant was generally N_1 and pollen sterile indicative of the compatible (parental) linkage. Malesterile, nectary free, plants were compatible. These associations were used to backcross repeatedly to the 907 cultivar and maintain compatibility.

The recombinant le₁ n₁ is infrequent; it was detected once in each of three populations grown in separate seasons. Each exceptional plant yielded gland-free, nectary-free, fuzzy seed S₁. The S₁ had pollen fertility. This rare recombinant must be gl₂ le₁*n₁ne₁ Ms₈ (gl₂ le₂ - ne₂ ms₉). Our estimate is 2 of 53; that is le₁ 3.8 ± 2.4 cM n₁. Significant contributions of the incompatible were 2gl₂ le₁ tufting Ne₁ Ms₈ and or 2 gl₃Le₂^{dav} - Ne₂ Ms₉ in the S₁ and S₂.

The infrequency of the $le_1 n_1$ recombinant and its accompanying associated characters indicates a rare single event that keeps $n_1 ne_1 Ms_8$ of the 907 intact which renders the previous compatible and incompatible into gland-free

fuzzy versions. The significant double of Samora, Stelly, and Kohel (5), Gl_2*le_1* centromere occurs more frequently.

The fuzzy seeded plant of the top line Table 1 was crossed by DPL cultivar and 3 F_1 advanced to separate $F_2(S_1)$. One segregated 15: 1 ne and the population was fuzzy. The challenged nectariless was compatible. This parental F_1 plant had received $gl_2le_1n_1$ ne₁Ms₈; $gl_3 le_2 - ne_2$. A second S_1 was homozygous nectary and segregating tufting. It had received gl_2le_1 ? Ne₁ Ms₈; gl_3le_2 ne₂ with this le_1 associated with tufted and Ne₁ of the incompatible. The third also homozygous nectaried did not segregate tufted. It probably received $gl_2 le_1n_1^*$ Ne₁, a recombinant indicated by Samora, Stelly and Kohel (5), and Rhyne, Rhyne, and Menzel (4). Le₂^{dav} and Le of DPL cultivar would have produced a nonviable plant and Ne₂ that is linked with Le₂^{dav} should be eliminated.

Glanded, nectary-free, fuzzy compatible

Results of Table 4 were obtained two generations prior to the 1994 detection of a fuzzy viable. Its primary objective was to obtain $Gl_2 le_1 n_1$; $Gl_2 le_2$, i.e. to introduce le_1 and le_2 for Le_1 and Le_2 of 907 cv. According to Lee (1) recombinants $Gl_x le_x$ are frequent but we believed $le_1 n_1$ was rare, knowing that le₁ N₁ had only 5cM recombination. Believing that gl_2 le_1*n_1 ought to be infrequent, and knowing that it could be confused with parental $gl_2 le_1$? Ne_1 of the viable, Gl_x plants were used for advancement. The exceptional phenotype is focussed on for this report. Recognizing Gl₂gl₂ Gl₃gl₃ plants early, we selfed and backcrossed them to 907. Among the exceptional at boll cracking, was the few having seed extremely tufted, all seed were barren except the green fuzz at the small end. This phenotype had less seed cover than compatible and incompatible, F_1 's and nectaried F_1 of Table 3. It also had been reciprocally backcrossed with 907 and outcrossed to our third gland-free, fuzzy, nectary-free compatible.

Table 5 shows progenies and characters present in each. The S₁ exhibited the tufting at tip T^t and a low grade tufting of bare spots T and fuzzy Fz that should not be expected since n_1 recombination must be infrequent. Nectary expressions indicated were Ne_1ne_1 , Ne_2ne_2 and Ne_1-Ne_2 -and homozygous genotypes, pollen fertility Ms_x - and assorted Gl_x genotypes. We focussed on Ne_2 even if we expected tufted to be associated with Ne_1 . Le_2^{dav} was present and readily followed when Ne_2 was recognized and was absent when ne_2 verified.

The BC f indicated the atypical was used as seed parent when backcrossed to 907. T^t unexpected showed with Ne_x and ne₁ne₁ne₂ne₂. Ne_x and FZ were together in some plants. Absent was Le₂^{dav} and ms, but expected to be absent. The BC m used the exceptional as male parent on 907 with the phenotypes same as those of BC f. The OC f used the exceptional as seed parent and it showed combinations of phenotypes in simpler patterns although the S₁ had similar combinations. We focused on Ne₂---. Five plants of BC f were carried forward as S_1 . Three were glanded, nectariless and fuzzy and produced S1 with this same phenotype. Two glanded, nectaried and tufted produced typical Ne₁ ne₁ hetrozygotes, e.g. many leaves of an individual had to be searched to detect a small nectary. As Rhyne and Carter (3) reported, Ne₁ was associated with tufting and tufting was exhibited as the ratio 9 T: 7 Fz. Ne₂ was not present in these 5 S_1 for Le_2^{dav} had been eliminated as lethal with Le_x of the 907 in the backcross. Two of the 3 BC f S_1 were randomly sampled using plants of the original S₁. Each exhibited only glanded, nectary-free plants and the challengers showed a possible Ne₂ - - genotype. At boll cracking the two Bc f S₁ had only fuzzyseed plants. One challenger had a fuzzy-seed phenotype and was proven to harbor Le_2^{dav} . The Bc f S₁ advance showed on S_2 having nectariless, glanded, fuzzy plants. The S_2 of the challenger also was fuzzy but segregating Le_2^{dav} . Le_2^{dav} was associated with Ne₂ and the S₂ harbored Ne_2Ne_2 : Ne_2ne_2 : ne_2ne_2 (ne_1ne_1) phenotypes.

The viable of this challenge of glanded, fuzzy nectariless in Bcf S₁ nectaried exhibited some nectary-free plants with seed having the tufted at tip phenotype. Ne₁ absence was confirmed; however, a few Ne₂ ne₂ ne₁ne₁ were identified. When the Le_x ne_x of the 907 was present it was eliminated if Le₂^{dav} Ne₂ was in the zygote. Many nectariless plants were fuzzy seeded since the challenger harbored le₂ - ne₂, and Le₁ n₁ ne₁ of 907 then would be viable. Nevertheless, each Bc f S₁ produced tufted at tip offspring in the challenger. Instead, Gl₂*le₁ tufting * ne₁ Ms₈ was present and complementary with an unidentified in the 1995 challenge, producing tufting phenotype.

The linkage Le_2^{dav} - $Ne_2 Ms_9$ plants of Table 5 show glanded, nectary-free phenotype with tufted or fuzzy seed. BC f and BC m plants were backcrossed with 907 cv, OC f with the compatible. Tufting was associated with the le_1 for the backcross parent contributed n_1ne_1 ; the inheritance of tufting in the three BC similar although variable for phenotypic expression of tufting. $Gl_2 * le_1 ? * ne_1$ and Gl_3 * $le_2 - ne_2$, present in the tufted at the tip; persisted in the advancement. The tufting had persisted even in the absence of $Le_2^{dav} - Ne_2 Ms_9$. To evaluate the contribution of $Le^{dav} - Ne_2 Ms$ tufting the OC f was backcrossed to its compatible parent.

The compatible used as female was gland-free, nectary-free, fuzzy, male-sterile and the OC f pollinator was glanded, nectaried, tufted at the tip, pollen fertile. The S_1 of Table 6 shows independence of genes except for genes of the Le_2^{dav} association. Ne₂ was indicated by the easy finding of a leaf nectary and Gl_2Gl_2 was indicated by its distinct Gl_2gl_2 phenotype. This must be the Gl_2 of 907. Tufting was independent of Ne₂ and Gl_2 . Male fertility was independent of Gl_2 . However a close linkage of Ne₂ and Ms₉ is evident. Summer 1995 was notable for scarcity of bee pollinators. Table 6 shows 23 male-sterile plants. Flowers of these were pollinated with pollen of the cultivar when inspection shown that bees had not pollinated. Le_2^{dav} was then proven in the two Ne₂ms and many of the 70 but absent for all 24 ne₂ne₂ plants. Clearly the gene order must be $Le_2^{dav} - Ne_2$ ms₉ for these tightly linked gens. Dr. J. A. Lee (personal communications) inferred that a gene for fuzzy seed of <u>G</u>. davidsonnii was present in the original 15-4 that was the donor of Le_2^{dav} . $Le_2^{dav} Ne_2$ linkage is tight and so the genes have been coupled and have persisted. The compatible pollen sterile in this S₁ was le₂ ne₂, representing recombination earlier of le₂ Ne₂ / Le₂ ne₂.

Our attempts to detect Le_2^{dav} ne_2 recombination were extended to the S_2 family marked with * in Table 2. Here the S_1 parent had Le_2^{dav} - Ne_2 Ms_9 / le_2 - ne_2 ms_9 in a fuzzy-seed $2le_1n_1$ background. The S_2 was gland-free. All ne_2ne_2 plants were compatible; all sampled Ne_2ne_2 plants produced viable (glanded) and inviable. A glanded $2Le_1$ Le_2 was challenger. This S_1 was larger than the S_1 of Table 6. The Le_2^{dav} Ne_2 linkage is tight, but Le_2^{dav} - must be tighter, if the order is Le_{2dav} - Ne_2 Ms_9 . Whether the - is an allele of the N_2 locus and differs from that of the 907 and DPL cultivars has not been resolved. The le_2 - ne_2ne_1 has shown no difference from Le_2 - of the cultivars.

Tufting variation in S₁

Table 7 shows classifications of tufting for Ne₂ and ne₂ne₂ phenotypes in an S₁. The "tufted at tip" is barren of fuzz except a green tuft at the small tip and the lint is white. It occurred in both Ne₂ and ne classes and Ne₂ is expected to be 3 to 1. A lesser area of the seed is barren that is called T. Its frequency is similar for Ne₂ and ne classes. Uniformly covered seed was skewed slightly toward the Ne₂. When tufting is grouped as T, as in Table 5, a single gene is indicated by the 67 to 29 segregation. The suggestion is that T t phenotype, which should be most frequent in the S₁, is often that of a highly dominant but sometimes a lesser degree of tufting is expressed. Both T_t and T seed have been observed on a plant, even in an individual boll.

Evidence for two interacting genes for tufting was present in backcrosses of BC f and m to 907 for tufting occurred in 1/4 of the backcross, not in ½. That genotype le_1n_1 / le_1 ? Ne₁; $le_2 - ne_2 / Le_2^{dav}$ - Ne₂ varied for tufting has been shown previously.

Acknowledgments

The donations of field space, cultivation, spraying by Hodges Brothers Farm made our populations possible. Their patience and interest are gratefully acknowledged. Personal communications of Dr. Joshua Lee were invaluable. The interest and approval of Dr. William Tietjen is much appreciated. Without the help of Pat Embleton this report would not be possible.

References

1. Lee, J.A. 1981. Linkage relationships between Le and Gl alleles in cotton. Crop Sci. 22:1211-1213.

2. Rhyne, C.L. and J.C. Carter. 1992. Research efforts with genes of linkage group V.I. Loci proximal the centromere. Proc. Beltwide Cotton Prod. conf. vol 2:593-595.

3. Rhyne, C.L. and J. C. Carter. 1995. Complications in Breeding For Incompatibility. Proc. Beltwide Cotton Prod. conf. vol 1:536-539.

4. Rhyne, C.L., D.M. Rhyne, and M.Y. Menzel. 1986. Duplicate pollen-sterile locus ms8 and linkage group V of Gossypium hirsutum. J.Hered. 77:332-336.

5. Samora, P.J., D. M. Stelly, and R.J. Kohel. 1994 Localization and mapping of the Le₁ and Gl₂ loci of cotton (Gossypium hirsutum L.). J. Hered. 85:152-157.

Table 1. Segregation of seed-covering in TC compatible x LE Stoneville 907 C challenged with PIC. NT 1 1

Population Leulais	Inaked		гиzzy		
		GHO		GΗΟ	
No nectary	154	2 10 25		1	1/38 is
Naked Seed					2.6 cM

Table 2. Segregation in progenies of TC plants from naked-nectariless F1 Type Character present No. Naked N_1 TF Fz Ne. ms ne

S_1	x	х	х	х	x	х	all
Fuzzy							
S ₁			х			х	4
		х			х		2
			х		х		56
S ₂		х			х		2
			х			х	*1
		х	х		х		1
			х		х	х	*1
			х		х		3
			х		х	х	2
*Signific	ant pheno	types					

Table 3	Progeny of	fuzzy	recombinant	in '	Table X DPL ov	,
rable 5.	I TOgenty Of	IULLY	recombinant	111	TAULCA DI LU	/

EXPRESSIONS PRESENT							
	Nex	ne	Le _x	le	Tf	Fz	
TC	х	х	х	х		х	1
S_1	х		х	х	Х	х	1
	х		х	х		х	1

Table 4. Segregation of seed-covering in TC compatible x LE Stoneville 907 C challenged with PIC.

Population	Lethals	Tufted	Fuzzy	
		GΗΟ	GHO	
Nectaried	242	12 26 17	599	is 23/78
Tufted seed				complex inheritance
				and expressivity

Table 5. Segregation in progenies from testcross phenotype "tufted at tip",

backcrossed to 907 cv and outcrossed on fuzzy compatible									
Type Character present in a grogeny									
	т	Т	Fz	Ne	ne	Ms	ms	Gl	g]
S.	x	x	x	x	x	X		X	x
BC f	x	x	x	X	x	x		x	
BC m	х	х	х	х	х	х		х	
OC f	х	х	х	х	х	х		х	х
Table 6. glandless	$S_1 \text{ of }$	BC o	f gland stariless	ed, tuf s, male	ted at steril	tip, nec e, com	ctaried, patible	incompa	tible X
Ne gl	Ne	GI	ne gl	litons	ne Gl	1	exr	pected	
51	22	01	15		9		03	3.1	>0.05
Ne T	Ne	fz	ne T		ne fz))	51	20.05
49	23	12	18		6		93	31	>0.05
Ne Ms	Ne	ms	neMs		ne ms		/ 5	51	20.05
70	2	1113	3		21		lin	kage	5 3+2 4cM
ol T	ol 1	fz	GLT		Glfz		1111	nuge	5.5 <u>1</u> 2.1011
42	23		25		6		93	31	>0.05
ol Ms	ol	ms	GI M	2	Gl ms		, ,		2 0100
51	14		22	,	9	,	93	31	>0.05
Male Gl	le. ? 1	ne, m	s.: gl. l	Le ^{dav} -	Ne ₂ N	Ms _o	10		2 0100
seed ol. le		e, ms	s.: 91, 10	e _o - neo	ms	-109			
Table 7.	Distri	butic	on of tu	fted ty	pes in	S ₁			
Tuft at tij 51	þ		Ne	\mathbf{T}^{t}		37	ne	\mathbf{T}^{t}	14
bare spots	8		Ne	Т		12	ne	Т	4
uniformit	У		Ne	Fz		23	ne	Fz	6
fuzzy									
Table 8.	Gene	actio	ns of g	enes pi	oxim	al le ₁			
			Ne ₁ Ne	1		Ne ₁ ne ₁		ne ₁ n	e ₁
Nectary of individ plant	on Lea lual	ſ	all			some		none	e
			$Ms_{11}M$	ls ₁₁		Ms ₁₁ m	s ₁₁		$ms_{11}ms_1$
pollen in	flower	r	none		1 <i>E</i>	none		all	
	uai pi	anı	none	more t	nan S	070 FIII	lia	o]]	
			When	more t	han 50	0% hirs	sutum	an	
			ΤТ			Τt		$n_{1}n_{1}$	
Fuzz on a	seed		all			some		all	
plant			bare			bare			