THE SIGMA+ COTTON MODEL Hal Lemmon, Ning Chuk, Vagimalla Reddy, Basil Acock, Yakov Pachepsky, and Dennis Timlin **USDA-ARS** Systems Research Laboratory Albany, CA Beltsville, MD

Abstract

A computer program has been developed which simulates the growth of cotton, and based upon the results of the simulation, recommends to the grower when to irrigate, when and how much to fertilize, and when to harvest.

The model is written in the C++ programming language using the object oriented design and programming. The object oriented structure of the model is given in Table 1.

The model has been operational since January 1995. However an analysis of the results has shown that the model has failed to properly predict the plant's leaf water potential. Consequently when there was little or no water stress the model gave satisfactory results. However when a crop was grown under conditions where water stress occurred, the model did not adequately compensate for the condition. A new object for water stress was developed. The theory for the model was taken from Glycim, a crop model for Soybeans (Acock, et. Al.). Preliminary results indicate that this enhancement to the model allows it to properly predict water stress and to properly allow for water stress in the simulating the growth of the cotton plant. However not enough test cases have been run to definitely establish this.

Two test cases are shown, Figure 1 and Figure 2. They test cases are from two plots grown under identical conditions, except that the first one, msu83i received 36 inches of water over the crop season, and the second one, msu83d, received 26 inches of water. In this case the model satisfactorily simulated the field results.

Table 1. The Cotton++ crop model contains 27 classes and three levels of

CLASS	DESCRIPTION
clock*	Keeps track of the simulation time
environment*	This class provides environmental
environment	information such as temperature and
	radiation
transpiration*	Computes the rate of transpiration
organ	Organ is an abstract class. It contains
organ	only data and no methods (functions)
shoot*	This is the largest of all the classes. It
	contains the data that is relevant to the
	shoot as a whole for example the
	total weight of all the leaves
fruiting node	There is an instance of this class for each
···· nutung node ···	fruiting node.
fruiting point	There is an instance of this class for each
· · · irutung point · ·	square, green boll or open boll
leaf	The leaf class is the base class for each
	of the three types of leaves on the cotton
	plant.
pre-fruiting leaf	This class contains the data and methods
1 5	(functions) relating to the pre-fruiting
	leaves (the leaves below the first fruiting
	branch).
sympodial leaf	This class contains the data and methods
	(functions) associated with the sympodial
	leaves (leaves on the mainstem or
	monopodial branches where the
	sympodial branch emerges).
fruiting node leaf	This class contains the data and methods
	associated with the fruiting node leaves
	(the leaves at the point where a fruiting
	form emerges). Fruiting nodes appear on
	sympodial branches only.
mainstem-monopodial.	This is the base class of the mainstem and
	the monopodial branches.
monopodial branch	I ne class whose objects are monopodial
man in atoms *	The class whose chiest is the mainstern
	The class whose object is the mainstein.
sympodial branch	he class whose objects are sympodial
integration*	The class that performs the numerical
Integration	integration Currently the Runge-Kutta
	method is used
management*	This class contains data on the field and
management	farming practice being simulated
mineralization*	This class contains the methods for
	computing the mineralization of organic
	matter and the nitrification of ammonium.
outputs*	This class prepares and prints a summary of
•	a simulation run.
photosynthesis*	This class computes the photosynthesis.
	There are three different photosynthesis
	models in Cotton++. The one actually used
	is determined at run time.
plant map*	This class assembles plant map data used
	for graphical displays.
roots*	This class computes root growth.
soil*	This class is the interface between Cotton++
. 1. 4	and the soil module.
uptake*	I his class computes the uptake rate of
	water, nitrate and ammonium
variety*	I first class contains the simulation
	parameters. The parameters vary with the
	could species and variety being simulated.

Figure 1. The msu83i test case. The same test case as Figure 2, except for an additional ten inches of water. The figures indicate that the model can account for water stress.