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Abstract 

 
The producers’ revenue is highly dependent on cotton (Gossypium hirsutum L.) yield and loan rate associated with 
cotton fiber quality. It is vital to explore the determining parameters in a field for Site-Specific Management with the 
goal of obtaining maximum loan rate and maximum yield. The main goal of this study was to use available crop 
production parameters from a full-size cotton production field to develop relationships between production 
parameters, yield, and loan rate. This study was conducted in a field near Colquitt, Georgia. The cotton harvester was 
equipped with the John Deere’s Harvest Identification System (HID), and each module harvested from the field has 
spatial fiber quality information associated with its developed location. Forty-two machine learning regression 
algorithms were compared to predict in-field cotton yield and loan rate with parameters measured infield. Due to the 
limitation of available production parameters measured infield, it is insufficient to analyze the underlying relationship 
between cotton fiber quality properties and the in-field parameters statistically. The initial results showed that the 
Light Gradient Boosting Machine (LGBM) Regression Method worked best to predict cotton loan rate and yield. The 
R-squared value was 0.45 with a root mean square error (RMSE) of 0.22 cents/lb. for cotton loan rate prediction and 
the R-squared value of 0.68 with an RMSE of 0.53 bale/ac for cotton yield prediction.    
 

Introduction 
 

In Precision Agriculture, by combining a global positioning system (GPS), geographic information system (GIS), and 
variable rate technology (VRT), the field can be divided into smaller management zones to optimize profit, which is 
known as Site-Specific Crop Management (SSCM). Also, with the development and application of cotton yield 
monitors and seed rate meters on cotton harvesters and planters respectively, cotton yield, heading position, elevation, 
speed, and seeding rate can be obtained during cotton harvest and seeding (Kachman and Smith, 1995; Wilkerson et 
al., 2001; Thomasson and Sui, 2003; Vellidis et al., 2003; Singh et al., 2005). 

 
The cotton samples were previously collected manually from various locations in a field to determine the within-field 
variation of fiber quality (Ge et al., 2008). The new harvest identification (HID) system on modern John Deere (Deere 
& Company, Moline, Illinois, USA) on-board module building cotton harvesters utilizes Radio Frequency 
Identification (RFID) technology to label and track cotton modules from cotton harvest to gin. The cotton fiber quality 
properties are then measured in a unit of a module by the United States Department of Agriculture (USDA) 
Agricultural Marketing Service (AMS) classing measurements. The loan rate was calculated based on associated 
cotton fiber quality. Based on USDA Commodity Credit Corporation (CCC), the loan rate reflects the differences 
(loan rate premium and discounts) in market prices for color (reflectance (Rd) and yellowness (+b)), staple length, 
leaf, extraneous matter, micronaire, length uniformity, and strength (USDA 2017, 2021). 

 
As cotton yield and fiber quality are two primary concerns in cotton production for farmers, growers, and researchers, 
previous studies have been conducted to explore the predominant parameters in cotton fields that impact cotton yield 
and fiber quality in applying SSCM. For environmental effects, cotton fiber strength reduced 3% with low light (70% 
of incident sunlight) than incident light and cotton lint yield was 10% on average lower in the warm regime which 
was 1℃ was warmer than ambient temperature (26.4℃) during growing seasons (Pettigrew, 2001, 2008). The nitrogen 
(N), and potassium (K) stress were investigated separately at the flowering stage on lint yield and fiber quality. With 
a relatively high boll load but low-quality fiber, N deficiency had an indirect influence on cotton fiber quality while 
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K deficiency led to significant reductions in lint yield and micronaire (Read et al., 2006). For Phosphorus (P), cotton 
yields were not significantly different between blanket-rate and variable-rate P treatments. Variable-rate P treatment 
applied thirty-eight percent less P than blanket-rate (Bronson et al., 2003). Also, plant densities, soil electrical 
conductivity (EC), landscape positions, and irrigation had some impact on cotton yield and/or cotton fiber quality 
(Bronson et al. 2003, 2006; Bednarz et al. 2000, 2005; Terra et al., 2006; Guo et al., 2012). 

 
Spatial variability and spatial correlation were found in soil and fiber quality properties (Elms et al., 2001; Johnson et 
al., 1999, 2002; Ge et al., 2008). Thus, geostatistical analysis was applied to evaluate spatial autocorrelation, estimate 
target parameters at unknown locations, and generate high-resolution cotton yield and quality maps.  However, it was 
insufficient to predict cotton yield and fiber quality properties based on soil parameters using conventional statistical 
and geostatistical methods (Wang et al. 2017). In this circumstance, machine learning (ML) regression algorithms 
were considered to approximate robust relationships between input-output data to make accurate predictions. Due to 
its advances in computer technology and associated techniques, ML has been applied in Precision Agriculture in many 
aspects to address complex problems with promising results (Lary et al., 2016; Noi and Kappas, 2018; Mao et al. 
2019; Leo et al. 2020; Benos et al. 2021). However, little research has been done to predict cotton yield and loan rate 
using ML regression algorithms. 
 
The research objectives of this study were (1) to compare the performance of different machine learning regressor 
models in cotton yield and loan rate predictions, and (2) to optimize the best model with hyperparameter tuning to 
predict cotton yield and loan rate.  
 

Materials and Methods 
 
Study Site 
The field study was conducted at the Fire Tower field (Bowen Farms) (31.1713° N, 84.7333° W) near Colquitt, GA 
in 2020. The field is 41.02 acres in size. Based on USDA NRCS (Natural Resource Conservation Service) soil survey, 
the dominant soil type was Carnegie (Fine, kaolinitic, thermic Plinthic Kandiudults). Uniform litter was applied on 7th 
April 2020 with a rate of 4000.01 lb./ac. Three cotton varieties “DP 1646” (Delta and Pine Land Company, Scott, 
Mississippi, USA), “DG 3615”, and “DG 3799” (Dyna-Gro Advanced Science Simplified, Richmond, California, 
USA) were planted on 4th June 2020 at four different Seeding rates of 20800, 24000, 27200, and 32000 seeds/ac across 
the field. The cotton was harvested by a John Deere on-board module building cotton harvester on 23rd Nov 2020 and 
wrapped up as twenty-five modules. These modules were then sent to USDA AMS for ginning to remove cottonseed, 
plant residue, and other foreign material and eventually be pressed into bales (one bale equals 480 pounds). Each 
module could be pressed into approximately four bales. 

 
Data Collection, Statistical Analysis, and Spatial Maps  
The input variables used in this study were Distance (D), Heading (H), Elevation (E), and Applied Seeding Rates 
(ASR). The first three were collected during cotton harvest by the cotton yield monitor mounted on the John Deere 
cotton harvester. The last one was collected by the seed rate meter mounted on the John Deere planter during seeding. 
The outputs were cotton Yield (Y) measured by the cotton yield monitor during harvest and Loan Rate (LR) associated 
with cotton fiber quality properties by averaging four bales.  

 
In total, 12,695 data points were collected in this field with all input and output variables as well as geospatial 
information (Latitude and Longitude). Exploratory statistics of input and output variables are given in Table 1. Also, 
descriptive statistics of measured cotton yield (left) and loan rate (right) with three different cotton varieties are shown 
in Figure 1. Figures 2 and 3 depicted the spatial maps of output variables (modules and LR) and four input variables 
(D, H, E, and ASR), respectively. 
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Table 1. Exploratory statistics of input and output variables in the study field (n = 12695) 
Variables Type Max Min Mean SD   CV (%) 
Distance (m) Input 15.53 0.07 7.77 0.50 6.40 
Heading (cm) Input 360.00 0.00 142.52 121.58 85.31 
Elevation (m) Input 169.59 160.79 165.49 1.83 1.11 
Applied Seeding Rate (seeds/ac) Input 76490 0 26262 4487 17.09 
Cotton Yield (bale/ac) Output 5.98 0.03 2.39 0.92 38.54 
Loan Rate (cents/lb.) Output 56.55 55.33 55.12 0.30 0.54 

 
 

           
Figure 1. Descriptive statistics of Cotton Yield (left) and Loan Rate (right) on three cotton varieties are shown with 

boxplots 

           

Figure 2. Spatial maps of output variables: modules (left) and Cotton Loan Rate (right) 
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(a)                                                                               (b) 

           

    (c)                                                                            (d) 

Figure 3. Spatial maps of input variables: Distance (a), Heading (b), Elevation (c), and Applied Seeding Rate (d) 

Deployment of ML Regression Algorithms (MLRAs) 
The relationship between input variables (D, H, E, and ASR) and output (Y and LR) can be learned automatically 
when implanting ML algorithms at the dataset. The scikit-learn package is an open-source Python module project 
integrating prevalent ML algorithms to perform classification, regression, and clustering (Van Rossum and Drake, 
2009; Pedregosa et al., 2011).  
 
To get an overview of different MLRAs’ performance, the first step was to use another library named Lazy Predict in 
Python (Pandala, n.d.). The dataset was randomly split into 80% (n = 10156) for model training, and 20% (n = 2539) 
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for model testing. It listed and compared the performance (R-squared value, RMSE, and Time Taken) of forty-two 
different ML regression algorithms to help find the top five MLRAs to predict cotton yield and loan value as given in 
Table 2. The top five MLRAs were the same with even the same ranking to predict output variables, Yield, and Loan 
Rate, respectively. They are LGBM (Light Gradient Boosting Machine), XGB (Extreme Gradient Boosting), 
HistGradientBoosting (Histogram-Based Gradient Boosting), RF (Random Forest), and Bagging. 
 

Table 2. Top five MLRAs to predict Yield and Loan Rate 
Output variables MLRAs’ Performance Ranking  

1 2 3 4 5 
Yield (bale/ac) LGBM XGB HistGradientBoosting RF Bagging 
Loan Rate (cents/lb.) LGBM XGB HistGradientBoosting RF Bagging 

 
LGBM and Hyperparameter Tuning 
LGBM is short for Light Gradient Boosting Machine, which is a kind of ensemble algorithm developed by Microsoft 
in 2007 to use a special type of decision trees, also called weak learners, to capture complex and non-linear patterns. 
The most significant difference between LGBM and other boosting algorithms is that LGBM grows trees vertically 
by using a leaf-wise algorithm while other boosting algorithms grow trees horizontally with a level-wise algorithm as 
shown in Figure 4 (Ke et al., 2017). LGBM is famous for its high speed, relatively low memory requirements, and 
great performance on large-size datasets. However, LGBM is sensitive to overfitting and cannot work well on small 
datasets. Also, the parameters of LGBM exceed one hundred, which makes it difficult and time-consuming to tune 
the hyperparameters.  
 

      
Figure 4. LGBM’s leaf-wise tree growth (left) and other bossing algorithms’ level-wise tree growth (right) 

 
In this study, LGBM regression method was chosen to predict cotton yield and loan rate with default parameter settings 
(base model). Also, a randomized search on hyperparameters was tuned to find out their optimal combination with the 
minimum loss function to achieve better results (tuned model). The selected hyperparameters were the number of 
leaves, minimum child samples, learning rates, and the alpha in regression.  
 

Results and Discussion 
 

Table 3 was truncated to the top five MLRAs with R-squared values, RMSE, and Time Taken for cotton yield 
prediction. The R-squared values ranged from 0.63 to 0.68, RMSE ranged from 0.51 to 0.56, and the time taken to 
run the MLRAs ranged from 0.18 to 3.79 seconds.  

                                               Table 3. Summary of Top five MLRAs’ Performance to predict Yield  
MLRA R-squared value RMSE Time Taken 
LGBM 0.68 0.51 0.18 
XGB 0.68 0.52 0.66 
HistGradientBoosting 0.67 0.53 0.60 
RF 0.66 0.53 3.79 
Bagging 0.63 0.56 0.40 

 
Again, table 4 was truncated to the top five MLRAs with R-squared values, RMSE, and Time Taken for cotton loan 
rate prediction. The R-squared values ranged from 0.40 to 0.45, RMSE ranged from 0.22 to 0.24, and the time taken 
to run the MLRAs ranged from 0.18 to 3.43 seconds. 
 
In these five MLRAs, RF took the longest (3.79 and 3.43, respectively) time while LGBM was the quickest (both 
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0.18) with the highest R-square values (0.68 and 0.45, respectively). LGBM was approximate two times faster than 
Bagging and HistGradientBoosting, three times faster than XGB, and more than six times faster than RF while 
maintaining promising R-squared value and RMSE. Before hyperparameter tuning, these results indicated LGBM 
worked best for both cotton yield and loan value predictions.    
 

                                                Table 4. Summary of Top five MLRAs’ Performance to predict Loan Rate  
MLRA R-squared value RMSE Time Taken 
LGBM 0.45 0.22 0.18 
XGB 0.44 0.23 0.71 
HistGradientBoosting 0.43 0.23 0.49 
RF 0.43 0.23 3.43 
Bagging 0.40 0.24 0.37 

 
To predict cotton yield, the training and testing R-squared values of the LGBM base model were 0.763 and 0.653, 
respectively. The mean absolute error (MAE), accuracy, and root mean squared error (RMSE) were also calculated 
for this base model. The values were 0.38 bale/ac, 68%, and 0.53 bale/ac. After hyperparameter tuning, the training 
R-squared value improved to 0.828 (8.5%) and the accuracy improved to 71.9% (5.4%). There were no significant 
changes between the base and tuned models’ testing R-squared value, MAE, and RMSE as shown in Table 5.  
 

Table 5. The performance of the base LGBM and tuned models to predict cotton yield  
Models Training R-squared Testing R-squared MAE Accuracy RMSE 
Base 0.763 0.653 0.38 68.0% 0.53 
Tuned  0.828 0.659 0.37 71.9% 0.53 

 
To predict cotton loan rate, the training and testing R-squared values of the LGBM base model were 0.565 and 0.441, 
respectively. The MAE, accuracy, and RMSE were also calculated for this base model. The values were 0.16 cents/lb., 
99.7%, and 0.22 cents/lb. After hyperparameter tuning, the training R-squared value improved to 0.678 (20%). There 
were no significant changes between the base and tuned models’ testing R-squared value, MAE, accuracy, and RMSE 
as shown in Table 6.  
 

Table 6. The performance of the base LGBM and tuned models to predict cotton loan rate 
Models Training R-squared Testing R-squared MAE Accuracy RMSE 
Base 0.565 0.441 0.16 99.7% 0.22 
Tuned  0.678 0.439 0.16 99.7% 0.22 

 
In cotton yield and loan rate predictions, it was both found that the training R-squared values had a great improvement 
compared to other parameters. It should be noted that overfitting may occur if the training R-squared value is much 
larger than the testing R-squared. Also, the extremely high accuracy (99.7%) in loan rate prediction could be biased 
due to the relatively low testing R-squared value. 
 
The variable importance indicates how much this model relies on each input variable to make accurate predictions. In 
cotton yield prediction, the importance of input variables from highest to lowest were D, ASR, E, and H as shown in 
Figure 5 (left). Figure 5 (right) shows the predictions versus residuals using LGBM to predict cotton yield. Most 
residuals ranged from -1 to 1 as expected. In loan rate prediction, the order of variable importance was the same as 
that of yield prediction though the values of importance were different for each input variable as shown in Figure 6 
(left). However, linear patterns were found in the cotton loan rate predictions versus residuals plot, which is shown in 
Figure 6 (right). The reason behind these linear patterns was the imbalance between input variables and output loan 
rate. Each input variable had 12,695 different samples collected in the target field. However, just 25 different modules 
were collected in this field and each of them was associated with a unique loan value. There are two methods to solve 
this imbalance problem, ordinal regression and input downscale. 
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Figure 5. Input variable importance (left) and predictions vs. residuals (right) in cotton yield prediction 

 

           
Figure 6. Input variable importance (left) and predictions vs. residuals (right) in cotton loan rate prediction 

 
Summary 

 
This study shows initial but promising results when using MLRAs to predict either cotton yield or loan rate. The R-
squared values of the best MLRA were 0.68 and 0.45, respectively, which are much better than the traditional 
statistical models.  
 
Compared to other MLRAs mentioned in this study, LGBM regression method had the best performance to predict 
cotton yield and loan rate with the highest R-squared values, lowest RMSE, and highest speed. The input variable 
importance of LGBM regression method from highest to lowest were Distance, Applied Seeding Rate, Elevation, and 
Heading. Also, the improvement of the LGBM regression methods was not significant after deploying hyperparameter 
tuning. 
 
In the future, more input variables from external resources will be involved in this project, such as weather data from 
National Oceanic and Atmospheric Administration (NOAA) weather station, and soil data from Natural Resources 
Conservation Service (NRCS) soil surveys. Also, more fields will be included in this project to validate the accuracy 
and generality of the MLRAs as well as overcome the problems of overfitting and imbalance between the input and 
output variables. 
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