COTTON RESPONSE TO PRE PLANT INCORPORATED UREA AND ENVIRONMENTALLY SMART NITROGEN IN A REPRESENTATIVE ARKANSAS SILT LOAM Morteza Mozaffari University of Arkansas Northeast Research and Extension Center

Keiser, Arkansas

Extended Abstract

Nitrogen fertilization will increase cotton (Gossypium hirsutumn L.) yields in many Arkansas soils. Relatively high N fertilizer rates are required to produce economically sustainable crop yields in Arkansas, because the soil organic matter content of many of the Arkansas agricultural soils is low ($\leq 2.0\%$) and applied fertilizer-N can be lost from the plant root zone by leaching and/or denitrification. Reducing N-fertilizer loss to the environment will increase the growers' profit margins and reduces potential environmental risks associated with excessive N application. The objective of this study was to evaluate seedcotton yield response to an enhanced efficiency N fertilizer, marketed under the trade name Environmentally Smart Nitrogen (ESN), and urea in a typical Arkansas agricultural soil.

The replicated field experiment was conducted in 2014 on a soil mapped as a Loring silt loam at the University of Arkansas Lon Mann Cotton Research Station in Marianna, Arkansas. The experimental design was a randomized complete block design with a factorial arrangement of four urea-ESN combinations, each applied at five N-rates ranging from 30 to 150 lb N/acre (at 30 lb N/acre increments) and a no N control. The four urea- and ESN-N combinations were: 100% urea-N; 50% urea-N plus 50% ESN-N; 25% urea-N plus 75% ESN-N, and 100% ESN-N. Each treatment was replicated six times. All other soil amendments were applied to ensure that N was the only plant nutrient limiting seedcotton yield. Urea and ESN were hand applied onto the soil surface and incorporated immediately. The main effect of N source and N rate both significantly ($P \le 0.0530$) influenced seedcotton yield, but the N source \times N rate interaction did not influence seedcotton yield (P > 0.10). The significant N source effect suggests that ESN-N was more available for plant uptake than conventional urea in 2014 when the amount of early season rainfall was above normal and conducive to early-season N loss. Seedcotton yield for the cotton that did not receive any N was 1990 lb/acre, which was numerically (25%) lower than the yield of cotton that received the lowest N rate of 30 lb N/acre, averaged across N sources. Averaged across the five N rates, cotton fertilized with 100%-urea-N produced significantly lower seedcotton yield (2675 lb/acre) than cotton fertilized with 25%-urea-N plus 75% ESN-N (2892 lb/acre) or cotton that received 100%-ESN-N (2815). Averaged across the four urea and ESN blends, application of 90 lb N/acre significantly maximized seedcotton yield. When urea was the sole N source, maximal numeric seedcotton yield was produced by application of 120 lb N/acre, but when ESN was the sole source of N, maximal numeric yield was produced with application of 90 lb N/acre. The results suggest that in a year with above average precipitation when the potential for N loss via leaching and denitrification is high, ESN is a more efficient source of N and thus it is a suitable alternative to urea. Additional research under a wide range of climate, soil, and production practices are needed to confirm or deny the reproducibility of these results.