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Abstract 
 

Unmanned Aerial System (UAS) and advanced computational technology are rapidly evolving. The development of 
methodologies to extract meaningful biological and physiological crop information from UAS imagery presents a 
unique opportunity for agriculture researchers and plant breeders alike.  The possibility to obtain accurate growth, 
development, health, and productivity estimates for every square meter of a field does not come without its challenges, 
however. In 2016 researchers from Texas A&M AgriLife Research & Extension and Texas A&M University at Corpus 
Christi teamed-up with Texas A&M AgriLife cotton breeders to conduct a genotype evaluation trial and further 
explore the potential of UAS technology for plant breeders. The field trial consisted of 31 genotypes which included 
23 breeding lines and 8 cultivars. Plots were 2 rows by 10m in a paired plot design. UAS platforms equipped with 
natural color (RGB), multispectral, and thermal infrared sensors were flown over the test field once to twice a week 
during the growing season. From these sensors, parameters such as plant height, growth rate, canopy cover, canopy 
cover progression, and boll count and size estimates were extracted. The test provided insight into the potential of this 
technology. The main challenge will be to develop systems and methodologies to deal with the massive amount of 
data generated. 
 

Introduction 
 
Recent advances in Unmanned Aerial System (UAS) platforms and sensor technology are now making it possible to 
accurately assess overall crop growth and health status with fine spatial and high temporal resolutions previously 
unobtainable from traditional remote sensing platforms, at a relatively low cost. In the past, the acquisition of temporal 
and spatial crop data was performed by destructive, expensive, and labor-intensive hand sampling techniques. Such 
constraints often lead to under-representative crop information due to limited sampling area and the introduction of 
possible human errors. When properly equipped with sensors, UAS platforms enable fast and accurate data collection 
throughout the growing season. Combined with state-of-the-art image processing algorithms, visualization techniques, 
and geospatial data analysis, UAS offers an innovative opportunity for the development of high-throughput 
phenotyping and precision agriculture applications. The interaction between genetics (genotype) and environment will 
greatly affect the phenotype and ultimately, plant productivity. UAS technology allows plant breeders and researchers  
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to characterize crop development and its responses to biotic and abiotic stresses through a combination of several 
different parameters extracted from UAS imagery. As a result cultivar development can be accelerated, which will 
ultimately lead to the improvement of U.S. agriculture and food security.  

 
Materials and Methods 

 
Platforms used include DJI Phantom 2 Vision+, DJI Phantom 4, 3DR IRIS+, and 3DR X8+. Natural color RGB 
(Canon S110, Sony RX1R II), multispectral (Tretracam ADC Snap), and thermal (FLIR VUE Pro and FLIR VUE Pro 
R) were used to collect crop data. In order to obtain plant height, a pre-planting flight is conducted to obtain the Digital 
Elevation Model (DEM), which represents the base elevation map of the field. For each flight thereafter a Digital 
Surface Model (DSM) is captured and represents the crop canopy elevation surface. By subtracting the base field 
elevation (DEM) from the canopy elevation (DSM) we obtain the crop height model (CHM), or actual plant height 
values (Fig. 1). 
 

 
                                              (DSM)                              (DEM)                             (CHM) 
Figure 1. Digital Surface Model (DSM, ground elevation + crop height) images taken are adjusted by the Digital 
Elevation Model (DEM, ground elevation), resulting in the Crop Height Model (CHM, crop height estimate). 

Crop grids (1m²) are used for high-density crop data. The grid structure also enables detailed analysis such as the 
ability to remove grids with no plants (i.e. skips) from statistical analysis, and even its surrounding neighbors that may 
also be affected due to the lack of plant competition (Fig. 2). Plants growing on the edges of the plots are known to 
grow taller and yield more than the others (Holman and Bednarz, 2001). Grids containing these plants may also be 
removed from statistical analysis, thus removing the “alley effect”. Plot size and intended use of the data will 
determine number and size of grids. From each individual grid, information such as plant height, growth rate, canopy 
cover, canopy cover progression rate may be extracted for analysis. These grids function as an in-field “mailbox”. 
After each flight mission images are processed, and data extracted is “deposited” in their respective grids. These data 
may be used as a stand-alone measurement at any given time during the season, or combined to generate averages on 
per row or per plot basis. 

 
Figure 2. Example of plot boundary (orange) and grid (red) over a 2-row cotton plot. The number and size of grids 
per plot is determined by rows/plot, plot length, or intended use of the data. 

Canopy cover (or ground cover) is estimated by performing a binary classification of the images acquired. Three 
parameters within the visible color range (red, green, and blue) are used to discriminate canopy versus non-canopy  
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pixels (Patrignani and Ochsner, 2015). Once the image classification is performed, the ratio between canopy and 
background is calculated to obtain an estimate of canopy cover, which may be presented as a color-coded map (Fig. 
3). 

                                  (a.)                                  (b.)                                   (c.) 
 

 
Figure 3. Images show binary image classification workflow. (a.) raw color image; (b.) classified image; (c.) color-
coded canopy cover map. 

To analyze time-series data, crop height measurements within each grid are extracted from the CHM time series and 
measurements fitted to a non-linear sigmoidal model to create a crop growth curve (Fig. 4, top). The first derivative 
of the growth curve is calculated as a growth rate curve (Fig. 4, bottom). The growth rate curve is used to obtain crop 
growth characteristics including maximum growth rate, date of maximum growth rate, and its duration (Fig. 4). The 
same models may be fitted to canopy cover time-series data to obtain information on crop canopy cover expansion 
rates and respective duration. When combined with other UAS-derived parameters (e.g. canopy temperature and 
vegetation indices) these features can be used not only to characterize growth patterns of individual genotypes and 
their response to the environment, but also to estimate plant performance (yield) for genotype selection (i.e. breeding). 

 

Figure 4. UAS-derived crop growth (top) and growth rate curves (bottom) for cotton. Texas A&M AgriLife Research 
and Extension Center, Corpus Christi, TX (2016). 

 

The ability to determine crop earliness and maturity may be facilitated by bloom counts. Automated computer 
programs have been developed to analyze and classify UAS-derived images for bloom counts  
(Fig. 5). Likewise, open boll counts and boll size estimates are of interest at the end of the season. As shown on Fig. 
6, computer algorithms are able to analyze sections of an image (sub images) and automatically determine a suitable 
brightness threshold value to classify white pixels (i.e. open cotton bolls). Areas that do not meet certain size and 
brightness criteria are filtered out of the classification workflow in order to improve computation efficiency. At the 
end of the process, boll counts and size estimates can be obtained from classified UAS imagery (Fig. 7). 
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Figure 5. Automated bloom count example. Raw image (left), processed (center), and mapped by grid (right). 

 
 

 
Figure 6. Open cotton boll count and size estimation workflow. Automatic computer algorithm analyze sub image to 
determine a suitable brightness threshold. Thresholding is performed to obtain boll count and size estimates from UAS 
image. 

 

 
Figure 7. Example of raw (left) and classified (right) images for open boll count and size estimates.  

 
Results and Discussion 

 
Plant height estimates extracted from UAS imagery are very well correlated with ground measurements (Fig. 8). 
Despite normal plant variability found within a field/plot and limitations of sampling procedures; with rotorcraft 
platforms flying at low altitude we usually find r2 > 0.85. The ability to track seasonal changes in plant growth, canopy 
efficiency, and development should help agricultural researchers and plant breeders in the characterization of 
genotypes’ growth patterns and their response to biotic and abiotic stresses. For instance, the same genotype/variety 
growing in distinct dryland and irrigated conditions will likely show differences in maximum plant height, growth 
rate, canopy temperature, and earliness, which will ultimately impact final productivity. In such contrasting 
environments a single parameter (e.g. boll count) may be enough to differentiate high and low yield. However, the 
biggest challenge is to separate hundreds of similarly-performing breeding lines within a given environment. To be 
able to achieve such capability, a large combination of parameters is needed. From germination to initial growth, to 
canopy health and development, to yield components, these parameters combined should “tell a complete story” about 
the plant’s environment, biotic and abiotic stress, as well as its response to these conditions.   
 
By stepwise regression analysis six variables were identified as having a tight correlation with yield, including growth, 
canopy efficiency, and yield parameters. The potential to estimate plant productivity (yield) is demonstrated on Fig. 
9. In all, we have identified a list of approximately sixty parameters that can be extracted from UAS imagery for plant 
phenotyping and breeding purposes. The possibility to expand this list by using data transformation and interactions 
creates yet another challenge. The volume of data generated using this technology can rapidly become overwhelming. 
To address this fundamental issue, computerized expert systems need to be developed. These systems should 
categorize genotypes by common features (e.g. short, tall, etc.) based on input data from UAS platforms. Predictive 
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models can also be integrated into expert systems to predict yields based on certain pre-specified parameters, 
determined by the breeding program goals. The pre-specified parameters (or requirements) can “guide” the expert 
system in ranking genotypes for specific environments (e.g. dry or wet).   
In conclusion, UAS technology presents a unique opportunity for research, plant breeding, and crop precision 
management applications. 

 

 
Figure 8. Plant height correlation between UAS estimates and ground measurements for cotton. Texas A&M AgriLife 
Research and Extension Center, Corpus Christi, TX (2016). 

 

 

Figure 9. Measured and estimated seedcotton yield per row. Six UAS-derived parameters including growth, canopy 
efficiency, and boll count & size were used.  
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