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Abstract 

 
Cotton plays an important role in the U.S. national economy. This commodity can be contaminated by various foreign 
matter (FM) during harvesting and processing, leading to potential damage to textile products. Current sensing 
methods can only detect the presence of foreign matter on the surface of cotton, but cannot detect and classify foreign 
matter that is mixed with and embedded inside the cotton. This research focused on the detection and classification of 
common foreign matter hidden within the cotton lint by hyperspectral transmittance imaging in the spectral range 
from 950-1650 nm. Three cultivars of cotton and 10 common types of foreign matter were collected from the field 
and the foreign matter were sandwiched by two thin cotton lint webs. The transmittance imaging platform was 
designed and optimized for the best performance of the transmittance mode. After acquiring images of cotton and 
foreign matter mixture, minimum noise fraction (MNF) rotation was utilized to obtain component images to assist 
visual detection and mean spectra extraction from a total of 141 bands. Linear discriminant analysis (LDA) and 
support vector machine (SVM) were performed for classification at the spectral and pixel level, respectively. Over 
90% of the accurate classification rate was achieved for the spectral data and about 95% for the pixel classification. 
The preliminary results demonstrated that it was feasible to detect certain types of foreign matter that was buried 
within cotton using hyperspectral transmittance imaging. 
 

Introduction 
 
Foreign matter (FM) could affect the quality, appearance, and price paid for textile products, as well as the performance 
of ginning (Himmelsbach et al., 2006). In cotton industry, ginning is a very significant process to separate cotton fiber 
from seed and clean cotton lint. Ginners must balance the effect of trash removal and fiber damage depending on 
accurate identification of foreign matter (Anthony and Mayfield, 1995). Since the ginning procedures and cotton 
quality assessment were affected directly by the content of FM, it is important to classify cotton FM to improve cotton 
grading and provide information for processing of cotton (Fortier et al., 2011). 
 
Recently, many studies have been conducted for the identification of cotton foreign matter. Color imaging based 
method was widely used, due to its relatively ease of use, high speed, and spatial information (Huang and Xu, 2002; 
Bel et al., 2012). For instance, the high volume instrument (HVI) employs color imaging to obtain trash percent area 
and trash particle count. Although HVI provides a relative measurement of cotton trash, it cannot give detailed 
information about the type of cotton trash (Foulk et al., 2006), because color camera can hardly classify foreign matter 
with similar color.  
 
Spectroscopy could improve the classification performance by providing more spectral information. Fourier transform 
near-infrared (FT-NIR) spectroscopy was investigated to distinguish individual types of cotton trash from the fiber 
and achieved over 98% identification accuracy of cotton trash (Fortier et al., 2011; Fortier et al., 2012). Most foreign 
matter from machine harvesting, such as stem, bract, hull and seed, are composed of lignin or protein, while cotton 
lint is mainly composed of cellulose (Himmelsbach et al., 2006). Lignin, protein, and cellulose are made of molecular 
bonds such as CH3, OH and NH that have absorption bands in the NIR spectral range (Wakelyn et al., 2006). The 
spectral range from 780~1800nm was optimal for distinguishing these foreign fibers, such as polypropylene and 
polyethylene materials, hairs and feathers (Yang et al., 2009). However, spectroscopy cannot provide spatial 
information for image classification of FM with cotton.  
 
Hyperspectral imaging can provide not only spatial information in the form of an image at a certain wavelength, but 
the spectral information of any pixels on the image. With both spatial and spectral information, the hyperspectral 
imaging technique has become an emerging analytical tool for quality detection(Lu and Chen, 1999) . A hyperspectral 
imaging system was developed to detect cotton lint foreign matter. The results showed that this system is effective to 
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recognize and classify FM on the lint surface with the correct classification result of over 90% (Jiang and Li, 2015b; 
Jiang and Li, 2015a). For foreign matter hidden within the cotton, one study investigated the detection at the depth of 
1~6 mm in cotton using hyperspectral imaging based on reflectance mode (Guo et al., 2012). The results indicated 
that the detection was affected by the depth of the cotton lint. At the depths of 3~4mm and 5~6mm, the spectra of 
foreign matter were not clearly differentiated from the cotton.  
 
Transmission characteristics of foreign matter are different from cotton lint due to decreasing level of the light energy 
after transmission. Using multispectral CCD camera with optical transmittance mode to detect foreign matter could 
manage the issue of difficulties in inner foreign matter detection (Jia and Ding, 2005). For the foreign matter that were 
buried in deeper depth in cotton, Jia and Ding utilized transmittance for their research on the detection of foreign 
matter buried in about 10mm depth in cotton. The detection ratio was 91% for cotton tread, bristles and nylon wire. 
Their experiment showed that transmittance could be an effective method to detect a wide range of foreign matter 
below the surface (Jia and Liu, 2008). However, classification of cotton foreign matter using hyperspectral 
transmittance imaging has not been reported.  
 
Overall, the goal of this study was to explore the feasibility of hyperspectral imaging system using transmittance mode 
to detect and classify common types of foreign matter that were hidden inside the cotton lint at the spectral range of 
950~1650nm. The specific objectives of this study were to: (1) extract and compare the pure spectra of FM with the 
mixed spectra of FM and cotton; (2) classify cotton FM at the spectral and imaging domain. 
 

Materials and Methods 
 

Cotton Lint and FM samples 
The lint from three cotton cultivars and ten types of foreign matter (Figure 1) were collected from the field during 
2014 harvest season on the Tifton Campus of the University of Georgia Tifton Campus. The three cotton cultivars 
were Stoneville (ST) 6448, PhytoGen (PHY) 499, and Delta Pine (DP) 1252. The botanical FM included stem, seed 
coat, seed, hull, bract, bark and green leaf, which were manually selected from the seed cotton and ginned cotton rash. 
The Non-botanical FM contained twine, paper, plastic package, which were mixed with the lint during machine 
harvesting and packaging process.  
 
When foreign matter were hidden inside the cotton layers, it was difficult to find them by human naked eyes, so the 
size of the FM was purposely prepared larger than typical FM found in lint. Stem, bark and twine were clipped to 
about 10mm in length and hull, bract, green leaf, paper and plastic package were cut into square shape with about 
10×10mm. Seed coat and seed were kept their original size and shape. 
 
To obtain the pure spectra of each type of FM and the spectra of the FM when they are mixed with lint, there were 
two methods to prepare samples. To extract pure spectra of the FM, four replicates of nine types of FM were prepared 
except plastic package, because the camera was saturated with the light passing through the thin plastic package 
directly. A black paper mask (240×200 mm) with four very small rectangular holes (1~1.5×5mm) was made to hold 
the foreign matter, with FM fully covering the holes. For lint with FM inside, 30 replicates of FM and 60 replicates of 
thin lint web (10~12×12~14cm in shape, 6~10mm in thickness, 0.5~0.8g in weight) were made by hand. To avoid the 
effect of other unknown FM and cotton unevenness, the lint webs were cleaned and disentangled manually. For mixed 
samples, ten types of FM were sandwiched between two lint webs.  
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Figure 1. Ten types of foreign matter 
 
Hyperspectral Transmittance Imaging System 
A shortwave infrared (SWIR) hyperspectral imaging system based on liquid crystal tunable filter (LCTF) developed 
by the Bio-sensing and Instrumentation Lab at the University of Georgia was utilized to acquire images of FM and 
cotton using transmittance mode (Figure 2). The system consisted of a hyperspectral imaging subsystem (HIS), an 
illumination unit and an objective table. The HIS was integrated by a LCTF (LNIR 20-HC-20, Cambridge Research 
&Instrumentation, Cambridge, MA, USA), an indium gallium arsenide (InGaAs) SWIR camera (SU320KTS-1.7RT, 
Goodrich, Sensors Unlimited, Inc., Princeton, NJ, USA) combined with an near infrared lens (SOLO 50, Goodrich, 
Sensors Unlimited, Inc., Princeton, NJ, USA) (Wang et al., 2012b). The imaging procedure was controlled by an in-
house built LabVIEW program using a computer (Intel® Pentium® D Processor, 4 GB DDR3, Windows 7) via the 
Camera Link (Wang et al., 2012a). To provide a wide spectrum illumination, a halogen floodlight (Portfolio® 50W 
T4, L G Sourcing, Inc., NC, USA) was supplied by adjustable direct current (DC). To obtain transmittance images, 
the sample was held by a floated borosilicate glass plate (BOROFLOAT® 33, thickness = 2.00 mm, Home Tech 
SCHOTT North America, Inc., Louisville, KY, USA) of the objective table above the halogen light. The glass plate 
has over 90% transmission in near infrared spectral range. To make the cotton lint web uniform for acquiring better 
quality images, the sample was pressed by the same type of glass plate and four wood blocks were placed in four 
corners to increase cotton uniformity. The weight of each glass plate was 200 g and for the weight of each wood block 
was 100 g. The total weight on top of the sample was 600 g. The FM with the black mask were clamped with the two 
glass plates to ensure the same condition of illumination as the mixed samples. 
 

 
 

Figure 2. Hyperspectral transmittance imaging system 
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All samples were scanned from the spectral range of 950 to 1650 nm with a 5 nm spectral interval. The samples were 
kept in an enclosed chamber to avoid interference from the ambient light. The light was powered under the condition 
of 24W and 12V. The distance from the lens of the camera to the button glass surface was 875 mm. Figure 3 shows 
the principles of hyperspectral imaging. After scanning a sample, a three-dimensional (x, y, λ) image cube was 
constructed with both spatial (320×256 pixels) and spectral data (141 wavelength bands). The spatial information of 
x and y can form an image at a certain wavelength and a pixel in the 3D image cube represents a spectrum.  
 

  
 

Figure 3. The principles of hyperspectral imaging 
 

The acquired transmittance images were calibrated using flat field correction algorithm (Equation 1) implemented in 
Interactive Dynamic Language (IDL4.7, Exelis Visual Information Solutions, Boulder, CO, USA) (Wang et al., 
2012c).  The bright images were acquired by replacing the sample with polytetrafluoroethylene (PTFE) Teflon (Wang 
et al., 2013) plate (300×165×13.30mm) between the two glass plates, and dark images were acquired by covering the 
lens of the camera. The relative transmittance intensity value IR was calculated by:  
IR= 4095*(IT-ID)/ (IB-ID).    (1) 
IT: pixel intensity of the transmittance image of a sample 
ID: pixel intensity of the dark image  
IB: pixel intensity of the bright image  
 
The coefficient 4095 is the maximum intensity that the image can express (12-bit image). The bright and dark images 
were acquired for every 5 samples. 
 
MNF Rotation and Spectra Extraction 
Before data processing, images were cropped into 180×250 pixels, in order to remove the large amount of noise around 
the border caused by mismatching of the raw image and reference images during flat field correction. Minimum noise 
fraction (MNF) rotation is an algorithm that can reduce the spectral dimension and de-noise in the spatial dimension 
for hyperspectral images (Xu et al., 2013). This method separates signal and noise of the hyperspectral image before 
performing the rotation, thus improved image quality and features can be obtained with MNF components (Lu, 2003).  
 
For the images of mixed samples, prior to performing minimum noise fraction (MNF) rotation, the band of the first 
wavelength 950 nm was removed from the cube, because the band contained unusually high noise values. The 
180×250×140 image cube of sample was processed by MNF rotation to assist visual detection and region-of-interest 
(ROI) extraction, because of difficulties in recognition of foreign matter within cotton. One of MNF component 
images that showed best contrast between the FM and lint would be selected. Based on this MNF component image, 
the ROIs of FM and lint were extracted manually, and then mapped on the original image cube to obtain the mean 
spectra. For the images of FM with the black mask, the mean spectra were directly extracted manually using ROIs 
method.  
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After extracting the spectra, normalization (Equation 2) was performed to define the relative transmittance in the range 
of 0~100%. It was done by dividing the original relative intensity at each band by the maximum intensity value found 
in the whole spectra sets, including the spectra of FM and FM mixed with cotton. The normalized relative 
transmittance TR (%) was generated by: 
TR = IR/ Imax × 100%.      (2) 
IR: the relative transmittance intensity 
Imax: the maximum intensity 
 
The software ENVI 4.7 (ITT Visual Information Solutions, Boulder, CO, USA) was employed to conduct image 
cropping, band removal, MNF rotation, ROI selection, and mean spectra extraction of ROIs. For spectra normalization, 
MATLAB 2014 (The MathWorks Inc., Natick, MA, USA) was utilized to perform the algorithm. 
 
 
Classification 
Linear discriminant analysis (LDA) was employed to classify FM with cotton lint using mean spectra with full 
wavelengths of a total of 330 samples (30 replicates of 10 types of FM and cotton lint). The discrimination performance 
was evaluated by the percentage of samples that were correctly classified using the leave-one-out cross-validation. 
LDA was performed in SAS (SAS 9.4, SAS Institute Inc., Cary, NC, USA). 
 
Support vector machine is a supervised learning model that is widely used for classification and pattern 
recognition(Foody and Mathur, 2004). SVM classification method was used to classify FM at the pixel level. In this 
study, the radial basis function was selected as the kernel function, and the values of the two important parameters 
(gamma in kernel function and the penalty parameter) were optimized by ENVI software. Before performing SVM 
classification, to reduce spectral dimensionality of the hyperspectral cube, only the MNF components that explained 
more than 0.5% of the total variation were selected.  The selected MNF component images were used to conduct SVM 
classification. Firstly, ROIs of different types of samples were extracted manually as the validation sets. Then, 30% 
pixels in each validation set ROI were generated randomly as training sets . Eventually, the SVM method was applied 
to classify the FM and lint in this image.  
 

Results and Discussion 
 

Spectra Extraction 
After acquiring and cropping images, the component images were generated by MNF rotation of raw hyperspectral 
images. In Figure 4, taking the color image (Fig.4a) of FM without covering lint web as visual comparison, the FM 
on the transmittance image (Fig.4e) at 1200nm were not clearly identifiable. After MNF rotation, the first three MNF 
component images (Fig.4b, c and d) revealed more effective information for foreign matter, especially component 1 
(C 1). Thresholding was utilized to enhance the visual detection (Fig.4f) of the C 1 image using the gray value of 210.  
Most of the FM were segmented from the lint. Based on this result, ROIs of each type of FM were selected from the 
component 1 image (Fig.4g), which were marked by different colors, and then mapped on the original hyperspectral 
images (Fig.4h) to obtain the mean spectra. For the images of FM without cotton, mean pure spectra were obtained 
directly by ROIs method.  
 
After spectra extraction, the maximum IR was found to be 6946. The normalization region was defined to [0 1], by 
selecting Imax = 7000 as the maximum intensity.  
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(a) RGB image (b) C 1 (c) C 2 (d) C 3 

 
(e) 1200nm (f) Thresholding (g) Selected ROIs on C 

1 image 
(h) ROIs on the 

spectral image at 
1200nm 

 
 

Figure 4. MNF component images and ROIs extraction 
 
Figure 5 showed the mean pure spectra and the mean mixed spectra of each type of foreign matter with the error bar. 
For stem, seed coat, seed, hull, bark and twine, the intensity of the spectra of mixed samples was higher than that of 
the pure FM spectra, whereas the cotton layer decreased the spectral intensity for other FM. In general, stem, seed 
coat, seed, hull, bark, and twine were thicker than the other types of FM and had high density that light can hardly 
pass through, since they almost completely blocked the light when they were placed on the black mask. In contrast, 
more light was scattered and reflected by cotton layer around the FM when they were placed between thin cotton lint 
webs, resulting in higher intensity of the spectra. For thinner FM, more light can pass through FM and the transmitted 
light was affected by cotton layer’s transmitted and scattering light. As a result, the spectra intensity of bract, green 
leaf and paper in cotton was lower than that of FM examined individually without cotton.  
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Figure 5. Mean spectra of FM and FM mixed with cotton (error bars indicate standard deviation) 
 
The spectra of most FM had the same trend as the spectrum of cotton, because they were affected by the cotton lint 
when they were sandwiched between cotton lint webs (Figure 6). For plastic package, seed, and seed coat, their spectra 
had strong absorption around 1200nm. In the future work, the band 1200nm could be a key feature to analyze. For the 
spectra of bark and bract, they were pretty close to each other, because they had the same chemical content, similar 
appearance and thickness. 
 

 
 

Figure 6. Mean spectra of FM in cotton 
 
Classification at Spectral and Pixel Level 
LDA was used to classify various FM mixed with cotton lint based on their spectra. Figure 7 showed the results of 
classification for each type of foreign matter in cotton lint. For botanical FM, the lowest classification rates were 70% 
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and 76.67% for bark and bract, respectively, because of their similarities. For stem and hull, the classification results 
were 83.33% and 86.67%, respectively, since they were both plant tissues with similar structure at the cell level. Green 
leaf and seed coat had distinct color and thickness, resulting in 90% and 96.67% of correct classification rate, 
respectively. For non-botanical FM, paper was mostly correctly classified (96.67%) with only one sample being 
misclassified into stem. The other two non-botanical types achieved 100% classification accuracy. Overall, the average 
classification rate was 90.91% including cotton lint. 
 

 
 

Figure 7. Spectral classification 
 
For the classification at the pixel level, the first 10 MNF component images (eigenvalues were greater than 0.5% of 
the overall variation) were selected for image classification using SVM. In Figure 8, ROIs were extracted manually 
as the validation sets (Fig.8a) which were masked with different colors. Then, thirty percent pixels in each ROI were 
generated randomly from the validation sets as the training sets (Fig.8b). After SVM classification, Figure 8c illustrates 
that all types of foreign matter and cotton lint were classified well.  There were some noises and misclassification 
around stem, seed coat, seed, hull, bract and twine, so the median filter (kernel size=9) was employed to remove noise 
of the SVM classification image. In the filtered image (Fig.8d), all types of FM were discriminated from each other 
and there were less noises and misclassification. The classification results were evaluated by confusion matrix using 
validation sets as the ground truth ROIs. The average classification accuracy was 95.22% and the overall accuracy 
was 98.25%. This result indicated that it was promising to classify cotton FM on the hyperspectral transmittance 
image.  
 

 
(a) Validation sets (b) Training sets (c) SVM classification 

map 
(d) classification map 

after filtering 
 

 
Figure 8. SVM classification based on MNF components 
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Conclusions 
 

This study provided preliminary results of using hyperspectral transmittance imaging to detect and classify ten 
common types of foreign matter that were sandwiched between cotton lint webs. The MNF component image after 
thresholding demonstrated good separation between FM and cotton lint when the FM were hidden inside the cotton 
lint. Correct classification results were 90.91% and 95.22% at the spectral and pixel level, respectively. The 
preliminary results demonstrated that it was feasible to classify FM using hyperspectral transmittance imaging, when 
the thickness of cotton sample was less than 5mm.  
 
There were some limitations of this work. The FM used in this study was relatively larger than those found in ginned 
lint. In addition, image quality was significantly affected by the uniformity of cotton layer that was prepared manually.   
In future studies, the experiment parameters, as mentioned above, will be optimized. Feature selection methods will 
be investigated to improve the classification. Online detection and classification will be explored using this method 
for potential industrial applications.  

 
Acknowledgments 

 
The authors thank China Scholarship Council for the financial support to the author (M. Z) to conduct her doctoral 
research in the Bio-Sensing and Instrumentation Lab at the University of Georgia. The work was also supported by 
the funding from the Cotton Incorporated and the Georgia Cotton Commission. The authors wish to acknowledge the 
critical suggestions and comments in experimental design from Yu Jiang, as well as the research samples provided by 
Andy Knowlton.  

 
References 

 
Anthony, W. S. & Mayfield, W. D. 1995. Cotton ginners handbook: DIANE Publishing. 
 
Bel, P. D., Xu, B. & Boykin, D. 2012. Automatic detection of seed coat fragments in cotton fabrics. Textile Research 
Journal, 82(16): 1711-1719. 
 
Foody, G. M. & Mathur, A. 2004. Toward intelligent training of supervised image classifications: directing training 
data acquisition for SVM classification. Remote Sensing of Environment, 93(1): 107-117. 
 
Fortier, C., Rodgers, J., Foulk, J. & Whitelock, D. 2012. Near-infrared classification of cotton lint, botanical and field 
trash. J Cotton Sci, 16(1): 72-79. 
 
Fortier, C. A., Rodgers, J. E., Cintrón, M. S., Cui, X. & Foulk., J. A. 2011. Identification of cotton and cotton trash 
components by fourier transform near-infrared spectroscopy. Textile Research Journal, 81(3): 230-238. 
 
Foulk, J. A., McAlister, D. & Kulasekera, K. 2006. Detecting the cotton trash particle size distribution in mill laydown 
using HVI™ trashmeter software. Journal of Textile & Apparel Technology & Management, 5(2): 1-11. 
 
Guo, J., Ying, Y., Rao, X., Li, J., Kang, Y. & Shi, Z. 2012. Detection of trashes in combed cotton using hyper-spectral 
images. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 43(12): 197-203. 
 
Himmelsbach, D. S., Hellgeth, J. W. & McAlister, D. D. 2006. Development and use of an attenuated total 
reflectance/Fourier transform infrared (ATR/FT-IR) spectral database to identify foreign matter in cotton. Journal of 
Agricultural and Food Chemistry, 54(20): 7405-7412. 
 
Huang, Y. & Xu, B. 2002. Image analysis for cotton fibers Part I: Longitudinal measurements. Textile Research 
Journal, 72(8): 713-720. 
 
Jia, D. & Liu, Z. 2008. Novel Method for Detection of Similar Objects Based on Transmission/Reflection Imaging. 
Opto-Electronic Engineering, 6(012). 
 
  

9252016 Beltwide Cotton Conferences, New Orleans, LA, January 5-7, 2016



Jia, D. & Ding, T. 2005. Analysis of some influence factors of transmission imaging system for detection of foreign 
material buried in cotton. Transactions of the Chinese Society of Agricultural Machinery, 36(2): 65-69. 
 
Jiang, Y. & Li, C. 2015a. mRMR-based feature selection for classification of cotton foreign matter using hyperspectral 
imaging. Computers and Electronics in Agriculture, 119: 191-200. 
 
Jiang, Y. & Li, C. Y. 2015b. Detection and Discrimination of Cotton Foreign Matter Using Push-Broom Based 
Hyperspectral Imaging: System Design and Capability. Plos One, 10(3): 18. 
 
Lu, R. 2003. Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions-American Society 
of Agricultural Engineers, 46(2): 523-530. 
 
Lu, R. & Chen, Y.-R. Hyperspectral imaging for safety inspection of food and agricultural products.  Photonics East 
(ISAM, VVDC, IEMB), 1999. International Society for Optics and Photonics, 121-133. 
 
Wakelyn, P. J., Bertoniere, N. R., French, A. D., Thibodeaux, D. P., Triplett, B. A., Rousselle, M.-A., Goynes Jr, W. 
R., Edwards, J. V., Hunter, L. & McAlister, D. D. 2006. Cotton fiber chemistry and technology, Boca Raton, FL: CRC 
Press. 
 
Wang, H., Li, C. & Wang, M. 2013. Quantitative determination of onion internal quality using reflectance, 
interactance, and transmittance modes of hyperspectral imaging. 56(4): 1623-1635. 
 
Wang, W., Li, C., Tollner, E. W. & Rains, G. C. 2012a. Development of software for spectral imaging data acquisition 
using LabVIEW. Computers and Electronics in Agriculture, 84: 68-75. 
 
Wang, W., Li, C., Tollner, E. W., Rains, G. C. & Gitaitis, R. D. 2012b. A liquid crystal tunable filter based shortwave 
infrared spectral imaging system: Calibration and characterization. Computers and Electronics in Agriculture, 80: 135-
144. 
 
Wang, W., Li, C., Tollner, E. W., Rains, G. C. & Gitaitis, R. D. 2012c. A liquid crystal tunable filter based shortwave 
infrared spectral imaging system: Design and integration. Computers and Electronics in Agriculture, 80: 126-134. 
 
Xu, L., Wei, X., Zhou, X., Yu, D. & Zhang, J. 2013. Study on identification method of foreign fibers of seed cotton in 
hyper-spectral images based on minimum noise fraction. Computer and Computing Technologies in Agriculture VI. 
Springer. 
 
Yang, W., Li, D., Wei, X., Kang, Y. & Li, F. 2009. Selection of optimal band for detecting foreign fibers in lint cotton 
using spectroscopic analysis. Transactions of the Chinese Society of Agricultural Engineering, 25(10): 186-192. 

 
 
 
 

9262016 Beltwide Cotton Conferences, New Orleans, LA, January 5-7, 2016


