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Abstract 
 
Over the past decade, construction of starch-based ethanol plants has expanded rapidly across the United States to 
meet growing (largely policy-induced) ethanol consumption.  On the one hand, locating an ethanol plant in a small 
rural city potentially benefits a local economy significantly in terms of increased job opportunities and tax revenue.  
In the Texas High Plains, however, there are growing concerns that the introduction of a new demand source for 
sorghum as feedstock is likely to affect farmers’ cropping decisions in the area around the ethanol plant.  Thus, it is 
important to quantify how the opening of an ethanol plant causes farmers to alter their planting decisions. This study 
models the cotton acreage response from 2002 to 2014, using county-level panel data collected from Hockley 
County, Texas, that currently has a 40 million gallon per year sorghum-based ethanol plant in operation.  Spatial 
econometric models are employed to account for any spatial dependence and other factors are used to control for 
prices, water availability, and other production decision variables.  The spatial tests results show that cotton area 
planted around Hockley County is highly clustered. But after controlling for spatial autocorrelation and dependence, 
the model results suggest that the existence of the ethanol plant has no effect on the surrounding cotton acreage.    
 

Introduction 
 
Over the past decade, construction of starch-based ethanol plants has expanded rapidly across the United States to 
meet the growing energy consumption generated by the Renewable Fuel Standard (RFS).  As of January 2015, the 
Renewable Fuels Association (RFA) has listed 213 operational ethanol plants with the capacity totaling over 15 
billion gallons per year (RFA 2015).  From 2005 to 2015, the ethanol production capacity of the U.S. increased from 
3.6 to 15 billion gallons per year.  The rise in the U.S. ethanol production is primarily policy-induced: high energy 
costs, increased national energy security to reduce dependence on foreign oil, and the demand for cleaner burning 
fuels to alleviating global warming are the stated reasons for market interaction.   
 
Most of the recent developments in ethanol production have focused on rural areas.  On the one hand, locating an 
ethanol plant in a small rural city is expected to potentially benefit a local economy significantly in terms of 
increased job opportunities, enhanced farmer income through purchases of local farm production to be used as 
feedstock, and improved community infrastructure for future potential growth.  In places like Iowa, increased 
demand for corn for ethanol may have only minimal effects on farmers cropping decisions as they largely grow corn 
already. In the Texas High Plains, however, there are growing concerns that the introduction of a new demand 
source for sorghum as feedstock is likely to affect farmers’ cropping decisions in the area around the ethanol plant.  
That is to say, higher prices provide an incentive for local farmers to convert more land to sorghum production, the 
major feedstock being used in Texas ethanol plants, at the expense of other crops, mainly cotton, where a large local 
infrastructure exists.  Thus, a policy-induced shift in acreage could actually negatively affect local infrastructure 
devoted to the cotton industry and regional economic activity. 
 
Texas is the leading producer of cotton in the U.S.  Texas farmers planted about 6.22 million acres of cotton, and 
produced more than 6 million bales in 2014, accounting for over one-third of total U.S. production (NASS, 2015).  
Cotton is a major industry and contributor to the economy of Hockley County and its surrounding region (the Texas 
High Plains).  And, it is the most important crop in the region in terms of both acreage and crop value.  
Approximately 280,000 acres of cotton were planted in Hockley County in 2014, accounting for about 85 percent of 
the county’s total cropland acreage (NASS, 2015). 
 
This study focuses on Hockley County and surrounding area because its economy has experienced significant 
changes since the establishment of Levelland-Hockley County Ethanol plant.  Since the operation of the ethanol 
plant began in 2008, it currently produces 40 million gallons of ethanol per year using only sorghum as a feedstock 
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obtained from local producers.  Assuming operating at full production capacity, the plant requires approximately 15 
million bushels of sorghum per year (Guerrero, et al. 2011).  Given the recent average state yield of 58 bushels per 
acre (NASS, 2015), that is equivalent to approximately 260,000 acres of sorghum, or 12 percent of the 2.25 million 
acres of sorghum harvested in the state in 2014.  The region is known for cotton production, while sorghum is 
considered primarily as a second crop planted behind failed cotton or in a planned rotation.  Because ethanol 
production increases the demand for sorghum and is expected to increase the local sorghum price, it allows local 
farmers to incorporate sorghum into their crop rotation with cotton to maximize their revenues.  Rapid shifts in crop 
production are occurring in neighboring communities due to increasing demand of sorghum for ethanol production.  
To the extent that ethanol production affects farmers’ cropping decisions, it is important to quantify how the opening 
of an ethanol plant causes farmers to alter their planting decisions to provide more information in expected changes 
to regional infrastructure. 
 
This study aims to examine the cotton acreage changes in Hockley County and surrounding areas as a result of 
introducing a sorghum-based ethanol plant to the High Plains of Texas.  To achieve this objective, this study models 
the cotton acreage percentage response from 2002 to 2014, using county-level panel data collected from Hockley 
and surrounding counties, that currently have a 40 million gallon per year sorghum-based ethanol plant in operation.  
Due to the spatial pattern of cropland around an ethanol plant, the presence of a positive spatial autocorrelation is 
expected.  Two alternative regression models: a spatial lag model and a spatial error model, are employed to account 
for any spatial dependence and other factors are used to control for prices, water availability, and other production 
decision variables.  
 
The following section provides an overview of previous studies examining the effect of ethanol plants on cropland 
uses.  Section 3 discusses the specific models used in the present study in more detail and details regarding the data.  
The estimation results are presented in section 4, together with diagnostic tests for spatial effects, and section 5 
offers conclusions and the implications of this research.   
 

Literature Review 
 

Several studies have examined the community impacts of ethanol plants.  Most of these studies focus on the effects 
of ethanol plants on local grain prices (McNew and Griffith, 2005; Behnke and Fortenbery, 2011; Katchova, 2009), 
and effects on both residential land and cropland values (Hodge, 2011; Henderson and Gloy, 2009; Blomendahl, 
Perrin and Johnson, 2011).  However, few of them have directly addressed the impacts of ethanol plants on the 
cropland acreage changes.  More relevant to the current study is the impact of ethanol production on local 
agricultural land use. 
 
In an effort to provide a more complete understanding of the local impacts experienced by communities hosting 
ethanol plants, Turnquist et al. (2008) examined the effects of corn ethanol production on local land use and 
residential land values using data from 2000 to 2006 in Wisconsin.  Their analysis considered whether agricultural 
land use trends are different in areas where agricultural production contributes to an ethanol plants’ feedstock source 
compared to areas that are outside the purchase range of an ethanol plant.  Their results showed that the agricultural 
land conversion was not affected by ethanol plants in their proximity.  And they found no change in residential land 
values resulting from the ethanol plants.  While there are increases and decreases in value, on average, any 
significant positive or negative effects of ethanol plants on residential land values are offset at the municipal-level. 
 
Secchi et al. (2011) examined the impact of the biofuels industry in Iowa on both the current cropland and on land in 
the Conservation Reserve Program (CRP), and its environmental consequences.  In their analysis of land use change 
associated with the expansion of biofuels over the period from 2002 to 2006, the authors found that as corn prices 
increase, more cropland is planted with continuous corn because corn becomes relatively more profitable than 
soybeans. They concluded that substantial shifts in rotations favoring continuous corn rotations are likely if high 
corn prices are sustained.    
 
Using a logit land share model, Miao (2011) estimated the local land-use change effect of ethanol plants in Iowa 
between 1997 and 2009.  The author considered the effects of ethanol plants both locally owned and non-locally 
owned, the effects of competing crop (soybeans) and the input prices.  The Arellano-Bond difference estimation was 
applied to address the inherent econometric issues like autocorrelation, endogeneity and unobserved time-constant 
variables.  Regression results implied that the existence of ethanol plants has a significant effect on land-use change 
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in counties where the plants are located.  Moreover, locally owned ethanol plants have slightly higher effects than 
non-locally owned ethanol plants.  And, the land-use change effect is larger in counties with medium corn share than 
in counties with either low or high corn shares. 
 
Most of these studies have focused on crops such as corn and soybeans, not cotton. And the findings of these studies 
seem to indicate that the land use change near ethanol plants can be quite variable based on the ethanol plant size 
and location.  In contrast with studies examining aggregate agricultural land use change, we focus on the impact of 
an ethanol plant on the cotton acreage response while controlling for the effects of prices, irrigation conditions, and 
other production factors.  In particular, this article adds another dimension to this literature by explicitly considering 
spatial effects.  Given the important role played by the cotton production in Texas High Plains and the limited 
literature available, a comprehensive analysis of ethanol plants impacts on cropland changes would be useful in 
providing accurate information for policy makers, stakeholders and local farmers. 
 

Empirical Model and Data 
 
The OLS Model 
In the context of this paper, the dependent variable is the cotton acreage percentage in each county from 2002 to 
2014.  Data on cotton acres planted, crop total acres, cotton production and state level prices were obtained from 
National Agricultural Statistic Service (NASS) of the U.S. Department of Agriculture (USDA).  Irrigation water 
level data for the observation wells in each county were obtained from High Plains Underground Water 
Conservation District No. 1 (HPWD). 
 
The following linear function is specified to represent the cotton acreage percentage of county i at period t:   
(Cotton Acreage Percentage)i,t = α0 + α1*(CP)i,t-1 + α2*(WL) i,t + α3*(CS) i,t-1 + α4*(OS) i,t-2 +     α5*(DT) i + α6*(IT) i 
+ ε i , t                                                     ( 1 ) 
where i = 1 … N, t = 1 … T. The variable (CP)i,t-1 is the state average cotton price ($/lb.) for county i in year t – 1; 
(WL) i,t is the irrigation water (ft.) available for county i in year t; (CS) i,t-1 is the cotton production (480 lb. bales) for 
county i in year t – 1; (OS) i,t-2  is the cotton production (480 lb. bales) of neighboring counties for county i in year t 
– 2; (DT) i  is the respective driving time (min.) from each county seat of neighboring counties to the Levelland 
Hockley County Ethanol plant; (IT) i  is an interaction term between the driving time and dummy variable for the 
period of 2008 to 2014, which is the time period in which the ethanol plant was in operation;  and ε i,t is assumed to 
be a vector of independent and identically distributed (i.i.d.) error terms. 
 
Note that cotton production (CS) and prices (CP) are one-year lagged values. This is due to the fact that farmers 
making their planting decisions in year t are affected by cotton prices and cotton production from previous year (in 
year t – 1).  Two-year lagged cotton production (OS) from contiguous counties (having common borders) are 
included to capture their aggregate effects (regional tendencies)on cotton area planted in county i.  Irrigation water 
level (WL) data for the observation wells at different locations are included as a measure of irrigation water 
availability.  A high level of irrigation water available is expected to decrease the acreage planted to cotton, as 
farmers convert to alternative crops which bring more profit per acre inch of water, such as corn.  Drive time (DT) 
from the respective county seat of neighboring counties to the ethanol plant facility is included as a measurement of 
accessibility, which is expected to be negatively related to cotton acreage in each county.  Variables that are 
expected to capture influences of recent ethanol production on cotton acreage changes include a dummy variable for 
the period of 2008 to 2014 and the interaction term (IT) between the dummy variable and drive time.  The dummy 
variable is specified to reflect the impact of the establishment of an ethanol plant on cotton acreage relative to the 
base period of 2002 to 2007.   
 
The cotton acreage observation in a region is likely to be affected by other explanatory variables observed at 
neighboring regions, which is due to the spatial dependence commonly detected in such estimations.  As such, use of 
conventional estimation methods that omit the presence of spatial effects, like Ordinary Least Squares (OLS), may 
not only affect the magnitudes of the estimates, but also their significance (Anselin, 1988).  Therefore, to account for 
any potential spatial dependence present among observations, two alternative econometric models that incorporate 
spatial effects are considered: a spatial lag model and a spatial error model. 
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The Spatial Regression Models 
The spatial autoregressive model (SAR), or the spatial lag model, assumes that dependencies exist directly among 
the levels of the dependent variable y.  That is, the acreage planted to cotton at location i is more likely to be 
influenced by the cotton acreage planted at neighboring locations.  Thus, by including a spatially lagged dependent 
variable as an additional predictor, it takes the form: 
                                                                               y = ρWy + Xβ + u                                                                           (2) 
where y is a n×1 vector representing the dependent variables, ρ is the spatial autocorrelation coefficient which 
equals to 0 if y does not depend on lagged neighboring y values, Wy is the spatially lagged dependent variables for 
weights matrix W, X represents the n×k data matrix containing explanatory variables, and u is a vector of error terms 
which follows the normal assumptions. 
 
Although equation 2 captures the relationship where the dependent variable y is influenced directly by the values of 
y among neighbors, the potential problem of spatial autocorrelation in the disturbances remains; that is, the error 
term u is also correlated over space. One reason for this might be that there are some spatially clustered factors that 
influence the dependent variable y but is omitted from the specification.  To this end, an alternative model with 
spatially correlated errors is proposed.  This model is commonly referred to as the spatial error model (SEM), where 
disturbances exhibit spatial dependence.  Then the following model is developed by incorporating spatial effects 
through error term: 

                                                                           y=Xβ+u 
                                                                          u=λWu+ε                                                                              (3) 

where W is the spatial weight matrix that specifies the neighborhood set for each location, λ is the spatial 
autoregressive coefficient on the spatially correlated errors, β reflects the influence of the explanatory variables on 
variation in the dependent variable y, and ε is assumed to be a vector of i.i.d. errors. 
 
While both spatial models are quite similar mathematically, the economic interpretation underlying is different for 
each model.  The SAR implicitly assumes that the spatially weighted sum of cotton acreages in neighboring counties 
affects the cotton acreage in each county (indirect effects), in addition to the standard explanatory variables and 
neighborhood characteristics (direct effects).  In contrast, the SEM accounts for only direct effects, and spatial 
autocorrelation is assumed to arise from omitted variables that exhibit a spatial pattern.  Therefore, the SEM is 
particularly appropriate in cases where neighborhood spillover effects exist.  
 
The spatial weight matrix W =(wij: i, j = 1, … n ) defines neighbors, as well as the spatial relationships that exist 
among n geographic units.  Thus, it is employed to reflect the structure of potential spatial interaction.  It is a 
positive matrix, and each spatial weight, , is defined to reflect the spatial influence of location j on location i.  
Typically, the definition of neighbors used in the weights matrix is based on a notion of distance decay or contiguity.  
By convention, the diagonal elements of the weights matrix are set to zero, wij = 0 ∀	i	ൌ	j,	and row elements are 
standardized such that they sum to one.  There are numerous ways to construct a weight matrix, but there is no direct 
method of choosing one over another (Anselin, 2002).  For this study, W is weighted by inverse distance weight 1/d, 
where d is the distance between two units.  This approach assumes that geographically closer factors would be 
weighted stronger than more distant factors.  The distances between two counties are calculated using the latitude 
and longtitude of all counties centroids.  The weights are row-standardized so that all the elements of each row sum 
to one, that is, wij

s = wij  ⁄ (∑jwij).  
 

Results 
 
Spatial Autocorrelation 
At first, a global Moran’s I test was used to test for spatial autocorrelation.  First introduced by Moran (1950), 
Moran’s I statistic is the most commonly used measure of spatial autocorrelation, which is calculated as: 

                                                          
where n is the number of locations,  is the mean of the x variable,  are the elements of the weight matrix, and  
is the sum of the elements of the weight matrix: .  The statistic varies from -1 to +1.  A positive I 
value indicates that there is clustering of similar values across geographic space, while negative I value indicates 
that neighboring values are more dissimilar. 
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Table 1 displays the results from the Moran’s I test for the dependent variable to be estimated.  The Moran’s I 
statistic (0.05) is statistically significant; thus, the H0 of no spatial dependence is rejected for cotton acreage 
percentage.  For further illustration purpose, Figure 1 depicts the Moran's scatter plots, which describes an 
observation’s values in relation to its neighbors.  The slope of the scatter plots corresponds to the value of Moran’s I.  
As shown in Figure 1, counties with more cropland planted to cotton are likely to be close to other counties with 
high cotton acreage, while counties with fewer cotton planted acres are likely to be surrounded by other similar 
neighbors.   
 
Table 1. Moran’ I Test Results for Cotton Acreage Percentage 

Variable I E(I) Sd(I) Z p-value 
Cotton Acreage 0.05 -0.01 0.01 8.69 0.00 

 
 

 
 
 

 
Figure 1. Moran’s Scatterplot for the Cotton Acreage Percentage 

 
Model Results and Selection 
Table 2 summarizes the estimation results from the OLS regression, the spatial lag model (SAR) and the spatial 
error model (SEM), respectively.  Both spatial models were estimated with the maximum likelihoood method using 
STATA.  First, we use the OLS regression results to estimate the determinants of the cotton acreage changes.  
Overall, the model achieves a reasonable goodness of fit (adjusted R2 of 0.54) and all estimated coefficients have the 
expected signs.  Then based on the OLS estimations, a series of further tests are carried out to assess the specific 
form of spatial autocorrelation.  The results of spatial diagnostic tests are summarized in Table 3.  However, as 
indicated by the Moran’s I statistic (0.82 with a p-value of 0.41), it fails to reject the H0 of no spatial autocorrelation.  
To decide whether a spatial error or a spatial lag specification is more appropriate, the Lagrange Multiplier (LM) 
tests are further applied.  As indicated by the robust form of these LM statistics, the spatial lag model (SAR) is the 
preferred specification.  Hence, we concetrate on the interpretation of the spatial lag model results.  
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Table 2. Models Estimation Results of Cotton Acreage Percentage 
 OLS Spatial Lag Spatial Error 

Intercept 
Standard Error 

0.03 
(0.02) 

-0.04 
(0.03) 

0.03 
(0.02) 

Lagged Cotton Prices 
     0.08*** 

(0.02) 
       0.07***  

(0.02) 
      0.07*** 

(0.02) 

Water Level 
         -2.19E-4*** 

(0.77E-4) 
          -2.05E-4*** 

(0.84E-4) 
          -2.29E-4*** 

(1.01E-4) 

Lagged Cotton Production 
         1.67E-7*** 

(2.17E-8) 
           1.58E-7*** 

(1.91E-8) 
           1.70E-7*** 

(2.22E-8) 
Lagged Cotton Production 
of Neighboring Counties 

        2.69E-8*** 
(6.56E-9) 

          2.50E-8*** 
(5.17E-9) 

           2.79E-8*** 
(6.79E-9) 

Drive Time 
          -1.12E-4 

(1.50E-4) 
           -1.75E-4 

(1.43E-4) 
   -1.09E-4  
(1.54E-4) 

Interaction Term 
-0.46E-4 
(1.31E-4) 

           -0.48E-4 
(1.35E-4) 

-0.46E-4 
(1.37E-4) 

ρ  
    0.76*** 

(0.23) 
 
 

λ  
 
 

-0.31 
(1.19) 

R-squared 0.56   
Adj. R-squared 0.54   
LM Test (ρ=0)  5.47**  

Wald Test (ρ=0)     10.55***  
LM Test (λ=0)                  0.06 

Wald Test (λ=0)                0.07 
*Notes significance at ρ ≤ 0.10 
**Notes significance at ρ ≤ 0.05 
***Notes significance at ρ ≤ 0.01 
 
 
Table 3. Diagnostic Tests for Spatial Dependence in OLS Regression 
 Statistic p-value 
Spatial Error: 

Moran’s I 
 

0.82 
 

0.41 
         LM 0.06 0.81 

Robust LM 59.85 0.00 
Spatial Lag:   

       LM 5.47 0.02 
Robust LM 65.26 0.00 

 
Due to the nature of the spatial lag model, regression coefficients in a spatial lag model cannot be interpreted and 
compared directly with coefficients obtained from the OLS model without a spatial lag.  The coefficient estimates 
have different interpretations, as the spatial lag model is an autoregressive specification.  An implication of this is 
that a change in the dependent variable for an observation can potentially affect the dependent variables in all other 
observations.  For example, the coefficient of lagged local cotton production is 1.58E-7, which only accounts for the 
short-run impact of a change in the production.  However, an increase in the cotton production and the subsequent 
increase in cotton planting area in region i will also affect cotton planting area in all neighboring regions through the 
spatial lag, and, consequently feeds back to the cotton land in region i.  This feedback is commonly referred as the 
direct effect as discussed in LeSage and Pace (2009).  Thus, this direct effects give the average (over all regions) of 
the impact of changing one explanatory variable in one region.  With appropriate spatial filters, the degree to which 
other factors affect the cotton acreage can be estimated consistently.  The spatial lag coefficient ρ is estimated to be 
0.76, which implies that cotton acreages planted in area i covaries with the cotton acreage among its neighbors.  
Specifically, the coefficient indicates that cotton acreage percentage in area i increases by about 0.76% when cotton 
acreage percentage increases by 1% in surrounding areas.  
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Beyond the spatial terms, the estimation results suggest that lagged cotton production, prices, and irrigation water 
levels contribute significantly to the changes in the cotton area planted around an ethanol plant.  Sorghum price was 
included to account for the effect of competing crop on cotton acreage, but dropped from the estimation due to high 
positive correlation associated with cotton price (a correlation coefficient of 0.74 in our sample).  As expected, the 
effect of last year’s cotton production and price on cotton acreage is positive and significant.  The estimate of water 
level indicates a strong and negative relationship between irrigation conditions and cotton area planted.  That is to 
say, in areas with adequate amount of irrigation water available, farmers are more likely to switch to alternative 
crops which bring more profit but require large quantities of water, such as corn.  
 
The coefficient of the drive time variable is negative, which is used as a proxy for accessibility to the ethanol plant.  
In a spatial estimation context, the drive time variable represents a circle of equal driving time around the ethanol 
plant, rather than a spatial point on the map.  Thus, the negative sign indicates that fewer cotton acres are expected 
to be planted for every minute of driving away from the ethanol plant facility.  Likewise, the coefficient of the 
interaction term is negative, which is the product of the dummy variable and drive time as defined earlier.  However, 
both of the coefficients are statistically insignificant.  This basically means that these two variables have no effect on 
cotton acreage planted around the ethanol plant.  The reasons are: first, sorghum is considered a rotation crop or a 
second crop planted after failed cotton.  Second, as Hockley county is considered highly concentrated on cotton 
production, cropland near the ethanol plant is intensively devoted to growing cotton.  As a result, the cotton area 
planted is naturally declining for cropland located further away.  At last, the Levelland-Hockley County Ethanol 
plant is a small plant, which only produces 40 million gallons of ethanol per year.  Its demand of sorghum for 
feedstock is not large enough to have an impact on cotton acreage. 
 

Conclusions and Implications 
 
The purpose of this study is to examine impacts on local cotton acreage from a locally owned 40 million gallon 
sorghum-based ethanol plant, located in Hockley, Texas, over the period from 2002 to 2014.  Moran’s I tests 
provided evidence of the existence of spatial dependence in cotton acreage percentage.  Further spatial tests were 
performed to determine the appropriate regression model. 
 
In the case of cotton acreage percentage estimation, the spatial lag model performs significantly better than the OLS.  
Our results indicates that cotton production both from locally and neighboring counties,  cotton prices and irrigation 
water availability are factors contributed significantly to the changes in the cotton area planted around an ethanol 
plant.  Additionally, the spatial lag coefficient ρ (0.76) implies that if cotton acreage percentage increases by 1% in 
neighboring counties, cotton acreage percentage around an ethanol plant increases by about 0.76%.  Although the 
drive time and  the interaction term variable have the expected signs, they are statistically insignificant. This 
indicates that the Levelland-Hockley County Ethanol plant has no impact on surrounding cotton acreage. 
 
Our method provides an alternative approach that is complementary to existing spatial techniques and contributes to 
expanding the research related to the spatial effect of ethanol industry on the cropland changes.  The model could be 
extended to include all ethanol plants within a state, which allows for a comprehensive study of the impacts of 
ethanol production on a state level.  Data used in the model could be continually updated to see the long-term effect 
on the cropland use changes.  Future research could also apply this model to other states to estimate the impact of 
ethanol production and make comparisons.  
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