DOW AGROSCIENCES TRANSFORMTM WG INSECTICIDE: PERFORMANCE IN SOUTHERN U.S.

COTTON M. Willrich Siebert L.C Walton R.B. Lassiter R.A. Haygood G.D. Thompson A.T. Ellis R. Viator J.D. Thomas Dow AgroSciences LLC Indianapolis, IN

Abstract

TransformTM 50WG insecticide received federal U.S. registration on May 6, 2013. TransformTM contains the active ingredient, sulfoxaflor, which is a new proprietary insecticide within a novel chemical class developed by Dow AgroSciences (Sparks et al. 2013). Sulfoxaflor has been classified by the Insecticide Resistance Action Committee (IRAC) as a group 4C insecticide because it exhibits complex and unique interactions with the insect nicotinic acetylcholine receptors, distinct from neonicotinoids (4A) and nicotine (4B). It is active against a broad range of sap-feeding insects including cotton aphids (*Aphis gossypii*), tarnished plant bugs (*Lygus lineolaris*), whiteflies, planthoppers, and scales while possessing minimal effects on beneficial arthropods (i.e. lack of mite flaring).

TransformTM has been characterized for activity against tarnished plant bug, *Lygus lineolaris*, in mid-south U.S. cotton from 2008-2013. Results consistently demonstrate that TransformTM insecticide, applied at 1.5 oz product/A (0.045 lb ai/A), is the minimum rate providing robust control of tarnished plant bug (Siebert et al. 2012). Initial control of tarnished plant bug infestations has been demonstrated at ≤ 5 d and residual control equal to or better than current standards. As with most insecticides, the performance of TransformTM in cotton will be dependent upon tarnished plant bug population level and intensity of infestation. Based upon this research, multiple applications of TransformTM may be required and the interval between applications may vary in cotton for tarnished plant bug management.

Small plot research trials have consistently demonstrated two consecutive applications of TransformTM applied at or near bloom protected cotton yields. Yield protection is the result of effective in-season control of tarnished plant bug, coupled with control of cotton aphid (or lack of flaring of cotton aphid) and lack of flaring of spider mites. Use of TransformTM early in tarnished plant bug management program provides the best opportunity to maximize yield. Large, 40-acre demonstration trials conducted with Mid-South consultants during 2013 provided support for previous small-plot trials. Tarnished plant bug programs utilizing two consecutive TransformTM applications early in a program and then rotated to other chemistries provided greater yield in seven of eight locations compared to tarnished plant bug management programs that did not use TransformTM.

Field efficacy trials conducted in 2013 demonstrated that all cotton aphid populations tested, including those populations tolerant to neonicotinoid insecticides, were to be highly sensitive to TransformTM at 0.75 oz product/A (0.025 lb ai/A). In addition, field efficacy trials in Texas targeting cotton fleahopper, *Pseudatomoscelis seriatus*, demonstrated that TransformTM provided excellent efficacy at 0.75-1.0 oz product/A (0.025 – 0.035 lb ai/A).

TransformTM insecticide will have an excellent fit in cotton IPM programs based on the molecule's spectrum and properties, as a rotational partner with other chemistries, and as a tool for management of insect pests. Recommended scouting techniques for tarnished plant bugs and IPM practices should continue to be utilized.

References

Siebert, M.W., J.D. Thomas, S.P. Nolting, B.R. Leonard, J, Gore, A. Catchot, G.M. Lorenz, S.D. Stewart, D.R. Cook, L.C. Walton, R.B. Lassiter, R.A. Haygood, and J.D. Siebert. 2012. Field evaluations of sulfoxaflor, a novel insecticide, against tarnished plant bug (Hemiptera: Miridae) in cotton. Journal of Cotton Science 16: 129-143.

Sparks, T.C., G.B. Watson, M.R. Loso, C. Geng, J.M. Babcock, and J.D. Thomas. 2013. Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action, and basis for efficacy on resistant insects. Pesticide Biochemistry and Physiology 107: 1-7.

TMTrademark of Dow AgroSciences LLC