2012 TEXAS UPPER COAST – REPLICATED AGRONOMIC COTTON EVALUATION (RACE) – TRIAL

SUMMARY

D.A. Mott

G.D. Morgan

Texas A&M AgriLife Extension Service

College Station, TX

D. Fromme

Texas A&M AgriLife Extension Service

Corpus Christi, TX

M. Hiller

Texas A&M AgriLife Extension Service

Edna, TX

B. Batchelor

Texas A&M AgriLife Extension Service

Bay City, TX

P. McGuill

C. Crumley

Texas A&M AgriLife Extension Service

Wharton, TX

A. Malone

Texas A&M AgriLife Extension Service

Rosenberg, TX

K. Matheney

Texas A&M AgriLife Extension Service

Columbus, TX

Abstract

Texas A&M AgriLife Extension Service conducts over 20 large-plot replicated cotton variety trials across the southern, eastern and central portions of Texas each year. The objective of these trials are to compare yield and lint quality of stacked-gene Bollgard II and WideStrike Roundup Ready Flex cultivars grown in large plot replicated trials on producer-cooperator fields across this region. Because of the various environmental conditions and site locations that these trials are conducted annually, these trials produce a wealth of data on variety performance. These variety results are made available to local producers throughout these regions of the state. Due to limited space, a summary of 4-6 county cotton variety trials conducted in 2012 across the Coastal Bend Region of Texas will be summarized. All the trial sites have three replicates with plot sizes exceeding 0.25 acres. These trials are managed by the producer/cooperator and thus represent true, on-farm management practices.

Introduction

Cultivar selection is the most important decision made by the cotton (*Gossypium hirsutum* L.) grower; however, with the proliferation of transgenic technology, new seed treatments for both early season insects and disease management, and new genetics, cultivar selection has become even more critical, and one of the most expensive inputs of the production enterprise. Unlike herbicide or insecticide decisions that can be changed during the season to address specific conditions and pests, cultivar selection is made only once and that selection dictates field management for the entire season.

Because of the rapid introduction of new cultivars/technologies into the marketplace today, growers and practitioners are forced to make cultivar selection decisions with less information than in the past. In most cases, decisions are based upon single-year information from academic/public sources, and sometimes the only information available is derived from seed company reports. Due to the rapid turnover of cultivars (three to four year life-cycle), multiple-year testing has virtually become a "thing-of-the-past."

Consequently, an on-farm, large-plot cultivar testing program was developed by Texas A&M AgriLife Extension cotton agronomists with the goal of providing growers and practitioners with information necessary in making cultivar decisions. Agronomic management of weed, insect and plant growth regulator use and harvest operations will not be reflective of the commercial.

Texas producers planted 6.6 million acres in 2012 which was about 500,000 acres less than 2119. In the Lower Rio Grand Valley, Coastal Bend and Central Blackland Regions of Texas, 1.1 million acres of cotton were planted in 2012, which was similar to 2011 acres. Transgenic varieties accounted for over 98% of the state acreage in 2012. According to the USDA-Agricultural Marketing Service "Cotton Varieties Planted 2012 Crop" survey for the Corpus Christi Classing Office, the most popular varieties included in these trials for that region that they track were: PHY 499WRF – 9.1 %, PHY 375WRF – 8.4 %, DP 1044B2F – 14.9%, DP 1048B2F – 2.8%, and ST 5458B2F – 1.4%...

Materials and Methods

Up to twelve cultivars were planted at each location and cultivar selections were determined with input from grower cooperators/committees, Extension faculty, and seed industry representatives. Only the ten varieties, that were common in each of the five locations, where these trials were conducted were used for the analysis of this article. Variety entries consisted of Bollgard II and WideStrike varieties with glyphosate tolerance. Only the Fort Bend location was irrigated.

Plot dimensions ranged from 0.5 to 0.7 acres in size, depending upon the location (Table 1). Studies were arranged in a randomized complete block design with three replications. All trials were machine harvested with grower pickers. Plot weights were determined at harvest using a weighing boll buggy equipped with integral electronic scales. Samples from all locations were ginned on a Continental 10 saw gin with no lint cleaner (which produces a higher lint turnout percent than a commercial gin would), except for the Matagorda Co location which was ginned on a mini-research gin that included lint cleaners, thus leading to lower, more realistic, lint turnouts. Consequently, higher turnouts equate to lint yields which were generally higher than area-wide commercial yields. Lint samples were obtained from each plot for turnout and high volume instrument (HVI) fiber quality analysis. Additionally, all data were standardized to a color grade and leaf of 41 – 4. Per pound loan value was calculated using Cotton Incorporated's 2012 Cotton Loan Calculator.

For HVI analysis, fiber samples were sent to the Fiber and Biopolymer Research Institute at Texas Tech University in Lubbock, Texas. Statistical analysis for comparison among cultivars was conducted using Agricultural Research Manager 8, using LSD (P=0.05).

Table 1. County the RACE was located in, Cooperator, Planting and Harvest Date, Irrigated or not, and plot size.

County	Cooperator	Planting Date	Harvest Date	Row Spacing (inches)	Plot Dimensions	Irrigated or Dryland	Area harvested /plot
Jackson	Sappington Farms	Apr 9	Aug 28	30	8 rows x 1250ft	Dryland	0.57
Matagorda	Hansen Farms	Apr 14	Sep 9	40	8 rows x 1120ft	Dryland	0.69
Wharton	Kresta Farms	Apr 28	Aug 27	40	6 rows x 1450 ft	Dryland	0.67
Fort Bend	Alan and Lisa Stasney	Apr 27	Sep 22	36	6 rows x 1240 ft	Irrigated	0.51
Wharton	Mahalite Farms	Apr 8	Sep 9	36	8 rows x 975 ft	Dryland	.054

Results and Discussion

The 2012 season was characterized by a slightly drier than normal winter following relatively normal fall conditions. Most of the region receive decent rainfall in late February and early March, but as cotton planting began, rainfall events ceased through the rest of March thru April into late May. Beginning late May, isolated rainfall events began to occur, with slightly higher rainfall accumulations occurring towards the east in early July.

The Fort Bend Co site had the highest mean yield, 1875 lbs/ac, followed closely by Colorado Co with a mean yield of 1844 lbs/ac, while the Matagorda Co site had the lowest mean yield, 1212 lbs/ac and the overall mean for all five locations combined was 1596 lbs/ac.

The Colorado Co location had the highest mean loan value, 53.9 $\/ellos$ /lb, while the Jackson and Matagorda locations had the lowest mean loan values, 52.56 $\/ellos$ /lb. The mean loan value for all locations combined was 53.18 $\/ellos$ /lb.

PHY 499 WRF had the highest mean yield, 1824 lbs/ac across all sites in 2012. It was first at 3 locations and second in another. FM 2989GLB2 was the lowest mean yielding variety across all locations with a mean yield of 1329 lbs/ac.

Table 2. Multi-County Average Yield, Turnout, Loan Value and Lint Value.

			Loan Value	Lint Value
Variety	Yield (lbs/acre)	Turnout %	(¢/lbs)	(\$/Ac)
AM 1511B2RF	1788	44.2	51.15	902
CG 3787B2RF	1748	44.9	52.37	889
DP 1044B2F	1793	42.2	52.47	934
DP 1048B2F	1687	43.4	53.32	866
FM 1944GLB2	1576	41.2	52.83	830
FM 2989GLB2	1397	37.4	52.20	698
Nitro 44B2RF	1545	38.8	53.00	808
PHY 375WRF	1689	42.1	53.50	882
PHY 499WRF	1791	44.7	52.95	955
ST 5458B2F	1713	42.4	51.85	857

Table 3. Jackson County Average Yield, Turnout, Loan Value and Lint Value.

Variety	Lint (lbs/acre)	Turnout %	Loan Value (¢/lb)	Lint Value (\$/acre)
DP 1044B2F	1793 a	42.2	52.47	934 ab
PHY 499WRF	1791 a	44.7	52.95	955 a
NG 1511B2RF	1788 a	44.2	51.15	902 abc
CG 3787B2RF	1748 ab	44.9	52.37	889 abc
ST 5458B2F	1713 ab	42.4	51.85	857 abc
PHY 375WRF	1689 ab	42.1	53.5	882 abc
DP 1048B2F	1687 ab	43.4	53.32	866 abc
FM 1944GLB2	1576 abc	41.2	52.83	830 bc
AT Nitro 44B2RF	1545 bc	38.8	53	808 cd
FM 2989GLB2	1397 c	37.4	52.2	698 d
Mean	1673	42.1	52.56	862
P>F	0.0231	NS	NS	0.0169
LSD (P=.05)	222.7	4.8	2.4	120.3
STD DEV	129.8	2.8	1.4	70.1
CV%	7.8	6.7	2.6	8.1

Table 4. Matagorda County Average Yield, Turnout, Loan Value and Lint Value.

		<u> </u>	Loan Value	Lint Value
Variety	Yield (lbs/acre)	Turnout %	(¢/lbs)	(\$/Ac)
PHY 499WRF	1484 a	39.9 a	52.48 ab	779 a
AT Nitro 44B2RF	1290 b	35.3 fg	52.95 a	683 b
FM 1944GLB2	1259 bc	36.1 ef	52.80 ab	665 bc
NG 1511B2RF	1225 cd	37.9 c	52.48 ab	643 cd
CG 3787B2RF	1222 cd	39.3ab	52.80 ab	645 cd
ST 5458B2F	1212 cd	37.2 cd	52.62 ab	638 cd
DP 1048B2F	1179 de	38.7 b	52.80 ab	622 de
PHY 375WRF	1146 ef	36.2 def	52.35 ab	600 ef
DP 1044B2F	1126 ef	36.0 ef	51.93 ab	585 f
FM 2989GLB2	926 h	34.0 h	52.40 ab	485 h
Mean	1182	36.9	52.52	621
P>F	0.0001	0.0001	0.0454	0.0001
LSD (P=.05)	48.3	0.8	0.9	25.5
STD DEV	28.7	0.5	0.5	15.1
CV%	2.4	1.3	1	2.4

Table 5. Wharton County Average Yield, Turnout, Loan Value and Lint Value.

·		•	Loan Value	Lint Value
Variety	Yield (lbs/acre)	Turnout %	(¢/lbs)	(\$/acre)
FM 1944GLB2	1052 bc	41.5 de	53.40 a	562 ab
ST 5458B2F	1023 c	40.8 fg	51.67 b	526 cd
FM 2989GLB2	925 d	39.4 h	53.87 a	498 e
PHY 499WRF	1131 a	44.8 a	51.67 b	582 a
PHY 375WRF	960 d	41.9 d	53.27 a	513 de
DP 1044B2F	1049 bc	40.7 g	53.82 a	565 ab
DP 1048B2F	1045 bc	43.3 bc	53.67 a	562 ab
AT Nitro 44B2RF	1068 b	41.2 ef	54.27 a	579 a
NG 1511B2RF	1052 bc	43.2 c	51.73 b	544 bc
CG 3787B2RF	1050 bc	43.8 b	54.1 a	568 ab
Mean	1035	42.1	53.13	550
P>F	0.0001	0.0001	0.0001	0.0001
LSD (P=.05)	42.2	0.5	1	26
STD DEV	24.6	0.3	0.6	15.2
CV%	2.4	0.7	1.1	2.8

Table 6. Fort Bend County Average Yield, Turnout, Loan Value and Lint Value.

			Loan Value	Lint Value
Variety	Yield (lbs/acre)	Turnout %	(¢/lbs)	(\$/Ac)
PHY 499WRF	2196 a	49.7 ab	54.03 ab	1187 a
DP 1048B2F	2061 ab	51.2 a	53.70 bc	
CG 3787B2RF	2004 bc	48.4 bcd	53.73 bc	1077 bc
AT Nitro 44B2RF	1926 bc	46.5 ef	54.20 a	1044 bc
NG 1511B2RF	1913 c	48.9 bc	53.42 c	1022 cd
FM 1944GLB2	1879 cd	46.9 de	53.98 ab	1014 cd
PHY 375WRF	1772 de	47.8 cde	53.42 c	947 de
ST 5458B2F	1719 e	47.1 de	53.72 bc	924 e
DP 1044B2F	1711 ef	46.2 ef	53.70 bc	919 ef
FM 2989GLB2	1573 f	44.9 f	53.83 ab	847 f
Mean	47.8	53.77	53.77	1009
P>F	0.0001	0.0057	0.0057	0.0001
LSD (P=.05)	1.7	0.4	0.4	76.3
STD DEV	1	0.2	0.2	44.5
CV%	2.1	0.4	0.4	4.4

Table 7. Colorado County Average Yield, Turnout, Loan Value and Lint Value.

	-		Loan Value	Lint Value
Variety	Yield (lbs/acre)	Turnout %	(¢/lbs)	(\$/Ac)
PHY 499WRF	2140 a	44.7 ab	54.03 a	1156 a
NG 1511B2RF	1968 ab	44.8 a	54.00 a	1063 ab
CG 3787B2RF	1912 bc	45.0 a	53.80 a	1029 bc
DP 1048B2F	1853 bc	42.2 bcd	54.05 a	1001 bc
ST 5458B2F	1843 bc	42.5 a-d	53.68 a	990 bc
AT Nitro 44B2RF	1830 bc	43.4 abc	53.95 a	987 bc
DP 1044B2F	1829 bc	41.8 cd	53.75 a	983 bc
FM 1944GLB2	1806bc	42.2 bcd	53.90 a	973 bc
Mean	1844	42.9	53.9	994
P>(F)	0.0038	0.0294	0.8835	0.003
LSD (P=.05)	190.87	2.586	NS	100.43
STD DEV	84.38	1.14	0.26	44.4
CV %	4.58	2.66	0.49	4.47

Summary

The information in this article represents only 5 of the 22 different Replicated Agronomic Cotton Evaluations (RACE) trials that were conducted in South and East-Central Texas in 2012 by Texas A&M AgriLife Extension Service.

In general, although mean yields were good, yields were slightly lower in 2012 than 2011 for this region. This was due mainly to less favorable in-season weather conditions in 2012 than were experienced in 2011. A brief period of cloudy, wet weather caused some fruit loss in early July, which limited yields.

Fortunately, many varieties performed exceptionally well across the Upper Gulf Coast region of Texas in 2012 which should provide growers with improved variety choices and technology for 2013 and beyond.

Acknowledgements

These projects were supported with funding from The Texas State Support Committee - Cotton Incorporated, Texas Department of Agriculture and Cotton seed companies, including Alltex, Americot, Bayer CropScience, Croplan Genetics, Dow AgroSciences and Monsanto.