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Abstract 

 
Near infrared (NIR) spectroscopy, a useful technique due to the speed, ease of use, and adaptability to on-line or off-
line implementation, has been applied to perform the qualitative classification and quantitative prediction on a 
number of cotton quality indices, including cotton trash from HVI, SA, and AFIS measurement.  It is well-known 
that these current-in-use trash measuring devices only produce the trash values in some aspects, instead of the 
content for individual trash component. This difficulty comes from the complexity of co-existence of various trash 
types, for example, leaves (leaf and bract), seed coats, hulls, and stems. Regarding to this, mixtures of known trash 
components (e.g., leaves, seed coats, hulls, stems, and sand/soil) with cut lint fibers were prepared physically and 
then their NIR spectra were correlated with the respective trash contents. The results suggested the feasibility of NIR 
technique in the precise and quantitative determination of total trash, leaf trash and non-leaf trash components.   
 

Introduction 
 
Presence of non-lint materials (trashes) in commercial cotton bales at various amounts degrades the market values 
and further influences the end-use qualities. In order to ensure a fair-trading, the USDA Agricultural Marketing 
Service (AMS) has introduced the high volume instrument (HVI) measurement as a universal standard index 
(Knowlton, 2002). Among the indices, trash content is generated by one of three HVI modules and represents the 
trash portion only detectable on the surface of a sample. In addition to HVI’s geometric method, gravimetric-based 
Shirley analyzer (SA) and advanced fiber information system (AFIS) have also been utilized to determine the trash 
contents. As expected, they record the trash contents in different representations from geometric based HVI to 
gravimetric based SA or AFIS. For example, HVI assesses the trash content in terms of particle count and 
percentage area on a sample’s surface, while SA and AFIS yield the respective weight of trash in terms of visible 
trash content (%) and visible foreign matter content (%) within the bulky samples. 
 
With the increasing acceptance of HVI readings in the domestic and international trading, there is a continued 
interest in the relationship between HVI trash and SA trash from domestic and foreign cotton customers as well as 
government regulators. Due to the complexity of not only trash type, size, and its weight distribution but also the 
nature of HVI and SA tests, it is understandable that there has few study available trying to correlate two types of 
trash readings and, apparently, this is a challenge. In a separated investigation (Liu et al., 2012), we have attempted 
to unravel this interest by applying new strategy of sub-grouping the samples on the basis of HVI and SA trash 
readings. 
 
Notably, HVI, SA, and AFIS only yield the amount of trash in general terms, instead of the content for individual 
trash component. In large part, this difficulty originates from the complexity of co-existence of various trashes, such 
as leaves (leaf and bract), seed coats, hulls, and stems, in completely unpredicted manner within the lint cottons. 
 
Near infrared (NIR) spectroscopy, a technique due to non-destructive, the speed, ease of use, and adaptability to on-
line or off-line implementation, has been applied for the quantitative prediction of cotton trashes from three trash 
measurements (Thomasson and Shearer, 1995; Liu et al., 2010a & 2010b). Considering the unique nature of trash in 
cotton, a few NIR studies have been conducted and the obtained results have not been encouraging. For instance, 
Thomasson and Shearer (1995) reported the optimal NIR models for 8 cotton HVI characteristics and observed the 
lowest R2 value (0.60) for trash component. Even though the UV/visible/NIR model on SA visible trash in cotton 
waste were much improved (R2=0.90), it still showed the difficulty in precise and quantitative determination of 
visible trash portion for quality control purpose (Liu et al., 2010a). Probably, major factor leading to low trash 
model performance is due to highly diversification of trash types and their heterogeneous distribution. Thus, a 90% 
confidential interval was applied to remove outlier samples that might be related with different sampling species 
between reference and spectral measurement (Liu et al., 2010a & 2010b). 
 

12042012 Beltwide Cotton Conferences, Orlando, Florida, January 3-6, 2012



To address this viewpoint, mixtures of known trash components (e.g., leaves, seed coats, hulls, stems, and sand/soil) 
with cut lint fibers were prepared physically and then their NIR spectra were correlated with the individual trash 
contents. Main objectives of this study were to compare NIR models on individual trash constitute in the gravimetric 
version of weight mass (%), and also to examine the effect of trash uniformity on NIR model performance.   
 

Materials and Methods 
 
Clean Fibers and Cotton Trashes 
Clean fibers were obtained from routine SA (Shirley Developments, Ltd., Stockport, UK) process of different lint 
cottons at the USDA ARS’s Cotton Quality Research Station (Clemson, SC). While each class of five cotton trashes, 
namely leaves (including bracts), seed coats, hulls, stems, and sand/soil, was collected manually from 3 varieties of 
seed cottons harvested in 2008. All samples were well conditioned at a constant relative humidity of 65% and 
temperature of 68 ± 2 ºF, prior to cutting, weighing, mixing, and acquiring NIR spectra.   
 
Ground Samples and Mixtures 
Both cotton fiber and five trashes were grounded in a Wiley mill to pass through a 20-mesh screen. Then, 100 
mixtures, each weighted 5.0 g in total and consisted of cut fibers and 5 trashes at varying amounts were prepared 
manually and simply. It led to a range of 0-15% with a mean of 4.92% for total trash, a range of 0-5% with a mean 
of 1.44% for leaf trash, a range of 0-5% with a mean of 1.28% for stem trash, a range of 0-5% with a mean of 1.16% 
for hull trash, a range of 0-3% with a mean of 0.55% for seed coat trash, and 0-3% with a mean of 0.50% for 
soil/sand trash. Also, it produced a range of 0-12% with a mean of 3.48% for non-leaf trash (i.e., a total of seed coat 
trash, hull trash, stem trash, and sand/soil trash). This experimental setup was based on the fact that SA visible trash 
was ~2.8% in average (Liu et al., 2012). 
 
Reflectance Spectral Measurement 
The mixtures were loaded into a sample cell (0.38 inch in depth and 2 inch in diameter) and scanned on a FOSS 
XDS rapid content analyzer (FOSS NIRSystems Inc., Laurel, MD). A background was recorded with a built-in 
internal reference before acquiring the spectra of samples. The log (1/Reflectance) readings were recorded over the 
visible/NIR range of 400 - 2500 nm at 0.5 nm interval and 32 scans. Three spectra were obtained for each sample by 
repacking; where upon the mean spectrum was utilized in model development. 
 
Model Development 
All visible/NIR spectra were imported into PLSplus/IQ package in Grams/AI (Version 7.01, Galactic Industrious 
Corp., Salem, NH, current part of Thermo Fisher Scientific) for partial least-squares (PLS) regression model 
development. On the order of the smallest to largest in total trash content, 67 spectra were selected for calibration 
equation development and the remaining 33 (every 3rd sample) spectra were used for model validation. To optimize 
the accuracy of prediction models, the spectra were subjected to different combinations of both the spectral ranges 
(e.g., full and narrow regions) and the spectral pretreatments (e.g., mean centering (MC), multiplicative scatter 
correction (MSC), and the first and second derivatives). Full (one-sample-out rotation) cross-validation method was 
used, and the number of optimal factors chosen for the regression equation generally corresponded to the minimum 
of the predicted residual error sum of squares (PRESS). The saved regression equations were subsequently applied 
to the validation samples. Model accuracy and efficiency were assessed in the validation set on the basis of the 
coefficient of determination (r2), root mean square error of validation (RMSEV), and residual predictive deviation 
(RPD) (Williams, 2007). Usually, an optimal model should have lower RMSEV and higher r2 and RPD. 
 

Results and Discussion 
 
Cotton Trash Contents and Visible/NIR Spectra 
Figure 1 shows the typical visible/NIR log (1/R) spectra of four samples with total trash content of 0, 4.0, 8.0 and 
13.0 %, respectively. As clean cotton was from cleaning effect of SA operation, its total trash amount was assumed 
to be 0.0%. Therefore, distinctive spectral differences should occur with trash concentrating, because of obvious 
difference in color and composition between the trash, a mixture of main contributions from plant parts, and cotton 
fiber, a majority ( >94%) of cellulose species. For instance, the spectra with higher trash content showed high log 
(1/R) intensity in the spectral region of visible/short-wavelength (SW) NIR region (< 1100 nm). Such distinctions 
could form the basis for qualitative and quantitative determination of cotton trash from visible/NIR technique. 
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Figure 1. Typical visible/NIR log (1/R) spectra of mixtures. 

 
Reference Values 
Table 1 summarizes the range, mean, and standard deviation (SD) of reference values for seven trash representations 
in calibration and validation sets, including total trash, leaf trash, non-leaf trash, stem trash, hull trash, seed coat 
trash, and sand/soil trash. The variations of reference values covered most of the variability in commercial cotton 
bales. The range, mean, and SD values for each component in the validation set were comparable to those in the 
calibration set, indicating that the selection of samples for individual set was appropriate. 
 

Table 1. Summary of range, mean, and SD for seven trash readings in calibration and validation sets. 
Constituent      Calibration Set (n =67)               Validation Set (n = 33) 

    Range         Mean       SD             Range           Mean        SD 

Total trash, % 
leaf trash, % 

non-leaf trash, % 
 

Stem trash, % 
Hull trash, % 

Seed coat trash, % 
Sand / soil trash, % 

   0 - 15.0        5.08         2.83           0 - 12.0          4.59         2.58       
   0 - 5.0          1.40         1.05           0 - 4.0            1.52         1.01       
   0 - 12.0        3.68         2.47        0.60 - 9.6          3.07         2.10   
 
   0 - 5.0          1.34         1.13            0 - 4.0           1.15         0.97     
   0 - 5.0          1.24         1.33            0 - 3.0           0.99         0.77    
   0 - 3.0          0.61         0.77            0 - 2.5           0.42         0.59      
   0 - 3.0          0.50         0.73            0 - 2.5           0.50         0.59       

 
Prediction Model – Total Trash 
PLS models for seven constituents were developed using the different combinations of full / narrow spectral regions 
and a variety of data pre-treatments.  The statistics of optimal results in calibration and validation sets from various 
spectral regions are summarized in Table 2. In addition, the model performance from the 900-1700 nm NIR region 
was included. The best prediction models were obtained from combinations of such spectral pretreatments as MC 
and 1st derivative. The use of 2nd derivative, along with other data processing, yielded much poorer results for all 
variables (not shown). 
 
Comparison of model performance for total trash constituent indicated that the model from the 900-1700 nm region 
was slighter better than those from other three regions: 405-2495 nm or 405-1095 nm or 1105-2495 nm, with the 
least RMSEC and RMSEV. 
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Table 2. Statistics in calibration and validation sets. a 
Component Optimal 

factor 
 Calibration Set  
  R2   RMSEC b 

Validation Set 
     r2    RMSEV b   RPD c 

Total trash 
405 - 2495 nm 
405 - 1095 nm 
1105 - 2495 nm 
900 - 1700 nm 

 
Leaf trash 

405 - 2495 nm 
405 - 1095 nm 
1105 - 2495 nm 
900 - 1700 nm 

 
Non-leaf trash 
405 - 2495 nm 
405 - 1095 nm 
1105 - 2495 nm 
900 - 1700 nm 

 
Stem trash 

900 - 1700 nm 
 

Hull trash 
900 - 1700 nm 

 
Seed coat trash 
900 - 1700 nm 

 
Sand/soil trash 
900 - 1700 nm 

 
6 
6 
6 
6 
 
 
4 
5 
6 
8 
 
 
7 
6 
7 
8 
 
 
7 
 
 
7 
 
 

10 
 
 
8 

 
0.93      0.76            
0.93      0.75            
0.93      0.76  
0.94      0.69             
  
 
0.94      0.26   
0.95      0.23 
0.87      0.38 
0.89      0.35 
 
 
0.93      0.67 
0.91      0.73 
0.95      0.54 
0.95      0.54 
 
 
0.78      0.53 
 
 
0.80      0.59 
 
 
0.79      0.36 
 
 
0.91      0.22 

 
  0.89     0.88          2.9 
  0.92     0.75          3.4       
  0.93     0.75          3.4  
  0.92     0.72          3.6 
 
 
  0.92      0.28         3.6   
  0.94      0.26         3.9 
  0.84      0.41         2.5 
  0.89      0.35         2.9 
 
 
  0.92      0.66         3.2 
  0.90      0.68         3.1 
  0.91      0.69         3.0 
  0.92      0.60         3.5 
 
 
  0.65      0.59         1.6 
        
 
  0.57      0.67         1.1 
       
  
  0.24      0.57         1.0 
      
  
  0.69      0.34         1.7       

a All spectral processing with mean centering (MC) and the first derivative (1st deri.).  
b Root mean square error of calibration (RMSEC) and validation (RMSEV). 
c RPD = SD / RMSEV. 

 
RPD, ratio of SD of reference values against RMSEV, is often used as a dimensionless gauge of the ability of a 
spectroscopic model to predict a property (Williams, 2007). An RPD value of greater than 3.0 indicates the 
acceptability of the model for quantitative prediction, a value of greater than 2.5 and less than 3.0 suggests the 
suitability of the model for screening program, and a value of 1.0 or less means the lack of modeling power.  Hence, 
the model for total trash from the 900-1700 nm region could be used for quantitative applications (RPD = 3.6). A 
comparative scatter plot of referenced and NIR predicted total trash in both calibration and validation sets is given in 
Figure 2. It suggests how well the NIR model predictions agree with the references. 
 
Although there is no literature available that deals with the topic of total trash in commercial cottons, it is possible to 
link this concept with visible trash content (%) from traditional and gravimetric SA procedure. NIR prediction of 
visible trash has been reported before, in which the optimal RPD of 3.0 and 2.4 was observed (Liu et al., 2010a & 
2010b). Many differences exist between this study and previous ones, for example, in sample type (subjectively 
mixed and cut trashes vs. cotton waste resulted from cleaning process of lint cotton (Liu et al., 2010a) and 
commercial lint cotton (Liu et al., 2010b)), trash content (0.0-15.0% vs. 0.0-65.2% (Liu et al., 2010a) and 1.2-7.4% 
(Liu et al., 2010b)), spectral range (400-2500 nm vs. 220-2500 nm(Liu et al., 2010a) and 400-2500 nm (Liu et al., 
2010b)), and sampling cell dimension (0.38 inch in depth x 2 inch in diameter vs. 0.38 inch in depth x 2 inch in 
diameter (Liu et al., 2010a) and 1.5 inch in width x 6 inch in length (Liu et al., 2010b)).  
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Figure 2. Plot of referenced vs. NIR model predicted total trash content in calibration (●) and validation (●) sets. 

 
In earlier studies (Liu et al., 2010a & 2010b), a 90% confidential interval was applied to remove outlier samples that 
had large differences (or errors) between measured and NIR predicted values from calibration and validation sets, 
mostly because of such considerations as (i) highly diversification of trash types and their heterogeneous 
distribution, (ii) relatively small sampling size in NIR spectral collection (0.5 g x 4 replicates) compared to that for 
SA procedure (100 g x 2 replicates), and (iii) different sampling species between spectral and reference 
measurement. As a result, the recalibrated models were improved and an elevation of PRD to 3.7 suggested the 
potential of NIR model in the quantitative determination of visible trash in cotton waste (Liu et al., 2010a). While in 
another study (Liu et al., 2010b), the RPD from redeveloped visible trash model did not increase obviously, which 
might be due to the distribution of range and SD values in this small validation set.  
 
Compared to the reported RPDs of 3.0 and 2.4, current total trash model was much improved (RPD = 3.6). It might 
address the concern of sample uniformity in accurate and reliable model development. Furthermore, this model was 
as effective as one after excluding the outliers in previous study (Liu et al., 2010a). 
 
Prediction Models – Leaf Trash and Non-Leaf Trash 
In the same procedure, PLS models were established for leaf trash and non-leaf trash component. Interestingly, leaf 
trash could be better predicted in the 405-1095 nm region than other three ranges (RPD = 3.9), and non-leaf trash 
might be modeled better in the 900-1700 nm region (RPD = 3.5). Likely, this reflected the distinctions in structure 
and compositions between leaf and non-leaf trashes, and also revealed the importance of different spectral 
preprocessing to optimize the modeling power. 
 
With RPD ≥ 3.0, the PLS models for leaf trash and non-leaf trash component implied the feasibility of NIR 
technique in the precise and quantitative measurement of trash under the category of leaf and non-leaf class. 
 
Prediction Models – Individual Non-Leaf Trash 
It is of great interest to examine whether non-leaf components, such as stem trash, hull trash, seed coat trash, and 
sand/soil trash, could be modeled as effective as leaf trash. Unfortunately, the obtained results in Table 2 suggested 
some hindrance in the prediction of these individual trashes, because the RPDs were much less than 3.0. One of 
many factors might be due to particle size of these trashes and their uniform distribution. More study is needed to 
explore the potential of NIR model in the determination of these non-leaf trash components.   
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Summary 
 
Collecting NIR spectra on cut fiber and trash mixtures, the resultant models showed the potential of NIR technique 
in the precise and quantitative determination of total trash, leaf trash and non-leaf trash components. However, it 
indicated the degree of difficulty in the prediction of such non-leaf trashes as stem, hull, seed coat and sand/soil. 
This limitation arises from the particle size of these trashes and their uniform distribution, and further study is 
necessary to understand the relationship between spectral response and non-leaf trash components.   
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