EVALUATION OF CONVENTIONAL COTTON VARIETIES IN VIRGINIA

D.A. Herbert, Jr.
S. Malone
D. Owens
M. Arrington
Virginia Tech
Suffolk, VA

Abstract

Three conventional (non-Bt, non-RR/RF) cotton varieties were evaluated in 2010 and 2011 at the Virginia Tech Tidewater Agricultural Research and Extension Center (small-plots) and on commercial growers' fields (replicated strip trials). Insect pressure by bollworm was documented by weekly scouting of plots and insecticides were applied according to recommended thresholds. Boll damage was assessed throughout the season by sampling bollworm populations and boll damage. Differences in product use compared with standard BG2/RF or WS/RF varieties were also documented. Estimated costs (seed, herbicide, insecticide, number of applications) of the conventional vs. standard variety programs were compared to lint plus seed value (lb/A at average \$/lb).

Introduction

There is interest by growers to evaluate the fit for conventional cotton varieties. They see these varieties as a possible option for use in 'marginal' fields where yield potential is limited. Also, as the number of glyphosate-tolerant weed species is increasing, growers have to incorporate more 'traditional' herbicides into their weed management programs, reducing the value of the Roundup Ready technology. Our data over several years have shown that in general, BG2/RF and WS/Flex varieties must be treated at least one time for bollworm to prevent economic damage. Generally, non-Bt cotton has to be treated only two times. This project documented in six field plot studies the value of conventional vs. standard cotton varieties.

Materials and Methods

Three conventional cotton varieties were evaluated in a total of six field trials in 2010 and 2011: SSG HQ 110 CT, SSG HQ 210 CT, and SSG HQ 212 CT (Seed Source Genetics, Bishop, TX). Phytogen 375 WS/RF was used as the standard variety in most comparisons (except for DP 1028 B2/RF in 2011 at the Grizzard Farm) because of its widespread use in Virginia. Split-plot replicated trials were established at the Virginia Tech Tidewater AREC (Suffolk, VA), where main plots received either two threshold-based insecticide applications (Baythroid XL at 1.6 and 2.6 oz), or no insecticide for bollworm management. Large-block replicated trials were conducted at the Everett (Southampton Co.), Grizzard (Southampton Co.), and Lowe (Surry Co.) commercial farms, with threshold-based insecticide applications as needed for bollworm management.

The overall value of conventional and BG2/WS/RF systems was determined by considering the value of the cotton (lb lint and seed/acre x estimated \$/lb) and the costs of bollworm management (insecticide cost, number of applications, and application cost), weed management (herbicide cost, number of applications, application cost), and seed (seed cost with base fungicide only for conventional varieties, and seed cost with the insecticide and RF technology fee for standard varieties).

Results and Discussion

Overall, conventional varieties yielded well compared with standard varieties. This was evident in the six field trials (Tables 1-3) and from the Official Variety Trials in Virginia (Figs. 1 and 2). Crop value with conventional varieties (\$893-\$943/acre) was also comparable to standard varieties (\$818-\$998) (Table 5). The weed and insect management program products (listed in Table 4) for the conventional varieties cost \$34.13 and \$4.98, respectively, compared with \$6.34 and \$1.21 for the standard varieties, and the conventional varieties required an average of 1.16 (\$4.02) additional applications (either insecticide or herbicide). However, these additional costs associated with conventional varieties were offset by the lower seed cost. These studies show that growing conventional cotton varieties, although requiring more intensive weed and insect management programs, can be profitable in Virginia. In talking with growers, some see conventional cotton not as a wholesale change but as a fit for 15-20% of their

acreage—their marginal fields or where there are troublesome weed species that no longer respond to glyphosate applications.

Table 1. Bollworm damage and yield—2010.

		% Bollwo	rm damage ¹				
		(16-1	7 Aug)	Lint lb/acre			
Location	Variety	Treated	Untreated	Treated	Untreated		
Tidewater AREC ²	SSG HQ 110 CT	1.0	6.0	829 b	777 b		
	SSG HQ 210 CT	1.0	8.0	995 a	895 a		
	SSG HQ 212 CT	0.0	5.0	973 a	916 a		
	LSD	NS	NS	48.8	107.1		
Everett ³	SSG HQ 110 CT	3.0	n/a	1022	n/a		
	SSG HQ 210 CT	5.0	n/a	810	n/a		
	SSG HQ 212 CT	3.0	n/a	774	n/a		
	LSD	NS	n/a		n/a		

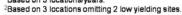
¹Based on inspecting 25 bolls/plot for external bollworm damage. ²Treated plots received Baythroid XL @ 1.6 and 2.56 oz/A.

Table 2. Bollworm damage and yield—Lowe, Grizzard, and Everett locations, 2011.

Conventional	Lo	we	Griz	zard	Everett			
variety	% Damage	Lint lb/A	% Damage	Lint lb/A	% Damage	Lint lb/A		
SSG HQ 110 CT	2.0	682b	1.0	1025	0.0	942		
SSG HQ 210 CT	5.0	838a	4.0	953	0.0	1069		
SSG HQ 212 CT	5.0	618b	0.0	928	0.0	1020		
LSD	NS	153	NS		NS	NS		

Table 3. Bollworm damage and yield—Tidewater AREC, 2011 (insecticide treated vs. untreated plots).

Conventional _	% Dama	ge, 8 Aug	% Damag	ge, 15 Aug	Lint lb/A			
variety	Treated	Untreated	Treated	Untreated	Treated	Untreated		
SSG HQ 110 CT	0.0	2.0	0.0	0.0	949	887		
SSG HQ 210 CT	0.0	2.0	0.0	5.0	854	739		
SSG HQ 212 CT	0.0	1.0	1.0	5.0	912	725		
LSD	NS	NS	NS	NS	NS	NS		


Table 4. Herbicide and insecticide programs (only post-emergent herbicides and insecticides directed at bollworm were included).

		Standard v	arieties	Conventional varie	eties
Location	Year	Herbicide(s)	Insecticide(s)	Herbicide(s)	Insecticide(s)
Tidewater AREC	2010	Roundup (x2)	Steward	Gramoxone, Select Max (x2), MSMA, Envoke, Cotton Pro	Baythroid
Tidewater AREC	2011	Roundup, Credit	None	MSMA, Envoke, Cotton Pro	Baythroid
Everett	2010	Touchdown (x2)	None	Prowl, Reflex, Gramoxone, Envoke	Baythroid
Everett	2011	Touchdown (x2)	None	Prowl, Reflex, Gramoxone, Arrow	None
Grizzard	2011	Roundup (x2)	None	Reflex, Acumen, Staple, MSMA, Suprend	Baythroid (x2)
Lowe	2011	Roundup (x2),	None	Ignite, Pendipro, Cotoran,	Baythroid (x2),
		Response (x2)		Staple, Response	Acephate 97

³Plots received Karate Z @ 2 oz/A and 2 applications of Baythroid XL @ 3 oz/A.

Variety	Seed cost/A	Herb- icide cost Δ	# Herb- icide apps.	Insect- icide cost Δ	# Insect- icide apps.	Lint Ib/acre	Lint value/lb	Seed value/ ton	Turnout factor (% lint)	Total apps.	Spray app. cost	Lint value/A	Seed value/A	Total value/A	Total cost/A	Crop value//
SSG HQ 110 CT1	18.47	34.13	2.3	4.98	2.0	908	0.97	170	0.39	4.3	14.95	877	119	997	73	924
SSG HQ 210 CT ¹	18.47	34.13	2.3	4.98	2.0	920	0.97	170	0.38	4.3	14.95	890	125	1015	73	943
SSG HQ 212 CT ¹	18.47	34.13	2.3	4.98	2.0	871	0.97	170	0.37	4.3	14.95	842	123	965	73	893
PHY 375 WRF ¹	83.62	6.37	2.0	1.45	1.2	870	0.96	168	0.44	3.2	11.04	828	92	921	102	818
PHY 375 WRF ²	83.19	5.76	2.0	2.42	1.3	1013	0.93	160	0.45	3.3	11.50	943	98	1041	103	938
DP 1028 B2RF3	94.69	6.20	2.0	0.00	1.0	980	1.00	180	0.41	3.0	10.35	980	129	1109	111	998

Table 5. Dollar value of conventional and standard cotton varieties.

3Based on 1 location/year

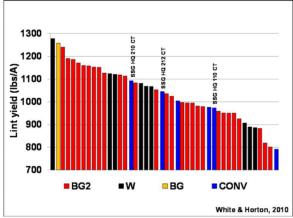


Figure 1. Lint yields from the 2010 Tidewater AREC Official Variety Trial.

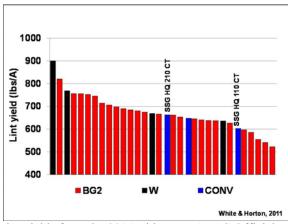


Figure 2. Lint yields from the 2011 Tidewater AREC Official Variety Trial.

Summary

Research from the past two years demonstrated that crop value was comparable between conventional and standard cotton varieties. Additional bollworm and post-emergent weed management costs associated with conventional varieties were offset by the lower seed cost compared to standard varieties. These studies show that growing conventional cotton varieties can be profitable in Virginia.

Acknowledgements

The authors would like to acknowledge Ed Jungmann (Seed Source Genetics) who supplied conventional cotton seed, Johnny Parker (Commonwealth Gin, Windsor, VA) for assistance with yield and value determinations, and Virginia growers, Lewis Everett, Mike Grizzard and Clay Lowe. Cotton Incorporated and the Virginia State Cotton Support Committee provided financial support.