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Abstract 
 
Precision agriculture is gaining acceptance all over the world as a management strategy that increases the input use 
efficiency and reduces the negative environmental impacts of intensive agriculture production.  Even with these 
advantages, the rate of adoption of precision agriculture practices is low in the US especially among the cotton 
producers.  Using farm level data from the2009 Southern Precision farming Survey, this study analyses the farm and 
farmer characteristics that influence the adoption of specific variability detection technologies by the cotton farmers 
in the southern United States.  A multinomial logit model with different technologies to detect field variability as 
choices was used to analyze the data.  The results indicated that cotton farmers in Texas are less likely to adopt 
cotton yield monitor or employing a consultant to detect field variability, whereas   they are more likely to use soil 
survey maps compared to other southern states.  Younger farmers with higher education and bigger farm size are 
more likely to adopt any of the variability detection practices.  Farmers using computers for farming operations are 
more likely to adopt variability detection practices but are less likely to employ a consultant.   Annual household 
income of the farmer had significant positive impact on adoption of cotton yield monitor and employing a 
consultant.    
 

Introduction 
 
Precision agriculture is a farming method aimed at taking the right action at the right place at the right time. Natural 
and acquired variability in production capacity within the field implies that uniform agronomic management 
practices that are suitable for some parts of the field may be inappropriate in some other parts.  To achieve the 
ultimate goal of sustainable cropping systems, variability must be considered both in space and time (Basso et al., 
2003). Precision management practices is in accordance with this principle and inputs application is done according 
to the need of the plant, taking into account the spatial and temporal variability in the field. Thus precision 
agriculture avoids excess application of inputs by limiting application to suit the field variability and hence also help 
in reducing the negative environmental impact.   
 
The main objectives of precision agriculture are to increase the profitability of crop production and reduce the 
negative environmental impact by adjusting application rates of agricultural inputs according to local needs (Pierce 
and Nowark, 1990).  The adoption of precision agriculture strategies is important not only to increase the 
profitability and sustainability of the farm, but also helps to protect the environment as the inputs are not applied in 
excessive quantities, which limits the potential of leaching of the chemicals to water streams.  The components of 
precision agriculture technology are data collection, processing of data, and variable rate application of inputs 
(Blackmore et al., 2003).  Common variability detection practices include use of yield monitor, soil map, soil grid 
sampling, aerial photos, or satellite imagery to identify the variability in soil fertility, pH of the soil, crop vigor, or 
moisture stress. Once the variability within the field is detected and analyzed, this information is used to apply 
inputs like fertilizers, lime, pix or irrigation water in a way that each portion of the field receives the input in 
required quantities. 
 
Even with all these potential advantages, the adoption of precision agriculture practices is low in the United States 
especially in cotton.  The lower adoption rate of precision agriculture technology in USA can be attributed to the 
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lack of awareness of precision agriculture technology among the farmers (Daberkow and McBride, 2003), high cost 
of the technology, difficulty in proper understanding of the technology, and interpretation of the data (Reichardt and 
Jurgens, 2009).  The study of the adoption of precision agriculture practices is very important to tide over the 
bottlenecks in adoption and to evolve efficient extension strategies.     
 
In general, farmers decide on whether to adopt a new technology based on the economic benefit received from that 
technology, which in turn depends on the characteristics of the decision maker, and farm, crop markets, and the cost 
of the new technologies (Daberkow et al., 2002).  Even though numerous studies were conducted to study the 
adoption of precision agriculture practices (Banerjee et al. 2008; Walton et al. 2008, Walton et al. 2010), most of 
those studies were aimed at studying the characteristics of the farm and the decision maker that influences the 
adoption of a particular variability detection technology or VRT. Since there are multiple technological choices 
available for the farmers to detect field variability, estimating the probability of a decision maker choosing to adopt 
a particular variability detection technology from different available technologies will provide a better understanding 
of the adoption behavior.  Moreover, there is a need to compare the adoption patterns of Texas, the number one 
cotton producing state in the US, and other states; and of different regions within Texas.  
 
This study examines the adoption of three different strategies for detection of field variability, namely yield monitor, 
soil survey maps and the help of a consultant.  The adoption behavior of the farmers is then compared between other 
states and Texas and among 12 extension districts in Texas. The results from our study may help to identify the type 
of technologies more likely to be adopted by cotton growers and can be used to decide on further research 
initiatives. Identification of the factors affecting the adoption of the technologies can help the design of better 
extension strategies.  
 

Materials and Methods 
 
The Data 
The data for this analysis are from the 2009 Southern Precision farming Survey (Mooney et al. 2010).  This 
extensive survey received 1981 responses from cotton farmers in 12 southern states, of which 880 are from Texas. 
The survey provided information on the characteristics of the farmers, their farm, and their farming practices with 
special references to the different precision agriculture practices.  
 
Empirical Model 
A multinomial logit model was used to analyze the data.  A multinomial logit model is a random utility model with 
discrete unordered choice sets that are mutually exclusive, exhaustive and finite.  This model was used to estimate 
the probability of decision maker  choosing the alternative  (McFadden, 1974).  
 
This model assumes that the decision maker will choose the alternative that provides him the highest utility from the 
available choice set. These utilities are unobservable but can be decomposed into a systematic observable part and 
an unobservable error part. 
 

Then the utility received by farmer  by choosing technology  can be written as  
 

 
 

Here  is the systematic or observed part of the utility and  is the unobservable error term. The term  is 
the vector of alternate specific characters that are hypothesized to influence the utility derived by the farmer. When 
we replace the unobservable utility term by decomposed terms, farmer  will choose technology  under the 
following condition. 
 

 
 

Let the observed utility,   . Then the probability of farmer  by choosing technology  can be written as 
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For the empirical estimation of the model, different farm and farmer’s characteristics are used as the independent 
variables and adoption of different field variability detection technologies are used as the choice set. The detailed 
description of the variables used in the study and the choice set are provided in table 1 and 2 respectively. 
 

Table 1. The definition of variables used in the study 
Number Variable Name Definition 

1 TX Farmers from the state of Texas 
2 DIST1 Farmers from Texas Extension district 1 (Panhandle) 
3 DIST2 Farmers from Texas Extension district 2 (South Plains) 
4 DIST3 Farmers from Texas Extension district 3 (Rolling Plains) 
5 DIST4 Farmers from Texas Extension district 4 (North) 
6 DIST5 Farmers from Texas Extension district 5 (East) 
7 DIST6 Farmers from Texas Extension district 6 (Far West) 
8 DIST7 Farmers from Texas Extension district 7 (West Central) 
9 DIST8 Farmers from Texas Extension district 8 (Central) 

10 DIST9 Farmers from Texas Extension district 9 (Southeast) 
11 DIST10 Farmers from Texas Extension district 10 (Southwest) 
12 DIST11 Farmers from Texas Extension district 11 (Coastal Bend) 
13 DIST12 Farmers from Texas Extension district 12 (South) 
14 OTH Farmers from states other than Texas 
15 AREA Average area planted to cotton in 2007 and 2008 in acres 
16 AGE Age of the decision maker in years 
17 AGESQ Square of the age of the decision maker 
18 LIVESTOCK Framers possessing livestock 
19 EDUC Number of years of formal education received by the farmer  
20 COMP Farmers using computers for farming operations 
21 INC1 Farmers with annual income < $100,000 
22 INC2 Farmers with annual income between $ 100,000 and $ 

200,000. 
23 INC3 Farmers with annual income > $200,000 

 
Table 2. The definition of independent variable and choices used in the study 

 Number Variable Name Definition 
1 TECH The technology adopted by the decision maker 
2 CON Employing a consultant to detect variability 
3 SOIL Adoption of soil survey maps to detect variability 
4 YM Adoption of cotton yield monitor to detect variability 
5 TOM Adoption of 2 or more of the above practices 
6 NON Adoption of none of the above practices 

 
Model Selection 
An unrestricted model with all the individual specific variables (excluding the dummy variables DIST12 and Inc1 to 
avoid perfect multicollinearity) provided in Table 1 was used for estimation. Then different restricted models with 
fewer variables were used for empirical estimation of the model.  From the results of these estimations, the 
Likelihood Ratio (LR) was calculated and likelihood ratio test was conducted to choose the best model.  The LR 
statistic is calculated using the following equation 
 

 
 
The different restricted models tried and the corresponding LR statistic is provided in Table 3.  Model No.6 with 2 
omitted variables (AGESQ and LIVESTOCK) was selected as it could exclude the largest number of variables 
without a significant LR statistic. From the results of the estimation with the empirical model, the marginal impact 
was calculated using the following equation. 
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where 

 
Here the coefficient for the excluded alternative is set equal to zero for the calculation.  The parameter estimates and 
marginal effects are provided below. 
 

Table 3. The restricted models and corresponding LR statistic 
No. Model LR 

1 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +LIVESTOCK+AGE+AGESQ+EDUC+COMP+INC2+INC3 27.1 ** 

2 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +LIVESTOCK+AREA+AGE+EDUC+COMP+INC2+INC3 0.95 NS 

3 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +LIVESTOCK+AREA+AGE+AGESQ+EDUC+INC2+INC3 26.56 ** 

4 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +LIVESTOCK+AREA+AGE+AGESQ+COMP+INC2+INC3 15.72 ** 

5 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +AREA+AGE+AGESQ+EDUC+COMP+INC2+INC3 1.95 NS 

6 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +AREA+AGE +EDUC+COMP+INC2+INC3 2.9 NS 

7 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +LIVESTOCK+AREA+AGE+AGESQ+EDUC+COMP 13.3 ** 

8 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +LIVESTOCK+AGE+AGESQ+EDUC+INC2+INC3 59.68 ** 

9 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +AGE+AGESQ+EDUC+COMP+INC2+INC3 29.96 ** 

10 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +AREA+AGE+EDUC+COMP 15.82 ** 

11 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +EDUC+INC2+INC3 92.34 ** 

12 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 + AGE+AGESQ+EDUC 81.92 ** 

13 TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI
ST10+DIST11 +EDUC 112.16 ** 

14 TECH~TX+LIVESTOCK+AREA+AGE+AGESQ+EDUC+COMP+INC2+INC3 90.24 ** 
15 TECH~TX+ AREA+AGE+AGESQ+EDUC+COMP+INC2+INC3 92.66 ** 

 
Results and Discussion 

 
The results of the empirical estimation analyzing the impact of different geographical, farm and farmer 
characteristics on the choice of the variability detection technology by the cotton farmers are presented below. 
 
Impact of Extension Districts 
The estimates, standard errors, p values and marginal impact are provided for the three important extension districts 
in Texas as far as cotton farming is concerned (Panhandle, South Plains and Rolling Plains) in tables 4, 5, and 6.  
The results indicate that South Plains and Rolling plains have about 2.5 percentage points less likelihood to employ 
a consultant and 0.7 and 1.2 percentage points more likelihood to adopt soil survey maps compared to the south 
extension district of Texas.  The panhandle area has about 1 percentage point higher adoption of two or more 
practices, but shows a 1.3 percentage lower adoption of soil survey maps compared to the south. 
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Table 4. The estimates, standard errors, p values and marginal impact for Panhandle 
Practice Estimate SE p Marginal impact 

CON 0.4537 0.1328 0.0007 0.03386 
SOIL -16.4975 <0.0001 <0.0001 -1.32454 
YM 16.7941 0.0232 <0.0001 1.06286 

TOM -12.1612 <0.0001 <0.0001 -0.29461 
 

Table 5. The estimates, standard errors, p values and marginal impact for South Plains 
Practice Estimate SE p Marginal impact 

CON -0.5284 0.2398 0.0277 -0.2608 
SOIL 11.4639 0.2769 <0.0001 0.7009 
YM 15.9563 0.0797 <0.0001 0.7298 

TOM 13.7868 0.1183 <0.0001 0.2562 
 

Table 6. The estimates, standard errors, p values and marginal impact for Rolling Plains 
Practice Estimate SE p Marginal impact 

CON -28.7032 <0.0001 <0.0001 -2.3856 
SOIL 11.6588 0.1176 <0.0001 1.2859 
YM -20.0812 <0.0001 <0.0001 -0.9759 

TOM -10.6606 <0.0001 <0.0001 -0.1565 
 
Comparison of adoption in Texas vs. other states 
The estimates, standard errors, p values and marginal impact of Texas on adoption compared to other states are 
provided in Table7. Texas has a 3.7 percentage lower adoption of soil survey maps and 0.8 and 0.3 percentage lower 
likelihood of adoption of two or more practices and yield monitor respectively. The likelihood of employing a 
consultant is lower in Texas by 0.2 percentage points compared to other states.  This result indicates the lower level 
of adoption of any kind of precision agriculture practice in Texas compared to other southern states in USA.  
 

Table 7. The estimates, standard errors, p values and marginal impact for Texas 
Practice Estimate SE p Marginal impact 

CON -1.3798 0.0976 <0.0001 -0.2046 
SOIL -48.6976 0.1128 <0.0001 -3.7221 
YM -8.5502 0.1278 <0.0001 -0.8157 

TOM -7.1923 0.1624 <0.0001 -0.2951 
 
Effect of farm size 
The estimates, standard errors, p values and marginal impact of farm size on adoption compared to other states are 
provided in Table8.  Even though the area planted to cotton was significant in predicting the likelihood of adoption 
of two or more practices and yield monitor, the marginal impact was very low.  A hundred acres increase in area 
planted to cotton is predicted to increase the likelihood of adoption of two or more practices by 0.002 percentage 
points only. 
 

Table 8. The estimates, standard errors, p values and marginal impact of farm size 
Practice Estimate SE p Marginal impact 

CON 0.001 0.001 0.2096 0.0000059 
SOIL 0.002 0.001 0.0615 0.0000096 
YM 0.005 0.001 <0.001 0.0000223 

TOM 0.005 0.001 <0.001 0.0000091 
 
Effect of Age 
The estimates, standard errors, p values and marginal impact of age of the decision maker on adoption of precision 
agriculture practices are provided in Table 9.  Age, as expected, is predicted to have a negative impact on adoption 
of all of the technologies, but the marginal effects are very low.  Older farmers are less likely to employ a consultant 
by a 0.0016 percentage for each year increase in age. Older farmers are likely to adopt soil survey maps 0.001 
percentage lesser for each year increase in age. The likelihood of adoption of two or more technologies are also 
lesser for the older farmers at the rate of 0.001 percentage per year. 
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Table 9. The estimates, standard errors, p values and marginal impact of age of the decision maker 
Practice Estimate SE p Marginal impact 

CON -0.0231 0.0060 <0.0001 -0.0162 
SOIL -0.0200 0.0067 0.0031 -0.0013 
YM -0.0241 0.0082 0.0034 -0.0009 

TOM -0.0095 0.0116 0.4146 -0.0014 
 
Impact of Education 
Education also has a positive impact on adoption of soil maps and on the adoption of two or more technologies. One 
more year of education increases the likelihood of adoption of soil maps by a 0.01 percentage and the likelihood of 
adoption of two or more practices by a 0.004 percentage.  Against the general perception that more educated farmers 
will be more technologically capable and use less of the service of a consultant, the impact of education on the 
likelihood of employing a consultant was not statistically significant. 
 

Table 10. The estimates, standard errors, p values and marginal impact of education of the decision maker 
Practice Estimate SE p Marginal impact 

CON 0.0330 0.0265 0.2126 0.0009 
SOIL 0.1587 0.0285 <0.0001 0.0107 
YM 0.1079 0.0350 0.0021 0.0043 

TOM 0.0237 0.0531 0.6548 0.0002 
 
Impact of use of computers 
The famers who are using a computer for farm operations are less likely to employ a consultant by 0.03 percentage 
compared to those not using a computer.  This is an expected result as the farmers using computers are more capable 
of performing the data analysis themselves.  The famers who are using a computer for farm operations are more 
likely to adopt soil survey maps, yield monitor and two or more practices compared to the non adopters 
 

Table 11. The estimates, standard errors, p values and marginal impact of use of computers 
Practice Estimate SE p Marginal impact 

CON -0.1850 0.1983 0.3511 -0.0291 
SOIL 0.5271 0.2232 0.0183 0.0290 
YM 1.0643 0.2912 0.0003 0.0503 

TOM 1.2502 0.4255 0.0034 0.0262 
 
Impact of income  
The effect of income for adoption was significant only for employing a consultant and adoption of yield monitor. 
This is as expected because only wealthy farmers can afford yield monitors and wealthy farmers are generally 
observed to utilize the service of consultants.  The farmers with income higher than $200,000 are more likely to 
employ a consultant by a 0.03 percentage compared to farmers with income less than $ 100,000. Similarly, farmers 
with income higher than $200,000 are more likely to adopt yield monitor by a 0.01 percentage, compared to farmers 
with income less than $100,000. 
 

Table 12. The estimates, standard errors, p values and marginal impact of INC 2 
Practice Estimate SE p Marginal impact 

CON -0.2516 0.2363 0.2872 0.0247 
SOIL 0.2174 0.2263 0.3367 0.0158 
YM 0.3544 0.2663 0.1835 0.0189 

TOM -0.0963 0.2151 0.6543 0.0033 
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Table 13. The estimates, standard errors, p values and marginal impact of INC3 
Practice Estimate SE p Marginal impact 

CON 0.4614 0.2174 0.0339 0.0349 
SOIL 0.1626 0.2498 0.5153 0.0051 
YM 0.2383 0.2946 0.4187 0.0073 

TOM 0.5503 0.2494 0.0275 0.0109 
 

Summary 
 
A multinomial logit model was used to analyze the 2009 southern precision farming survey to assess the impact of 
the farm and farmer characteristics on the adoption of different precision agriculture practices by the cotton farmers 
of southern United States. The results revealed that cotton farmers in Texas are less likely to adopt different 
precision agricultural practices.  Farmer characteristics like age, education and income had considerable impact on 
the choice of variability detection technology.  Farm size also significantly affected the choices, but the marginal 
impact was very small. Even though the general results are in agreement with the previous research findings, the 
strong assumption of independence from irreverent alternatives for the nested logit model may have a negative 
impact on the accuracy of the predictions of the model.   
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