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Abstract 

 
A stochastic differential equation (SDE) model is developed for fibers undergoing breakage during textile 
processing steps. The SDE model generalizes a classic deterministic model for fiber breakage. Furthermore, SDE 
model compares well with Monte Carlo computations for different fiber breakage phenomena. Also calculations 
with the SDE model exhibit a bimodal distribution in fiber lengths which is commonly seen in data. 

 
Introduction 

 
In the cotton system, fiber breakage occurs in all mechanical processes undergone by the lint from the field to the 
spinning mill. The direct impact of breakage on fiber length distribution and on the incidence of short fibers 
represents a long-lasting concern in the cotton industry. The rich body of work dealing with modeling cotton fiber 
breakage (Byatt and Elting, 1958; Byatt, 1961; Pittman and Tallant, 1969; Tallant et al., 1966; Robert and 
Blanchard, 1997; Robert et al., 2000) attests to the importance of breakage phenomena in the cotton system. 
Building on this body of knowledge, our research introduces a new approach to modeling fiber breakage based on 
stochastic differential equations (SDE). The SDE model generalizes the classic deterministic model and offers a 
better understanding of fiber breakage and of the origination of different fiber length distributions (Simsek, 2007). 
 

Model Development 
 

In the stochastic model, the fibers are grouped by length so that the length distribution can be considered as a 
population distribution. The SDE model is derived by considering the population process and breakage possibilities 
over a short time interval using stochastic modeling techniques described in (Allen, 1999; 2003; 2007). 
 
In developing an SDE model, m populations of fibers are considered as functions of time t. The changes in the fiber 
populations are tabulated for a small time interval dt. Both the mean change and the covariance in the change for the 
small time interval are calculated. For example, consider the special case where m=8. Consider a fiber in the 7th 
group breaking into two fibers, one in group 5 and one in group 2. The change produced is: 
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  and the corresponding 
term produced in the 
covariance matrix is: 
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The value of the expected change for the small time interval is calculated by summing the products of the changes 
with the respective probabilities. Based on the population change, the SDE model expresses the fiber length 
distribution as a function of time t. More details on the model's theory can be found in (Allen, 1999; 2003; 2007). 
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Experimental Evaluation 
 

Two cottons differing in maturity and strength were used to test the SDE model. Length distribution was obtained 
before and after carding and aggressive opening. The length distributions observed before each process were used as 
input for the SDE model and the model’s outputs were compared to the distributions observed after processing. 
Figures 1and 2 depict the input length distribution and both observed and model-generated distributions of each of 
the two cottons (mature cotton and immature cotton, respectively). 
 
The SDE-model outputs were obtained through successive approximation of the parameters. At this point of the 
research no optimization routine was used to obtain parameter estimates that correspond to the closest fit. All 
observed distributions used here were numerical and were obtained using the Uster® AFIS®. 
 
It can be observed from the data in Figures 1 and 2 that the two cottons show distinct initial patterns. The immature-
weak cotton (Figure 2) has an initial length distribution shape that is similar to that of the mature cotton after carding 
and extensive opening. It has been shown by Krifa (2006) that such shape features typically indicate advanced fiber 
breakage stages. 
 

 
Figure 1: observed and model-generated length distributions for the mature-strong cotton. 
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Figure 1: observed and model-generated length distributions for the immature-weak cotton. 

 
When considering the distributions after carding and aggressive opening, both Figures show that the SDE model 
yields results that are rather similar to the real fiber distributions and that closely match the distribution shape 
features of both immature-weak and mature-strong cottons (distribution modality, Krifa, 2006). However, some 
differences in the outputs appear to be inevitable with the current model, even when adjusting the parameters. 
 
It is for instance seen that the model distributions seem to be more broken than the real fibers. One possible 
explanation is that during the actual fiber processing very short fiber fragments may be eliminated from the material. 
This removal of the short fiber fragments is not taken into account in the SDE model. Work continues to take this 
issue into account and to include optimization routines that will allow better parameter estimates. 
 

Conclusion 
 

A stochastic differential equation model was developed for fibers undergoing breakage. The SDE model generalizes 
a classic deterministic model for fiber breakage and appears to adequately characterize various fiber breakage 
phenomena. Calculations with the SDE model generate numeric length distributions that closely resemble 
experimental results and that exhibit modality features commonly seen in data. 
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