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Abstract 

 
This study analyzes the economics of variable rate phosphorus application for cotton production in the Texas 
High Plains. Specifically, we evaluate the economic implications of a variable rate phosphorus application 
program that is based on management zones delineated using a spatial statistics approach. Using experimental 
data from Lamesa, TX, we found that a management zone-based variable rate phosphorus program results in 
higher cotton yields and higher profits, on average, relative to a uniform rate phosphorus application. 
 

Introduction 
 
Phosphorus is an important fertilizer input used in cotton production. As such, there has been long standing 
interest in developing techniques to more accurately apply this fertilizer input in cotton production. A precision 
agriculture technique like variable rate phosphorus application is seen as a potential approach to achieve more 
accurate fertilizer applications, which can consequently reduce fertilizer costs and improve profitability of 
cotton producers.  
 
In light of the potential profit enhancement associated with variable rate application, there has been a number of 
studies that develop variable rate fertilizer application programs based on “management zones” (See Franzen, 
Halvorson, and Hofman; Nolan, Goddard, Lohstraeter, and Coen). Management zones are geographical areas 
that can be treated as homogenous so that input application and decision-making can be treated separately for 
each zone. These zones then serve as the basis for more precise variable rate application of fertilizer inputs.  
 
Note, however, that in most of these studies management zones were delineated by using traditional clustering 
techniques or simply by visually inspecting a generated map for a particular field characteristic (i.e. yield, soil 
nutrient levels, etc.). These techniques do not take into account the underlying spatial autocorrelation in the data 
to optimally delineate management zones. Proper incorporation of spatial autocorrelation in management zone 
delineation procedures will yield better insights into spatial patterns and more effectively suggest zones for use 
as management units. In this regard, spatial statistics techniques, such as Exploratory Spatial Data Analysis 
(ESDA), have recently been developed that allows for identification of local clusters of similar values and also 
takes into account the spatial autocorrelation in the data (Messner and Anselin). 
 
Therefore, the objectives of this study are: (1) to develop an ESDA-based management zone delineation 
procedure to establish a variable rate phosphorus program for cotton; and (2) to evaluate the economic impact 
of this variable rate approach relative to a uniform rate application. The second objective above is important 
because the eventual use of the variable rate approach developed here hinges upon its economic viability 
relative to the more traditional uniform rate application. There are previous studies that looked at the economics 
of various variable rate application programs (See Thirkwala et al., 1998; Dillon, 2002). But to our knowledge, 
there has been no study that has explicitly looked at the economics of a management zone-based variable rate 
phosphorus application program for cotton production in the High Plains of Texas. In addition, this is the first 
study that uses an ESDA approach for delineating management zones that can be used for more precise 
phosphorus application. 
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The ESDA Approach for Management Zone Delineation 
 
The data used to establish management zones is based on a 2000 crop year  agronomic cotton experiment 
designed to study phosphorus (P) use for cotton production in the Southern High Plains of Texas (Figure 1). 
The experiment is a randomized complete block design with three replicates and each replicate was within a 
center pivot irrigation span. There were three P treatments – variable-rate P, blanket-rate P and zero P –   and 
there  were three defined landscape positions – south-facing side slope, bottom slope, and north-facing side 
slope.  
 

 
Figure 1. Experimental Design for Analysis of P use in Cotton (Lamesa, Texas). 

 
 

 
Note that the data set was initially represented as point data for different locations in the field and it includes 
such variables as yield, soil P levels, water levels, etc. However, the spatial layout of this initial “raw” data is 
such that the points lay close to each other within the same row rather than between the rows. As such, this kind 
of design is not balanced. Therefore, to obtain a more balanced design for analysis, the points were spatially 
averaged and then converted to grids using the SSToolbox® geographic information system (GIS) software 
(Figure 2). The conversion of the data into grids also has the advantage of allowing us to delineate more 
compact zones. 

 
As mentioned above, we use the ESDA approach as the main procedure for establishing management zones 
using the yield data collected. Yield data is being used as the main criterion for establishing management zones 
because phosphorus recommendations are typically based on this information. The ESDA approach can be 
defined as a method that combines different techniques to visualize spatial distributions (of yields, in this case), 
identify patterns of different locations, and identify patterns of association between these locations. This method 
is based on the concept of spatial autocorrelation, which is the relationship between spatial units, and makes use 
of the concept of distance between locations. Positive spatial autocorrelation is the idea that points with similar 
values of a specific characteristic (i.e. yield) are near in space. This means that, in the presence of positive 
spatial autocorrelation, certain points located close to each other share similar characteristics (Messner and 
Anselin, 2002, p.  10).  
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Figure 2. Conversion of Points Structure to Grids 
 
The step-by-step procedure for establishing the ESDA approach to management zone delineation can be 
described as follows: (1) Define the ‘neighborhood’ structure of each grid; (2) Establish a ‘weight matrix’; (3) 
Test for the presence of spatial autocorrelation; (4) Graphically visualize the spatial correlation structure (if step 
(3) indicates there is spatial autocorrelation); and (5) Establish the management zones. The first step is to define 
the ‘neighbors’ for each grid. This allows us to assess if there are any spatial relationships between these grids, 
which can then serve as the basis for management zones. According to Bivand (1998), neighborhood for each 
grid (or point) data can be set by any number of alternative methods. One approach is to set the neighbors by 
defining locations that share boundaries with each grid/point. Another possible approach is to draw bands at 
different distances of the center of the grids. From the experimental data, we could see that the grids can be 
delineated by different level curves described by the center pivot irrigation span. Therefore, we could take 
advantage of the areas defined by the pivot as a means to develop the neighborhood structure of each grid. 
Taking the center pivot as a reference, we first delineate circles with different radius. The points between the 
level curves are then set as the neighbors of the grids within the curve. 
 
Once, we defined the neighborhood structure, the contiguity relations of each grid within a neighborhood must 
be characterized using a weight matrix (Bivand, 1998). The four nearest-neighbor criterion is used here to 
establish the contiguity relations within each neighborhood. This weights matrix is then used to test for the 
presence of spatial autocorrelation in the yield data. The Moran’s I statistic is used to test for the presence of 
spatial autocorrelation. The null hypothesis of the test is that there is no association between the value observed 
at a location and the values observed at the neighboring sites. That is, the data exhibits spatial randomness. The 
alternative is that the values of the neighboring sites are statistically similar. This means that there is a departure 
from spatial randomness and there are sites that tend to “cluster” together. A priori, we chose the handpicked 
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lint yield (lbs/acre) as the main variable to serve as the basis for establishing management zones. The computed 
Moran’s I statistic, based on the neighborhood structure and weights matrix defined above, is 0.7738 and it has 
a p-value of <0.001. This indicates that null hypothesis is rejected and that there is positive spatial 
autocorrelation in the yield data. Based on this result, a Moran scatterplot is created and compact management 
zones based on this scatterplot is then determined (Figure 3).   There are three management zones established 
based on our procedure – management zone 1 (MZ1), management zone 2 (MZ2), and management zone 3 
(MZ3). MZ1 is the zone where low yields are clustered together (i.e. a grid with low yield is close to 
neighboring grids with low yields). MZ2 is the zone where high yields are clustered together (i.e. a grid with 
high yield is close to neighboring grids with high yields). MZ3 is where the grids with low yields are near grids 
with high yields (or vice-versa). The spatial layout of the delineated management zones is seen in Figure 3. 
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Figure 3. Management Zones Delineation 

 
 

Economic Evaluation of Management Zone-Based Variable Rate Phosphorus Application  

 
The framework to assess the economic implications of a management zone-based variable rate P application is 
based on a mathematical programming model for spatial profit (or net return) maximization. This approach is 
consistent with economic (or profitability) analysis of variable rate technologies conducted in the past (See, 
among others, Lowenberg-Deboer and Boehlje, 1996; Bongiovanni and Lowenberg-Deboer, 1998; Anselin, 
Bongiovanni, and Lowenberg-Deboer, 2001; Bullock, Lowenberg-DeBoer, and Swinton, 2002). In this 
framework, we compute the expected net returns from: (1) a uniform rate P application based on an economic 
optimum, and (2) a variable rate P application based on the economic optimum for each of the management 
zones established above. Hence, our economic analysis evaluates the economic impact of a variable rate 
approach to P application versus relative to a uniform rate application. 
 
 

 
 
 
 

MZ1 

MZ 2 

 
MZ 3 
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Cotton Yield Response Estimation 
 
To implement the mathematical programming model, one must first estimate a cotton yield response function 
for phosphorus. In our case, cotton yield response functions that are appropriate for a uniform rate P application 
and a variable rate P application must be established. Having these response functions allows us to calculate the 
economically optimal P application in both methods and, consequently, enables us to assess the profit impact of 
these technologies. 
 
For the uniform rate P application, the traditional ordinary least squares (OLS) procedure is used to estimate a 
single cotton yield response equation for the whole field. The cotton yield response function estimated is 
specified as a quadratic function that can be expressed as follows: 
 

    
2

1 20
Y i e l d P Pb b b e= + + + ,    (1) 

 
where Yield is the cotton yield per acre (handpicked cotton yield after ginning), P is the phosphorus rate per 
acre , β’s are the parameters, and ε is the error term. This equation represents the average cotton yield response 
to P without regards to the heterogeneity of the field (that was evidenced by the three distinct management 
zones discussed in the previous section). The estimated parameters for this uniform rate case are given in Table 
1. 
 

Table 1. OLS estimates of the Cotton Yield Response Function: Uniform Rate 
Variable Coefficient St. Error t-statistic P-value 
Constant 430.16 40.4766 10.627 0.000 
P 17.7972 4.83917 3.6777 0.000 
P2 -0.299837 0.140989 -2.126 0.034 

 
 
For the variable rate P application, we used OLS estimation techniques but we explicitly take into account the 
spatial heterogeneity of the field (i.e. the management zones). Management zones were taken into account in the 
cotton yield response equation by using dummy variables for each zone and interaction terms of each zone to 
each P term in equation (1). Therefore, the cotton yield response function for the variable rate application of P 
can be written as follows: 
 

   
2

1 20 3 4 5 6 7 8
1 2 3 1 2 3Y i e l d P P M Z M Z M Z M Z P M Z P M Z Pb b b b b b b b b= + + + + + + × + × + × +   

      
2 2 2

9 1 0 1 1
1 2 3M Z P M Z P M Z Pb b b e+ × + × + × + .    (2) 

 
Ordinarily, one out of the three dummy variables for the management zones is dropped from an equation to 
avoid perfect collinearity in OLS estimation. However, in this study we also want to determine management 
zone deviations from the mean yield rather than deviations from the yield of an omitted management zone. The 
economic restriction required to do this is that the dummy variables for all the zones sum to zero. This condition 
is implemented by subtracting the management zone one dummy from the others, and then dropping 

management zone one from the data set. The coefficient for the dropped variable is then calculated in a 

supplementary regression, dropping another dummy variable. Therefore, in this approach the management zone 
dummies and interaction terms allows us to calculate the zone-specific response functions. The OLS estimates 
for the variable rate case are given in Table 2 below. 
 
From Table 2, notice that only the parameters associated with MZ1 are significant at the 1% level. This suggests 
that cotton yield response would be highest where low yields are clustered together and P application in this 
zone must be treated differently than other zones. Also note that the parameters for MZ2 and MZ3 are not as 
well behaved as the MZ1. 
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Table 2. OLS estimates of the Cotton Yield Response Function: Variable Rate 

 
Variable Coefficient St. Error t-statistic P-value 
Constant 616.412 34.776 17.725 0.0000 
P -0.83735 4.0278 -0.2078 0.8354 
P2 0.0808 0.1126 0.7178 0.4734 
MZ1 -240.713 43.253 -5.5651 0.0000 
MZ2 116.795 45.9156 2.54368 0.0114 
MZ3 123.918 57.423 2.157834 0.031753 
P*MZ1 25.5401 5.2852 4.8323 0.000002 
P*MZ2 -12.589 5.1904 -2.4255 0.015889 
P*MZ3 -12.9505 6.5401 -1.98015 0.048622 
P2*MZ1 -0.7848 0.1567 -5.0074 0.000001 
P2*MZ2 0.51088 0.14281 3.57724 0.000406 
P2*MZ3 0.27395 0.177035 1.547441 0.122836 

 
 
Profitability Analysis: Mathematical Programming Results   

 
Once the parameters of the cotton yield response function are estimated, these estimates are used to formulate 
an optimization model to maximize profit for a representative farm. In this model, we maximize net returns over 
fertilizer cost using the yield response parameters and estimated prices/costs. For the case of variable rate 
application we include a fixed fee, which reflects the short-run fixed application cost taken from the study of 
Roberts and English (1999). It covers such items as the cost of a consultant visit and the cost of the first yield 
map. The net return for the farm is defined as the weighted sum of the net returns in each management zone (for 
the case of variable rate application), where the weights are the proportion of the area in the management zone. 
For the case of finding the economically optimum uniform P rate application, this weight is set to one and there 
is no management zone delineation. More formally, the mathematical programming model can be expressed as: 

 

Max [ ] ( )[ ]( )
1

2 2
) )( (

m

i

c i i i i i s i i i i ii i
A P P P P P P r Pp w a b g l a b g

=

= + -+ + + + - Få  (3) 

  Subject to: 
i

P M a x P£   

where: 
π   = Total net returns over N fertilizer and fixed cost ($) 
A    = Total land area (2,200 acres)  

i
w  = Proportion of total land area allocated to management unit i (zone 1= 43.19728%, zone 2= 

49.3197%, zone 3= 7.48299%) 
i    = Management unit (either the whole field or the management zones) 
m  =  Total number of management units (m = 1 for uniform rate application and m = 3 for variable 

rate based on the management zones). 
Pc  =  Price of cotton lint ( $0.42 per lb) 
Ps  =  Price of cotton seed ( $0.05 per lb) 

i
l  = Proportion of yield that corresponds to the total amount of cotton seed produced (61.5385%) 

Pi  =  Quantity of P applied in management unit i (in lbs/acre) 

r  =  Price of P fertilizer applied ($0.265/lb) 
Ptg  =  Sum of the Price of Stripping and Ginning ($0.035/lb) 
F  =  Fixed fee for variable rate phosphorus application ($3.00/per acre) 

MaxP  =  Maximum level of P. 
 
The mathematical programming model in equation (3) does not incorporate price risk for cotton lint and seed 
prices. As is well know, cotton producers are operating in an environment of price uncertainty and, therefore, 
price risk should be taken into account in any input application decision. Using cotton lint and seed prices in the 

2005 Beltwide Cotton Conferences, New Orleans, Louisiana - January 4 - 7, 2005
315



previous five years, we calculated the average price over this period ($0.42 per lb for lint and $0.05 per lb for 
seed), as well as the prices one standard deviation above and below this mean. The average cotton lint and seed 
price are the ones used above and are considered the “normal” or “average” price situation. The prices one 
standard deviation above and below the mean price are the “high” and “low” price situations, respectively. The 
actual “low” price situation calculated are $0.22 per lb for cotton lint and $0.00 per lb for cotton seed. On the 
other hand, the actual “high” situation prices calculated are $0.62 per lb for cotton lint and $0.13 per lb for 
cotton seed. 
 
To incorporate the risk of having below average or above average output prices in the model, we assign discrete 
probability values for each price situation and build four scenarios to analyze. The first scenario (Scenario 1) is 
where all the three price situations are equally likely to occur. That is, the probability of having low, average, 
and high price is set at 33.33%. The second scenario (Scenario 2) is where the probability of having a low price 
situation is 60%, while the probability of having an average and high price situation is both at 20%. The third 
scenario (Scenario 3) is where the probability of having an average price is 60%, while the probability of having 
a low and high price situation is both at 20%. Lastly, the fourth scenario (Scenario 4) is where the probability of 
having a high price is 60%, while the probability of having an average and low price situation is both at 20%. 
 
The mathematical modeling results that accounts for price risk are presented in Table 3. The first issue to note 
in these results is the P application difference between the UR and VR application methods. As suggested in the 
previous section, MZ1 is where the yield response is the highest. Hence, it is reasonable to expect that a lower 
amount of P would be required in this zone relative to the other zones (to get a comparable yield response). In 
fact, this is the case in Table 3 for all scenarios.  
 

Table 3. Profitability of Uniform Rate (UR) vs. Variable Rate (VR) P Application: Four Price Risk Scenarios 
 P application (lbs/acre) Yield(lbs/Acre) Expected 

Profit  
($/acre) 

Profit 
Differential 
(VR-UR) 

 MZ1 MZ2 MZ3    
Scenario 1       
    UR 28.83 28.83 28.83 694.06 $352.00 
    VR 16.70 28.83 0 725.69 $360.23 

$8.23 

Scenario 2       
    UR 28.57 28.57 28.57 693.91 $268.83 
    VR 16.45 28.57 0 789.62 $272.49 

$3.66 
 

Scenario 3       
    UR 28.82 28.82 28.83 694.06 $346.77 
    VR 16.69 28.82 0 793.78 $354.73 

$7.96 

Scenario 4       
    UR 28.99 28.99 28.99 694.14 $438.31 
    VR 16.87 28.99 0 797.05 $451.37 

$13.06 

 
Given the lower P application in MZ1 for the VR approach, the “leftover” or “unused” P that would have been 
used in a UR was reallocated to MZ2. Since MZ2 is the zone that is characterized by a high yield cluster, it 
would need more P in this zone to have a comparable yield response to other zones. Of course this assumes a 
concave response function (see Figure 4). For MZ1 and MZ2, therefore, average P application is the same for 
both UR and VR approaches, but the amount applied for each zone was variable. For the case of MZ3, the P 
rate used was zero since this is the zone of “uncertainty” and the estimated response function for this zone is 
such that a unreasonable amount of P would be needed to get even a marginal yield response. Hence, the model 
optimally picked a zero application rate for this zone.  For MZ2, the optimal P level is the same as the uniform 
rate. On the other hand, zero P level application is indicated for MZ3 because in this region it takes a very high 
level of P to get even a marginal yield response. 
 
Based on the P levels chosen for the UR and VR approaches, the corresponding yields and profits for each 
approach are then calculated. As seen in Table 3, the VR approach had higher yields and expected profits for all 
scenarios. If the risk of having low, average, and high cotton output prices is equally likely, then the expected 
profit differential between a VR approach and a UR approach is $8.23/acre. When the average output prices are 
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expected to occur (Scenario 3), the expected profit differential is very similar to the “equally” likely case. If 
lower prices are more likely to occur, a lower profit differential results (as expected). On the other hand, when 
high cotton prices are more likely, a higher profit differential between VR and UR is observed. 
 

 
Figure 4 Concave Cotton Yield Response Function 

 
 

Conclusions 
 

This study develops a spatial statistics-based approach for delineating management zones that can be used for a 
variable rate P application program. The spatial statistics approach to management zone delineation is a simple 
method that could serve as a guide for producers to recognize relevant spatial patterns in their field and manage 
it more effectively. An optimization/mathematical programming model is then utilized to evaluate the economic 
impact of a variable rate P fertilization strategy (based on the management zones delineated) versus the more 
traditional method of using a uniform rate for the whole field. Note that this mathematical programming model 
incorporates the output price risk for cotton lint and seed to account for the uncertainty that producers face in 
terms of these prices. The results of the model suggest that applying variable P rates based on the different 
response function for each management zone would result in higher yields and net returns relative to the 
traditional uniform rate application. Furthermore, this boost in net returns and yields is achieved with lower 
levels of applied P per acre, on average. Hence, more precise management of P based on the management zones 
delineated using a spatial statistics approach may also have potential implications for reduction of fertilizer 
runoff and non-point source pollution. 
 
Even with these interesting insights, however, we must emphasize that the results presented above are 
preliminary. For example, the yield response function for both the traditional uniform rate and variable rate 
approaches was only estimated using OLS procedures. As Anselin, Bongiovanni, and Lowenberg-DeBoer 
suggests, this simple estimation procedure does not take into account the spatial autocorrelation in the data. Not 
taking this spatial autocorrelation into account may result in incorrect inferences and may likely affect our 
results. Hence, further study needs to be done with regards to more advance econometric techniques for 
estimating the yield response functions. Another aspect of the study that could be improved is the incorporation 

L-L* H-H** 

Yield (lbs/acre) 
 

P-application (lbs) 
 

*L-L- Low Low Yield Area 
** H-H- High High Yield area 
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of risk into the optimization model. Instead of discrete probability categories, a model with continuous 
probability distribution functions for the output prices may be more desirable. 
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