ACCOMPLISHMENTS OF A 10-YEAR INITIATIVE TO DEVELOP HOST PLANT RESISTANCE TO ROOT-KNOT AND RENIFORM NEMATODES IN COTTON

Robert L. Nichols
Cotton Incorporated
Cary, NC
Alois A. Bell
USDA-ARS
College Station, TX
Roy G. Creech
Formerly Mississippi State University
Mississippi State, MS
Peng Wah Chee
University of Georgia
Tifton, GA
Richard F. Davis
USDA-ARS-CPMRU
Tifton, GA
John Erpelding
USDA-ARS-CGRU
Stoneville, MS
David D. Fang
USDA-ARS-SRRRC
New Orleans, LA
Osman A. Gutierrez
USDA-ARS-SHRS
Miami, FL
Kater D. Hake
Cotton Incorporated
Cary, NC
Johnie N. Jenkins
USDA-ARS-GPAR
Mississippi State, MS
Jack E. Jones
Jajo Genetics
Baton Rouge, LA
Kathy S. Lawrence
Auburn University
Auburn, AL
Jack C. McCarty
USDA-ARS-GPAR
Mississippi State, MS
Charles Overstreet
LSU AgCenter
Baton Rouge, LA
Philip A. Roberts
University of California
Riverside, CA
A. Forrest Robinson
Formerly with USDA-ARS
College Station, TX
Roelof B. Sikkens
Auburn University
Auburn, AL
James L. Starr
Formerly with Texas A&M University
College Station, TX
Abstract

In 2003 Cotton Incorporated initiated a Beltwide research program to develop host plant resistance against root-knot (Meloidogyne incognita) and reniform (Rotylenchulus reniformis) nematodes. Objectives formulated at a coordinating meeting in 2003 that included participants from public institutions and private industry were to identify, characterize, and locate resistance genes, and transfer germplasm and markers to commercial planting seed companies to enable them to develop commercial cotton (Gossypium hirsutum) cultivars with high-levels of resistance to these nematodes. At that time, a high level of resistance to root-knot nematode (RKN) was available in a source developed by R. L. Shepherd at Auburn, AL and released by USDA-ARS. However this source was under-utilized in commercial breeding because phenotyping required time consuming bioassays and individually counting microscopic nematodes and/or root galls. No G. hirsutum sources of resistance were available to reniform nematode, although resistance had been observed in the diploid cottons G. arboreum, G. aridum, G. herbaceum, and G. longicalyx and in certain G. barbadense accessions. Cotton Incorporated directly supported projects in AL, GA, MS, TX, and CA. Complementary research was conducted by USDA-ARS researchers in MS. Beltwide communication and planning meetings were sponsored by Cotton Incorporated in 2003, 2005, 2007, and 2012.

Considerable progress has been achieved. Several individuals and groups have made outstanding findings. Overall, the research in CA, GA, MS, NM, and TX has demonstrated that RKN resistance is a two-gene system synergized by an epistatic interaction. SSR markers have been identified and published for RKN resistance on chromosomes 11 and 14. In separate efforts, resistance to reniform nematode has been introgressed into G. hirsutum from G. aridum and from G. longicalyx via tri-hybrid crosses. In addition, releases of reniform nematode resistant lines derived from G. barbadense ‘713’ have been made by USDA-ARS, Cotton Incorporated, and cooperating state experiment stations in MS and TX. The respective resistance traits were mapped with SSRs and rendered amenable to MAS. In 2014, commercial cultivars with high levels of RKN resistance, developed in part by employing basic information...
published by this public research effort, are anticipated from Monsanto - Delta and Pine Land (D&PL), and Dow AgroSciences (Phytogen).