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ABSTRACT

One proposed use of unmanned aerial systems 
(UAS) in crop production is to produce quantitative 
data to support replant decisions by assessing plant 
stands. Theoretically, analysis of UAS imagery 
could quickly determine plant populations across 
large areas. The objective of this research was to 
investigate the ability of UAS to quantify accurately 
varying plant populations of cotton (Gossypium 
hirsutum L.). Field studies were conducted in 
Jackson, Milan, and Grand Junction, Tennessee 
in three consecutive growing seasons. Treatments 
included five seeding rates ranging from 8,500 to 
118,970 seed ha-1. After emergence, cotton plants 
were manually counted and images were collected 
in 2016 and 2017 with a MicaSense RedEdge mul-
tispectral sensor and in 2018 with a Sentera Double 
4K multispectral sensor. Sensors were mounted to 
a quad-copter UAS flying at altitudes of 30, 60, 75, 
and 120 m above ground level. Spectral properties 
were assessed to generate normalized difference 
vegetation index (NDVI) thresholds that were 
used to limit the analysis to only plant material. 
Images were processed and analyzed to estimate 
number of plants and compared to actual plant 
populations within each plot. Images obtained from 
lower altitudes proved to be more accurate, with 
greatest correlations to actual ground-truthed plant 
populations from data collected at an altitude of 30 
m. The utilization of the described novel method
of estimating cotton plant population from NDVI-
calculated UAS imagery might improve upon
spatial and temporal efficiency in comparison to
current methodology of estimation.

Numerous management decisions, including
determining planting date and plant population, 

greatly influence cotton growth and development. 
Environmental conditions also play a major role 
on growth and development, especially in northern 
areas of the Cotton Belt such as Tennessee, in which 
reduced heat accumulation results in shorter growing 
seasons (Gwathmey and Craig, 2003). In Tennessee, 
producers have an approximate 20-day window to 
plant cotton and ensure stands are adequate, with 
dates ranging from 20 April to 10 May (Craig, 2010). 
Generally, cotton plants germinate and emerge 
within 5 to 12 days after planting, leaving limited 
time to assess if plant populations in fields are 
acceptable (Wanjura et al., 1969). In the Mississippi 
Delta, establishing a final plant population between 
34,000 and 68,000 plants ha-1 is important to achieve 
optimum yield potential; populations below 34,000 
plants ha-1 result in reduced yields and delayed 
maturity (Wrather et al., 2008). Subsequently, the 
University of Tennessee recommends seeding rates 
between 74,000 and 148,000 seed ha-1 (Main, 2012). 
Producers must be able to assess their plant stands 
after emergence quickly to determine if they fall 
within this acceptable range.

As the adoption and integration of precision 
agriculture in crop production increases, the inter-
est in remote sensing methods continues to increase 
(Gwathmey et al., 2010). Remotely sensed data can 
be an inexpensive source for strategic crop manage-
ment decision making (Plant et al., 2001). The use 
of remote sensing in agriculture generally relies on 
multispectral reflectance data from visible and near-
infrared ranges of the electromagnetic spectrum to 
calculate vegetation indices (VI). Vegetation indices 
are algebraic manipulations of spectral bands with 
similar responses to vegetative characteristics of 
plants (Plant et al., 2001). One of the first VI de-
veloped is the leaf area index (LAI), which is based 
upon the principle that leaves absorb more red than 
near-infrared light (Jordan, 1969). Jordan used a 
ratio of 800 to 675 nm to calculate LAI, for which 
the greater the value, the more leaf area present. 
LAI quantifies the amount of area of photosynthetic 
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foliage per unit of ground surface area. The most 
commonly used VI is the normalized difference 
vegetation index (NDVI), which uses reflectance in 
the red (R) (~600-700 nm) and near-infrared (NIR) 
(~700-800 nm) spectral bands to monitor plant bio-
mass and physiological status (Tucker, 1979) and 
is calculated:

NDVI = (NIR-R)/(NIR+R).
NDVI is highly correlated to the green and red 

linear relationships of photosynthetically active veg-
etation, providing the ability to differentiate between 
photosynthetically active tissue and other matter 
within the field of view. In-season NDVI data have 
been shown to correlate to cotton yields; Weigand et 
al. (1994) found a significant relationship between 
yield and seasonal accumulated NDVI values. Plant 
et al. (2000) demonstrated a positive correlation 
between cotton yield and NDVI-days modeling.

No model using precision agricultural tools has 
been developed to calculate plant populations of 
cotton at the cotyledon growth stage. With respect 
to other crops, Shrestha and Steward (2003) created 
an automated corn plant population measurement 
by segmenting and singulating corn plants within 
sequenced video frames from a vehicle-mounted 
digital video camera. Total number of plant pixels 
and their median positions were extracted from 
each pixel row, grouped together, and iterated to 
count corn plants between the V3 and V4 stages. 
Shrestha and Steward (2005) improved the method 
by using image segmentation to detect plant bound-
aries using chain code methodology and accounted 
for spatial structure of the crop row; root mean 
square error (RMSE) between estimates of plant 
counts and manual counts equaled 3,210 plants ha-

1. Thorp et al. (2008) expanded upon this work by 
using the developed segmentation tool combined 
with hyperspectral reflectance data to estimate corn 
plant density in various vegetative and reproduc-
tive stages of corn. Various spatial resolutions were 
used to evaluate reflectance of segmented plants 
within each raster to estimate the number of plants 
contained. Principal component analysis was used 
to assess plant stand density and hyperspectral 
reflectance at varying spatial resolutions. Huang 
et al. (2010) successfully predicted soil and crop 
canopy coverage variability using spatial regression 
modeling on aerial multispectral images. The use of 
ordinary least square multiple linear regression, spa-
tial regression, and restricted maximum likelihood 
geostatistics indicated that aerial images could be 

used for spatial prediction of soil and crop canopy 
coverage (Huang et al., 2010). Other practical uses 
for estimating emergence include field-based crop 
phenotyping. Sankaran et al. (2015) demonstrated 
the ability to correlate aerial evaluations of winter 
wheat emergence and spring stand to ground-based 
visual ratings with the green normalized difference 
vegetation index. Jin et al. (2017) estimated wheat 
density using the Meyer-Neto vegetation index, 
which is the difference between excess green index 
and excess red index (Meyer and Neto, 2008).

Today, emerged plant counts, commonly 
referred to as stand counts, are the most utilized 
method to determine plant population across a 
given area (Godfrey et al., 2010; Main, 2012). 
This method consists of selecting and measuring 
a linear distance of plant row, counting the num-
ber of plants within this selected distance, and 
repeating in random locations throughout a field 
to estimate the mean plant population. Distances of 
row selected typically are based upon the 1/1000th 
method (Godfrey et al., 2010). When using this 
method, the assessor determines row m ha-1 and 
divides this number by 1000. The resulting number 
defines the distance of row in which the assessor 
should measure, and the assessor counts the num-
ber of emerged plants within this area. Next, the 
assessor multiplies by 1000 to reach an estimate 
of the total number of emerged plants within a 
hectare. Although this method requires little time, 
the approach is reliant upon a highly uniform plant 
population across the entire field and can be spa-
tially limited. Human bias in selecting areas of the 
field also influences the estimated plant population, 
naturally skewing the estimation to favor either 
replanting or accepting a plant stand. However, the 
described method does not provide an estimation 
of plant stand uniformity or detail in a site-specific 
manner into the areas that possess yield-restricting 
populations. To determine if a cotton plant stand 
is acceptable or needs to be replanted, an assessor 
must be able to evaluate the entire field for both 
uniformity and plant population.

Theoretically, analysis of UAS imagery could 
determine plant population and uniformity quickly 
across large areas. Therefore, the objectives of 
this research were to: (1) develop and investigate 
a novel method of processing UAS imagery for 
the estimation of cotton plant populations and (2) 
determine optimum altitude of data acquisition for 
these estimations.
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MATERIALS AND METHODS

Field Site Establishment and Management. 
Field studies were conducted in 2016-2018 at Ames 
Plantation in Grand Junction, TN; the West Tennes-
see Research and Education Center (WTREC) in 
Jackson, TN; and the Milan Research and Education 
Center (MREC) in Milan, TN. Treatments consisted 
of five seeding rates: 10.5 seed m-1 (118,970 seed 
ha-1), 6.75 seed m-1 (76,480 seed ha-1), 3 seed m-1 
(33,990 seed ha-1), 1.5 seed m-1 (17,000 seed ha-

1), and 0.75 seed m-1 (8,500 seed ha-1). Each trial 
was managed without tillage (no-till) and used a 
randomized complete block design containing four 
replications. Plot size consisted of four rows 9 m 
in length. Row spacing for all trials equaled 97 cm. 
DeltaPine 1522 B2XF (Monsanto Co., St. Louis, 
MO), was planted on the dates listed in Table 1. 
Seed for each treatment was counted into individual 
seed packets for each row and planted with an 
ALMACO Cone Planter (ALMACO, Nevada, IA). 
All in-season management practices followed the 
University of Tennessee Extension Service recom-
mendations for cotton production (Main, 2012) and 
management decisions were based upon growth 
and development of the 118,970 seeds ha-1 plots.

UAS and Ground-Truthing. After complete 
emergence, the number of plants within each row 
of each plot were manually counted. Plants were 

counted approximately 20 d after planting. Dur-
ing 2016 and 2017, aerial imagery was collected 
by a custom-built quad-copter equipped with a 
MicaSense RedEdge (MicaSense, Seattle, WA) 
multispectral sensor. In 2018, aerial imagery was 
collected by a DJI Inspire 2 (SZ DJI Technology 
Co., Ltd., Shezen, Guangdong) equipped with a 
Sentera Double 4K (Sentera, Minneapolis, MN) 
multispectral sensor (Table 2). The change in 
sensor was the result of available equipment. The 
acquired spatial resolution from each sensor, re-
ported as ground sampling distance, was the result 
of factory settings at each sampling altitude and 
subsequently varied by sensor (Table 2). Image 
resolution was not modified after acquiring the im-
age. In 2016 and 2017, autonomous flight patterns 
were generated using Mission Planner (ArduPilot, 
Indianapolis, IN); in 2018, Sentara’s proprietary 
flight program, Field Agent, was used to gener-
ate grids. Flights were arranged in a serpentine 

“lawn-mower” pattern perpendicular to the planted 
rows at altitudes of 30, 60, 75, and 120 m above 
ground level with 80% image overlap and sidelap 
to generate the highest quality image possible. 
Images were subjected to Pix4Dmapper (Pix4D 
Inc., San Francisco, CA) and orthomosaics were 
generated, resulting in a 16-bit geotiff file (.tif) 
with a single image of the plot area of interest and 
embedded metadata.

Table 1. Planting dates for each trial location during the 2016-2018 growing seasons

Year
Location

Grand Junction, TN Jackson, TN Milan, TN

2016 10 May - -

2017 18 May 16 May 17 May

2018 4 May 3 May 15 May

Table 2. Unmanned Aerial System (UAS) multispectral sensor specifications

Sensor

Ground Sampling Distance (cm/pixel) Sensor  
Width  
(mm)

Focal  
Length  
(mm)

Image  
Width  
(pixels)

Image  
Height  
(pixels)

Flight Altitude (m)

30 60 75 120

RedEdge 2.1 4.2 5.2 8.3 4.8 5.4 1280 960

Double 4K 0.9 1.72 2.2 3.4 6.2 5.4 4000 3000

Spectral Resolution

Red Band (nm) Near-Infrared Band (nm)

Center Wavelength Bandwidth Center Wavelength Bandwidth

RedEdge 668 10 840 40

Double 4K 650 70 840 20
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to 0.05. Slopes were compared for trueness, with 
values closest to one representing greater accuracy. 
To evaluate accuracy of the described method to 
current scouting methods, all actual plant popula-
tions for each trial location were summated to be 
considered a simulated field. One row from the first 
replication of each treatment at each location was 
selected and plant populations ha-1 were calculated 
using the 1/1000th method described previously. 
Current stand count estimations and simulated field 
populations were subjected to simple linear regres-
sion in JMP 14 (SAS Institute, Cary, NC). Coefficient 
of determination and slope values between the two 
methods were compared for accuracy differences.

Plant Population Estimation Thresholding and 
Processing. Plant population estimations were gener-
ated within ArcMap 10.6 (ESRI, Redland, CA). A Py-
thon script was constructed within PythonWin (Python 
Software Foundation, Beaverton, CA) to streamline 
the analysis process (Fig. 1.). The ArcPy command 
prompt was executed for utilization of ArcGIS tools. 
Values within the resulting rasters were reclassified as 
cotton plants, soil, or field residue using the Reclassify 
tool in the Spatial Analyst toolbox. Threshold values 
for respective sensors were established by manually 
determining value ranges for cotton plants, soil, and 
field residue (Table 3). All pixels classified as soil 
or field residue were excluded. The remaining raster, 
consisting of cotton plant tissue, was subjected to the 
Raster-to-Polygon tool within the Conversion toolbox 
producing an area measurement for each individual 
polygon in the attribute table, reflected as cotton plants. 
Using the Add Geometry Attributes function, a new 
field containing each area measurement was added to 
the vector layer attribute table. Next, the Update Cursor 
feature was used to threshold plant areas to minimize 
the number of plants represented by multiple pixels 
within the prior raster. The Search Cursor function was 
then used to identify areas for each polygon within the 
attribute table. To distinguish multiple plants within a 
row that bordered or overlapped their neighbor, a loop 
was coded where each of the four smallest areas were 
divided by themselves such that they would equal 
one. All areas larger than the fourth smallest polygon 
area were divided by the value of the fourth smallest 
polygon area and products were recorded within the 
attribute table. Polygons with resulting values greater 
than one were considered overlapping or bordering 
cotton cotyledons. Polygons were constructed for each 
individual plot area and data were spatially joined from 
the concluding layer feature class to each plot; plants 
were counted by calculating the sum of the values of 
respective polygons within each plot. The specific 
Python script executed is included in the Appendix.

Statistical Design and Analyses. To determine 
the accuracy of this method with increasing altitude, 
estimated plant populations for each respective alti-
tude were subjected to dummy regression (indicator 
variable) statistical analysis in SAS v 9.4 (SAS In-
stitute, Cary, NC). Dummy regression is particularly 
beneficial when both analysis of variance (ANOVA) 
and regression terms are of interest. Upon evaluating 
the full model in which all parameters are unequal, 
nonsignificant terms were identified and removed. 
Significance levels were set at an alpha-level equal 

Figure 1. Flowchart illustrating stages of cotton plant 
population estimations for unmanned aerial systems 
imagery. Steps include: 1. calculating the normalized 
difference vegetation index; 2. thresholding image to select 
for cotton cotyledons; 3. convert raster data to vector 
data, resulting in polygons for individual or groups of 
plants; 4. update count based on size of plants to account 
for overlapping cotyledons; and 5. summate number of 
estimated plants within boundary of interest.



108JOURNAL OF COTTON SCIENCE, Volume 24, Issue 3, 2020

RESULTS AND DISCUSSION

Cotton Plant Identification. The described 
method to identify emerged cotton plants using 
calculated NDVI proved to be accurate at low al-
titudes (slope at 30 m equaled 0.903; Table 4, Fig. 
2). Results are consistent with previous work con-
ducted in corn (Zea mays L.), sunflower (Helianthus 
annus L.), sugarcane (Saccharum officinarum L.), 
and wheat (Triticum aestivum L.) (de Souza et al., 
2017; Torres-Sanchez et al., 2015). For analysis 
of images acquired from the RedEdge sensor, the 
manual thresholding procedure resulted in NDVI 
values ranging from 0.24 to 1.0 were considered as 
plants and values less than 0.24 were excluded from 
further analyses (Table 3.). For the Double 4K sensor, 
the manual thresholding procedure resulted in NDVI 
values ranging from 0.23 to 1.0 were considered as 
plants and values less than 0.23 were excluded from 
further analyses. The described method of thresh-
olding bordering or neighboring plants based upon 
pixel size was noted to have the least scatter at lower 
plant populations. Accuracy at lower populations 
is of greater importance in that these plant density 
ranges most commonly will provoke the decision of 
replanting or accepting the emerged stand. It should 
be noted that planter type might have influenced the 
accuracy of the measurement at greater populations. 
When the number of seed per row increases above 
the number of cells in the cone, seed spacing from 
research cone planters closely resembles that of a 
hill-drop plate. In contrast, seed spacing more closely 
resembles a singulated plate when seed number 
declines to or below the number of cells per cone. 
It is hypothesized that soil texture, soil color, light 
intensity, and any other factors that impact plant 
reflectance (herbicide injury, insect feeding, etc.) 
could influence values from field to field or site to 
site within a field. Calibration methods, or the use 

of training data, have been demonstrated to improve 
accuracy and detection of plant density and in-row 
skip lengths (de Souza et al., 2017; Perez-Ortiz et al., 
2016). The development of a calibration procedure 
could have the potential to improve accuracy using 
the described method when analyzing imagery in 
different environments.

Table 3. Normalized Difference Vegetation Index (NDVI) 
plant thresholding parameters

Sensor
NDVI

Cotton Residue Soil
Value Range

RedEdge 0.24 - 0.76 0.06 - 0.2 -0.05 - 0.1
Double 4K 0.23 - 0.91 -0.64 - 0.35 -0.34 - 0.13

Mean Value
RedEdge 0.55 0.11 0.08

Double 4K 0.46 -0.26 -0.04

Figure 2. Dummy regression analysis of estimated versus 
actual plants by altitude (m).

Table 4. Dummy regression analysis of estimated vs. actual 
plant population by altitude (m)

Altitude (m) Slope Pr > Fz

30 0.903 < .0001
60 0.645 < .0001
75 0.286 < .0001
120 0.000 < .0001

Intercept Pr > F = 0.5457
R2 0.8771
CV 48.506

RMSE 10874.92
Mean 22419.78

z Significance based upon an alpha-level equal to 0.05. 

Altitude Analysis. Primary differences in ac-
curacy of determining existing plant stands were the 
result of change in spatial resolution and image qual-
ity, impacted by the increase in flight altitude. Linear 
regression lines separately fit flight altitudes of 30, 
60, 90, and 120 m using dummy regression model-
ing (Fig. 2.). Due to individual thresholding of each 
sensor and consistency of flight protocols (overlap, 
pattern) differences in results due to the use of dif-
ferent sensors were negligible. The model explained 
88% of the variation in plant populations across flight 
altitudes (Table 4). Treatment intercepts did not differ 
(p = 0.5457), although slope differences were highly 
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significant (p < .0001) (Table 4.). Images obtained 
from an altitude of 30 m resulted in the greatest ac-
curacy (linear slope of 0.903) in predicting cotton 
stands using the described methodology. As flight 
altitude increased and spatial resolution decreased, 
slope also decreased, with slope equaling 0 from data 
collected at an altitude of 120 m. The linear regres-
sion slope and coefficient of determination for plant 
estimations collected from 30-m altitude was nearly 
identical to previous work by Shrestha et al. (2003) 
in which a digital camera was mounted to a ground 
traveling vehicle at a height of 0.6 m. Decreased 
slope can be interpreted as an increased number of 
false negatives (uncounted plants) as spatial resolu-
tion dissolved from increases in flight altitude. This 
is consistent with work conducted on wheat plant 
density by Jin et al. (2017). It is suspected the in-
crease in ground sampling size as altitude increased 
(Table 2) relative to the static size of each emerged 
plant prevented the sensor from reading reflectance 
values above the defined thresholds at greater alti-
tudes. Although an acceptable level of error based on 
the relationship between plant population and yield 
must be determined, it is likely a balance between 
error and temporal efficiency will be reached when 
data are collected between 30- and 60-m altitudes 
using factory sensor settings.

NDVI Versus 1/1000th Method. When inter-
preting the simple linear regression of simulated 
1/1000th method of plant population estimation to 
the total number of plants within the trial area, data 
were highly correlated with a coefficient of deter-
mination equal to 0.971 (Table 5.) Trueness was 
also high with a slope equaling 0.9606. This strong 
correlation would be expected as uniform treatment 
populations were established in areas of limited 
variability. Although the coefficient of determina-
tion was greater for the 1/1000th method than the 
UAS approach, the benefit was marginal. One issue 
with population assessment from an aerial image 
is overlapping cotyledons; the approach described 
here occasionally fails to differentiate plants that 
are growing closely together. This error will be ac-
ceptable in cotton for several reasons. First, actual 
plant population often has less influence on yield 
than the uniformity of the stand. As a compensatory 
plant, the yield potential of one, two, or three plants 
in a cluster will closely match the yield potential of 
a single plant. Research by McCarty et al. (2017) 
indicated skips larger than 61 cm resulted in reduced 
yields, but adjacent plants were able to compensate 

across smaller skips. Therefore, the most important 
component of making the replant decision in cot-
ton is the identification and quantification of skips 
(Craig, 2010). Although the method described here 
could incorrectly classify overlapping cotyledons 
from multiple seedlings as a single plant and thereby 
underestimate plant population, this method could be 
applied within an alternative approach that focuses 
on the within-row distance between plants. Although 
the detection of skip length was beyond the scope 
of the current objectives, our results suggest a simi-
lar thresholding method with a different approach 
could determine skip length and ultimately drive 
the replant decision.
Table 5. Correlation of 1/1000th method to summated plant 

population of trial locations

Statistic Value
Slope 0.9606

Intercept 2821
R2 0.971

RMSE 3477
Pr > F 0.0003z

1/1000th Mean 40573
Total Plant Mean 42358

z Significance based upon an alpha-level equal to 0.05.

Sensor Comparison. Although it was beyond 
the scope of this study to compare the two sensors 
used, differences were noted. Sentera Double 4K 
imagers have much higher spatial resolution than 
the Micasense RedEdge, however, lower spectral 
resolution often prevented the Double 4K from suc-
cessfully separating living plant material from soil/
residue using NDVI due to the constraints on re-
turned values. The influence of the red wavelength 
highly influences the determination of NDVI values, 
and the wide bandwidth limited the imagers’ ability 
to distinguish minor differences in the reflectance 
of cotton plants and field residue in the red color 
spectrum. Alternatively, the lower spatial resolu-
tion of the Micasense RedEdge caused limitations 
using the described thresholding method at higher 
altitudes. As new sensor technology is released, a 
sensor with narrow bandwidths and high spatial 
resolution could improve temporal efficiency by 
allowing for increased flight altitudes without spa-
tial resolution limitations. Currently, it appears the 
Sentera Double 4K might have greater potential to 
assess cotton plant population from higher altitudes 
with factory sensor settings if using RGB-based 
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imagery. A subsequent study would need to be 
conducted to compare and determine differences 
in accuracy between the two sensors.

CONCLUSIONS

Cotton producers need quicker, site-specific 
methods to determine plant populations. The de-
scribed methods of estimating plant population 
from multispectral images acquired from UAS 
have the potential to provide growers with popula-
tion estimates along with detailing in what specific 
areas of a field stand is inadequate. Estimations 
from low altitudes were highly correlated to the 
number of actual plants. Estimating plant popula-
tions with aerial imagery will significantly reduce 
the amount of time required to assess a field and 
will provide more spatially dense, site-specific 
information. Although some error will likely be in-
troduced with a UAS system, this error is countered 
by a complete assessment of all areas of the field 
and is contrasted by the limited spatial density of 
measurements collected by a field scout. The major 
limitation of image acquisition falls upon the utility 
of the UAS, such that battery life and field of view 
determine the amount of time required to cover the 
scope of the field. Other potential issues with the 
currently described methods include the threshold 
or reclassification portions of the models and the 
time required to complete the described method. 
Further development of the described method 
to include training data might not only improve 
overall accuracy, temporal efficiency might also be 
positively influenced as images from higher flight 
altitudes with current sensor technology become 
more functional.
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Appendix
Python Code
import arcpy, string
from arcpy import env
from arcpy.sa import*
size_1 = 0.000361
size_2 = 0.000722
size_3 = 0.001038
size_4 = 0.001369
arcpy.CheckOutExtension(“spatial”)
#Input Image File Location
arcpy.env.workspace = r’E:\Test’
arcpy.env.overwriteOutput = True
#Input Image File
input = r’E:\Test’
#Name File Result
result = “NDVI_Done.tif”
#Input Band Name
NIR = input + “\pop\Pop_Band4”
Red = input + “\pop\Pop_Band3”
#Name Band Result
NIR_out = “Results\NIR.tif”
Red_out = “Results\Red.tif”

arcpy.CopyRaster_management(NIR,NIR_out)
arcpy.CopyRaster_management(Red, Red_out)
Num = arcpy.sa.Float(Raster(NIR_out) - Raster(Red_out))
Denom = arcpy.sa.Float(Raster(NIR_out) + Raster(Red_out))
NDVI_Done = arcpy.sa.Divide(Num, Denom)
NDVI_Done.save(result)
#Reclassify NDVI
outReclass =  Reclassify(NDVI_Done, “Value”,
  RemapValue([[-1,0.24,”NODATA”],[0.24,1,1]]))
outReclass.save(“E:\Test\Results\Plnt_Rcls”)
#Raster to Polygon
arcpy.RasterToPolygon_conversion(outReclass, “Rast2Poly”, 
“NO_SIMPLIFY”, “VALUE”)
Rast2Poly = r’E:\Test\Rast2Poly.shp’
#Area in Attribute Table
arcpy.AddGeometryAttributes_management(Rast2Poly, 
“AREA”, “”, “SQUARE_METERS”,””)
if arcpy.Exists(Rast2Poly):
 outputDir = r”E:\Test\Results”
 output = outputDir + “\PolyUpd”
 arcpy.CopyFeatures_management(Rast2Poly, output)
 cursor = arcpy.UpdateCursor(“PolyUpd”)
 Count = “Poly_Area”
 for row in cursor:
  if row > 0 and row <=size_1:
   row.setValue(Count, row.getValue(Count) / size_1)
  elif row > size_1 and row <=size_2:
   row.setValue(Count, row.getValue(Count) / size_2)
  elif row > size_2 and row <=size_3:
   row.setValue(Count, row.getValue(Count) / size_3)
  elif row > size_3 and row <=size_4:
   row.setValue(Count, row.getValue(Count) / size_4)
  elif row > size_4:
   row.setValue(Count, row.getValue(Count) / size_4)
  cursor.updateRow(row)
summed_total = 0
with arcpy.da.SearchCursor(output, Count) as cursor:
 for row in cursor:
  summed_total = summed_total + row[0]


