ABSTRACT

This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect cotton gin emissions data to address current regulatory issues. A key component of this study was focused on EPA emission factors for particulate matter with a particle diameter nominally less than or equal to 10 µm (PM$_{10}$). The 1996 EPA AP-42 emission factors were assigned quality ratings, from A (Excellent) to E (Poor), to assess the quality of the data being referenced. Emission factor quality ratings for cotton gins were extremely low. Also, some commonly used cotton gin systems were not represented or were combined with another system under a single emission factor in AP-42. There were no 1996 EPA AP-42 emission factors published for mote cleaner systems.

The objective of this study was to collect PM$_{10}$ emission factor data for mote cleaner systems at cotton gins located in regions across the cotton belt based on EPA-approved stack sampling methodology, Method 201A. The project plan included sampling seven cotton gins across the cotton belt. Key factors for selecting specific cotton gins included: 1) facility location, 2) production capacity, 3) processing systems, and 4) abatement technologies. Two of the seven gins had mote cleaner systems. The exhaust from one of the mote cleaner systems was combined with the module feeder dust system. The ginning rate of the two gins averaged 36.0 and 46.2 bales/h during testing for the stand-alone mote cleaner system and mote cleaner and module feeder dust system, respectively. Some test runs were excluded from the test averages because they failed to meet EPA Method 201A test criteria. Also, other test runs, included in the analyses, had cotton lint fibers that collected in the ≤ 10 µm samples. This larger lint material can affect the reported emissions data, but EPA Method 201A does not suggest methods to account for these anomalies.

The average measured PM$_{10}$ and total particulate emission factors for the stand-alone mote cleaner system were 0.050 kg/227-kg bale (0.109 lb/500-lb bale) and 0.090 kg/bale (0.199 lb/bale), respectively. The ratio of mote cleaner system PM$_{10}$ to total particulate was 54.9%. The PM$_{10}$ emission rate averaged 1.79 kg/h (3.95 lb/h) for the stand-alone mote cleaner system. The average measured PM$_{10}$ and total particulate emission factors for the mote cleaner system combined with the module feeder dust system were 0.071 kg/bale (0.157 lb/bale) and 0.109 kg/bale (0.241 lb/bale), respectively. The ratio of PM$_{10}$ to total particulate for the mote cleaner system combined with the module feeder dust system was 65.1%. The PM$_{10}$ emission rate averaged 3.27 kg/h (7.21 lb/h) for the combined mote cleaner and module feeder dust system.

U.S. Environmental Protection Agency (EPA) emission factors were published in EPA’s Compilation of Air Pollution Emission Factors, AP-42 (EPA, 1996b). These factors were assigned a rating from A (Excellent) to E (Poor) that is used to assess the quality of the data being referenced. In the 1996 EPA AP-42, there are emission factors for particulate matter with a particle diameter less than or equal to a nominal 10-mm (PM$_{10}$) aerodynamic equivalent diameter listed for 11 common cotton gin systems. Cotton gin data received these low ratings because they were collected almost exclusively from a single geographical region (EPA, 1996a). The AP-42 data are limited in that
some systems commonly used in cotton gins are not represented or are combined with another system under a single emission factor (e.g., 1st and 2nd stage lint-cleaning systems are represented by lint cleaners). Cotton ginners’ associations across the cotton belt, including the National, Texas, Southern, Southeastern, and California associations, agreed that there was an urgent need to collect additional cotton gin emissions data to address current regulatory issues. Working with cotton ginning associations across the country, state and federal regulatory agencies, Oklahoma State University, and USDA-Agricultural Research Service (ARS) researchers developed a proposal and sampling plan that was initiated in 2008 to address this need for additional data. This report is part of a series that details cotton gin emissions measured by stack sampling. Each manuscript in the series addresses a specific cotton ginning system. The systems covered in the series include: unloading, 1st stage seed-cotton cleaning, 2nd stage seed-cotton cleaning, 3rd stage seed-cotton cleaning, overflow, 1st stage lint cleaning, 2nd stage lint cleaning, combined lint cleaning, cyclone robber, 1st stage mote, 2nd stage mote, combined mote, mote cyclone robber, mote cleaner, mote trash, battery condenser, and master trash. This report focuses on PM10 emissions from mote cleaner systems.

There were no 1996 EPA AP-42 factors for mote cleaner systems. The mote cleaner system would be similar to the combination of the mote fan and mote trash fan listed in AP-42 (EPA, 1996a, b). The AP-42 average PM10 emission factor for the mote fan was 0.060 kg (0.13 lb) per 217-kg [480-lb] bale with a range of 0.023 to 0.14 kg (0.050-0.30 lb) per bale. This average and range was based on six tests conducted in one geographical location. The AP-42 PM10 emission factor for the mote trash fan was 0.0095 kg (0.021 lb) per bale with a range of 0.0021 to 0.018 kg (0.0046-0.040 lb) per bale and was based on three tests from one geographical region. The AP-42 total particulate emission factor for the mote fan was 0.13 kg (0.28 lb) per bale with a range of 0.045 to 0.47 kg (0.099-1.0 lb) per bale. This average and range was based on nine tests conducted in one geographical location. The AP-42 total particulate emission factor for the mote trash fan was 0.035 kg (0.077 lb) per bale with a range of 0.025-0.051 kg (0.055 to 0.11 lb) per bale and was based on three tests. The EPA PM10 and total particulate emission factor quality ratings for both the mote fan and mote trash fan were D, which is the second lowest possible rating (EPA, 1996a).

Seed cotton is a perishable commodity that has no real value until the fiber and seed are separated (Wakelyn et al., 2005). Cotton must be processed or ginned at the cotton gin to separate the fiber and seed, producing 227-kg (500-lb) bales of marketable cotton fiber. Cotton ginning is considered an agricultural process and an extension of the harvest by several federal and state agencies (Wakelyn et al., 2005). Although the main function of the cotton gin is to remove the lint fiber from the seed, many other processes also occur during ginning, such as cleaning, drying, and packaging the lint. Pneumatic conveying systems are the primary method of material handling in the cotton gin. As material reaches a processing point, the conveying air is separated and emitted outside the gin through a pollution control device. The amount of dust emitted by a system varies with the process and the condition of the material in the process.

Cotton ginning is a seasonal industry with the ginning season lasting from 75 to 120 days, depending on the size and condition of the crop. Although the trend for U.S. cotton production remained generally flat at about 17 million bales per year during the last 20 years, production from one year to the next often varied greatly for various reasons, including climate and market pressure (Fig. 1). The number of active gins in the U.S. has not remained constant, steadily declining to fewer than 700 in 2011. Consequently, the average volume of cotton handled by each gin has risen and gin capacity has increased to an average of approximately 25 bales per hour across the U.S. cotton belt (Valco et al., 2003, 2006, 2009, 2012).
Typical cotton gin processing systems include: unloading system, dryers, seed-cotton cleaners, gin stands, overflow collector, lint cleaners, battery condenser, bale packaging system, and trash handling systems (Fig. 2); however, the number and type of machines and processes can vary. Each of these systems serves a unique function with the ultimate goal of ginning the cotton to produce a marketable product. Raw seed cotton harvested from the field is compacted into large units called “modules” for delivery to the gin. The unloading system removes seed cotton either mechanically or pneumatically from the module feed system and conveys the seed cotton to the seed-cotton cleaning systems. Seed-cotton cleaning systems assist with drying the seed cotton and remove foreign matter prior to ginning. Ginning systems also remove foreign matter and separate the cotton fiber from seed. Lint-cleaning systems further clean the cotton lint after ginning. The battery condenser and packaging systems combine lint from the lint-cleaning systems and compress the lint into dense bales for efficient transport. Cotton gin systems produce some type of by-products or trash, such as rocks, soil, sticks, hulls, leaf material, and short or tangled immature fiber (motes), as a result of processing the seed cotton or lint. These streams of by-products must be removed from the machinery and handled by trash collection systems. These trash systems typically further process the by-products (e.g., mote cleaners) and/or consolidate the trash from the gin systems into a hopper or pile for subsequent removal.

Material captured by cyclones that handle airstreams laden with greater amounts of lint (battery condenser, lint cleaning, and mote system cyclones), referred to as “motes”, has considerable value, especially when cleaned in a device similar to a seed-cotton cleaning machine; the mote cleaner. In mote cleaner systems (Fig. 3) the material is pneumatically conveyed from the trash exit of the cyclones to a screened separator where the motes are separated from the conveying airstream and dropped into the mote cleaner. The airstream from the screened separator continues through a centrifugal fan to one or two particulate abatement cyclones. A branch of the pneumatic system between the separator and fan is often utilized to pick up, by suction, the mote trash from the mote cleaner trash exit. The material handled by the mote cleaner system cyclones typically includes small leaf trash, soil, and some lint fibers (Fig. 4).

Cyclones are the most common particulate matter abatement devices used at cotton gins. Standard cyclone designs used at cotton ginning facilities are the 2D2D and 1D3D (Whitelock et al., 2009). The first D in the designation indicates the length of the cyclone barrel relative to the cyclone barrel diameter and the second D indicates the length of the cyclone cone relative to the cyclone barrel diameter. A stan-
standard 2D2D cyclone (Fig. 5) has an inlet height of D/2 and width of D/4 and design inlet velocity of 15.2 ± 2 m/s (3000 ± 400 fpm). The standard 1D3D cyclone (Fig. 5) has the same inlet dimensions as the 2D2D or might have the original 1D3D inlet with height of D and width D/8. Also, it has a design inlet velocity of 16.3 ± 2 m/s (3200 ± 400 fpm).

The objective of this study was to collect PM$_{10}$ emission factor data for mote cleaner systems with cyclones for emissions control at cotton gins located in regions across the cotton belt based on EPA-approved stack sampling methodologies.

METHODS

Two advisory groups were established for this project. The industry group consisted of cotton ginning industry leaders and university and government researchers. The air quality group included members from state and federal regulatory agencies and university and government researchers. These groups were formed to aid in project planning, gin selection, data analysis, and reporting. The project plan was described in detail by Buser et al. (2012).

Seven cotton gins were sampled across the cotton belt. Key factors for selecting specific cotton gins included: 1) facility location, 2) production capacity, 3) processing systems, and 4) abatement technologies. Operating permits, site plans, and aerial photographs were reviewed to evaluate potential sites. On-site visits were conducted on all candidate gins to evaluate the process systems and gather information including system condition, layout, capacities, and standard operation. Using this information, several gins from each selected geographical region were selected and prioritized based on industry advisory group discussions. Final gin selection from the prioritized list was influenced by crop limitations and adverse weather events in the region.

Based on air quality advisory group consensus, EPA Method 201A was used to sample the mote cleaner system at the two gins. Method 201A was revised in 2010 to incorporate options for PM$_{2.5}$ (particulate matter with particle diameter less than or equal to a nominal 2.5-mm aerodynamic equivalent diameter) sampling (CFR, 2010); these revisions did not affect the PM$_{10}$ stack sampling methodology used in this project. Method 201A is a constant sampling-rate procedure. For the PM$_{10}$ sampling methodology, the particulate-laden stack gas was withdrawn isokinetically (the velocity of the gas entering the sampler was equal to the velocity of the gas in the stack) through a PM$_{10}$ sizing cyclone and then collected on an in-stack filter (Fig. 6). The methods for retrieving the filter and conducting acetone washes of the sizing cyclone are described in detail in Method 201A (CFR, 2010). The mass of each size fraction was determined by gravimetric analysis and included: > 10 µm (PM$_{10}$ sizing cyclone catch acetone wash) and ≤ 10 µm (PM$_{10}$ sizing cyclone exit acetone wash and filter). The PM$_{10}$ mass was determined by adding the mass of particulates captured on the filter and the ≤ 10 µm wash. Total particulate was determined by adding the PM$_{10}$ mass and the mass of the > 10 µm wash.
To obtain reliable results, the same technician from the same certified stack sampling company (Reliable Emissions Measurements, Auberry, CA), trained and experienced in stack sampling cotton gins, conducted the tests at all the cotton gins. For this study, Method 201A was specifically used to collect filterable PM$_{10}$ emissions (solid particles emitted by a source at the stack and captured in the ≤ 10 µm wash and on the filter [CFR, 2010]).

All stack sampling equipment, including the sizing cyclone, was purchased from Apex Instruments (Fuquay-Varina, NC) and met specifications of Method 201A. The sampling media were 47-mm Zefluor filters (Pall Corporation, Port Washington, NY) and the sample recovery and analytical reagent was American Chemical Society certified acetone (A18-4, Fisher Chemical, Pittsburgh, PA; assay ≥ 99.5%). Filters and wash tubs with lids were pre-labeled, preweighed, and stored in sealed containers at the USDA-ARS Air Quality Lab (AQL) in Lubbock, TX, and then transported to each test site. Prior to testing, the certified stack testing technician calibrated and checked all sampling equipment according to EPA Method 201A.

Each cyclone selected for testing was fitted with a cyclone stack extension that incorporated two sampling ports (90° apart) and airflow straightening vanes to eliminate the cyclonic flow of the air exiting the cyclone (Fig. 8). The extensions were designed to meet EPA criteria (EPA, 1989) with an overall length of 3 m (10 ft) and sampling ports 1.2-m (48-in) downstream from the straightening vanes and 0.9-m (36-in.) upstream from the extension exit.

Figure 7 shows the performance curves for the Method 201A sizing cyclones. To measure PM$_{10}$, the method requires selecting a gas sampling nozzle to achieve a sampling rate that produces a cut size between 9.0 and 11.0 mm at the stack gas temperature. For this study, Method 201A was specifically used to measure filterable PM$_{10}$ emissions (solid particles emitted by a source at the stack and captured in the ≤ 10 µm wash and on the filter [CFR, 2010]).

To obtain reliable results, the same technician from the same certified stack sampling company (Reliable Emissions Measurements, Auberry, CA), trained and experienced in stack sampling cotton gins, conducted the tests at all the cotton gins. The tests were conducted by the certified stack sampling technician in an enclosed sampling trailer at the base of the cyclone bank (Fig. 9). Sample retrieval, including filters and sampler head acetone washes, was conducted according to Method 201A. After retrieval, filters were sealed in individual Petri dishes and acetone washes were dried on-site in a conduction oven at 49°C (120°F) and then sealed with preweighed lids and placed in individual plastic bags for transport to the AQL in Lubbock, TX for gravimetric analyses. During testing, bale data (ID number, weight, and date/time of bale pressing) were either manually recorded by the bale press operator or captured electronically by the gin’s computer system for use in calculating emission factors in terms of kg/227-kg bale (lb/500-lb bale). Emission factors and rates were calculated in accordance with Method 201A and ASAE Standard S582 (ASABE, 2005).
All laboratory analyses were conducted at the AQL. All filters were conditioned in an environmental chamber (21 ± 2°C [70 ± 3.6°F]; 35 ± 5% RH) for 48 h prior to gravimetric analyses. Filters were weighed in the environmental chamber on a Mettler MX-5 microbalance (Mettler-Toledo Inc., Columbus, OH; 1 µg readability and 0.9 µg repeatability) after being passed through an antistatic device. The MX-5 microbalance was leveled on a marble table and housed inside an acrylic box to minimize the effects of air currents and vibrations. To reduce recording errors, weights were electronically transferred from the microbalance directly to a spreadsheet. Technicians wore latex gloves and a particulate respirator mask to avoid contamination. AQL procedures required that each sample be weighed three times. If the standard deviation of the weights for a given sample exceeded 10 μg, the sample was reweighed. Gravimetric procedures for the acetone wash tubs were the same as those used for filters.

In addition to gravimetric analyses, each sample was visually inspected for unusual characteristics, such as cotton lint content or extraneous material. Digital pictures were taken of all filters and washes for documentation purposes prior to further analyses. After the laboratory analyses were completed, all stack sampling, cotton gin production, and laboratory data were merged.

Two of the seven gins had mote cleaner systems. The mote cleaner systems sampled were typical for the industry. At gin G (Fig. 10), the motes were pneumatically conveyed from the trash exit of the lint handling cyclones (mote, lint cleaning, and battery condenser systems) to the mote cleaner. At the mote cleaner, the motes were separated from the conveying airstream by a screened separator and dropped into the cleaner. The airstream from the screened separator continued through a centrifugal fan to a cyclone. The mote trash was picked up from the trash exit of the mote cleaner and combined with the exhaust airstream from the screened separator prior to the inlet of the fan. The mote cleaner system at gin F was essentially the same, except a conveying airstream from a system that captured dust generated at the module feeder (module feeder dust system) was combined with the exhaust airstream before the fan (Fig. 11). The addition of the module feeder dust system could significantly influence the particulate matter test results for the gin F mote cleaner system; therefore, no system averages were calculated.
Table 1. Abatement device configuration for mote cleaner systems tested.

<table>
<thead>
<tr>
<th>Gin</th>
<th>Cyclone Type</th>
<th>Inlet Design</th>
<th>Systems per Gin</th>
<th>Cyclones per Gin</th>
<th>Configuration</th>
<th>Cone Design</th>
<th>Trash Exits to</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1D3D</td>
<td>2D2D</td>
<td>1</td>
<td>1</td>
<td>single</td>
<td>standard</td>
<td>auger</td>
</tr>
<tr>
<td>G</td>
<td>1D3D</td>
<td>2D2D</td>
<td>1</td>
<td>1</td>
<td>single</td>
<td>standard</td>
<td>auger</td>
</tr>
</tbody>
</table>

*Figures 5 and 12
**Systems to remove material from cyclone trash exits: auger = enclosed, screw-type conveyor

The mote cleaner systems sampled at both gins F and G utilized single 1D3D cyclones to control emissions (Table 1 and Figs. 5 and 12). The mote cleaner cyclone design for both systems included a 2D2D inlet and standard cone. These cyclone configurations, if properly designed and maintained, are recommended for controlling cotton gin emissions (Whitelock et al., 2009).

Results

Table 2 shows the test parameters for each Method 201A test run for the mote cleaner systems sampled. The average ginning rate for the gin F combined mote cleaner and module feeder dust system was 46.2 bales/h and ranged from 39.0 to 50.5 bales/h (based on 227 kg [500 lb] equivalent bales). The average ginning rate for the gin G mote cleaner system was 36.0 bales/h and ranged from 35.0 to 37.0 bales/h. The 1D3D cyclone at gin F was operated with inlet velocities within design criteria, 16.3 ± 2 m/s (3200 ± 400 fpm). The cyclone at gin G was operated outside the design range due to limitations in available system adjustments.

There are criteria specified in EPA Method 201A for test runs to be valid for PM10 or total particulate measurements (CFR, 2010). Isokinetic sampling and PM10 aerodynamic cut size must fall within EPA defined ranges (100 ± 20% and 10.0 ± 1.0 µm, respectively) for valid PM10 tests. All tests met both criteria (Table 2). To use Method 201A to obtain total filterable particulate, sampling must be within 90 to 110% of isokinetic flow. This criterion was not met for the first test run for gin F; thus the data associated with this run were omitted from the total particulate test averages. Sampling rates ranged from 10.2 to 13.3 standard l/min (0.359-0.470 standard ft3/min) for the gin F system and 12.2 to 12.6 standard l/min (0.430-0.446 standard ft3/min) for the gin G system. The stack gas temperatures ranged from 33 to 35°C (91-95°F) for the gin F system and 27 to 29°C (81-84°F) for the gin G system.

No system averages were calculated because the gin F mote cleaner system was combined with a module feeder dust system that could significantly affect the mote cleaner system emissions. PM10 emissions data (ginning and emission rates and corresponding emission factors) for the mote cleaner systems are shown in Table 3. The average PM10 emission factor for the combined mote cleaner and module feeder dust system at gin F was 0.071 kg/bale (0.157 lb/bale) and ranged from 0.068 to 0.077 kg (0.149-0.170 lb) per bale. The average PM10 emission rate for gin F was 3.27 kg/h (7.21 lb/h). The PM10 average emission factor for the mote cleaner system at gin G was 0.050 kg/bale (0.109 lb/bale) and ranged from 0.044 to 0.055 kg (0.097-0.121 lb) per bale. The average PM10 emission rate for gin G was 1.79 kg/h (3.95 lb/h). Total particulate emissions data (ginning and emission rates and corresponding emission factors) for the mote cleaner systems are shown in Table 4. The average total particulate emission factor for gin F
Table 2. Cotton gin production data and stack sampling performance metrics for the mote cleaner systems.

<table>
<thead>
<tr>
<th>Gin</th>
<th>Test Run</th>
<th>Ginning Rate bales/h</th>
<th>Cyclone Inlet Velocity m/s</th>
<th>Isokinetic Sampling %</th>
<th>Aerodynamic Cut Size D_{50} PM_{10} µm</th>
<th>Sampling Rate(^{\text{y}}) slpm</th>
<th>sampling Rate(^{\text{y}}) scfm</th>
<th>Stack Temperature °C °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>39.0</td>
<td>18.3</td>
<td>3593</td>
<td>87(^{a})</td>
<td>5.45</td>
<td>0.359</td>
<td>33 91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49.1</td>
<td>18.2</td>
<td>3585</td>
<td>90</td>
<td>10.7</td>
<td>0.449</td>
<td>34 93</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>50.5</td>
<td>18.2</td>
<td>3575</td>
<td>95</td>
<td>10.0</td>
<td>0.470</td>
<td>35 95</td>
</tr>
<tr>
<td></td>
<td>Test Average</td>
<td>46.2</td>
<td>18.2</td>
<td>3584</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>35.0</td>
<td>20.8</td>
<td>4103</td>
<td>93</td>
<td>10.4</td>
<td>0.430</td>
<td>29 84</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>37.0</td>
<td>21.0</td>
<td>4143</td>
<td>96</td>
<td>10.1</td>
<td>0.446</td>
<td>28 82</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>36.0</td>
<td>20.7</td>
<td>4084</td>
<td>94</td>
<td>10.3</td>
<td>0.431</td>
<td>27 81</td>
</tr>
<tr>
<td></td>
<td>Test Average</td>
<td>36.0</td>
<td>20.9</td>
<td>4110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) 227 kg (500 lb) equivalent bales

\(^{y}\) slpm = standard l/min, scfm = standard ft\(^3\)/min

\(^{a}\) Mote cleaner system exhaust was combined with a module feeder dust system exhaust

\(^{a}\) Did not meet total particulate isokinetic sampling rate criteria (100 ± 10%)
Figure 13 shows an example of samples recovered from a typical mote cleaner system test run. Often, there were cotton lint fibers, which have cross-sectional diameters much greater than 10 µm, in the cotton gin cyclone exhausts. Therefore, it was not unusual to find lint fiber in the > 10 µm wash from Method 201A. However, in the sample shown in Fig. 14, lint fibers passed through the PM$_{10}$ cyclone and collected in the ≤ 10 µm wash and on the filter. This type of material carryover can bias the gravimetric measurements and affect reported PM$_{10}$ emission data. EPA Method 201A does not suggest methods to account for these anomalies. Thus, no effort was made to adjust the data reported in this manuscript to account for these issues.

SUMMARY

Seven cotton gins across the U.S. cotton belt were sampled using EPA Method 201A to collect data to fill the data gap that exists for cotton gin emissions data and improve the EPA AP-42 PM$_{10}$ emission factor quality ratings for cotton gins. Two of the seven gins had mote cleaner systems. The tested systems were similar in design and typical of the ginning industry, but the exhaust from one of the mote cleaner systems was combined with the module feeder dust system. Both systems were equipped with 1D3D cyclones for emissions. The ginning rate of the two gins averaged 36.0 and 46.2 bales/h during testing for the stand-alone mote cleaner system and combined mote cleaner and module feeder dust system, respectively. Some test runs were excluded from the test averages because they failed to meet EPA Method 201A test criteria. Also, other test runs included in the analyses had cotton lint fibers that collected in the ≤ 10 µm samples. This larger lint material can affect the reported emissions data, but EPA Method 201A does not suggest methods to account for these anomalies. The mote cleaner system average emission factors for PM$_{10}$ and total particulate based on the tests from the stand-alone mote cleaner system (3 total test runs) were 0.050 kg/227-kg bale (0.109 lb/500-lb bale) and 0.090 kg/bale (0.199 lb/bale), respectively. The test average PM$_{10}$ and total particulate emission rates for the stand-alone mote cleaner system were 1.79 kg/h (3.95 lb/h) and 3.26 kg/h (7.18 lb/h), respectively. The ratio of mote cleaner system PM$_{10}$ to total particulate was 54.9%. The average emission factors for PM$_{10}$ and total particulate based on the tests from the combined mote cleaner and module feeder dust system (three total test runs) were 0.071 kg/bale (0.157 lb/bale) and 0.109 kg/bale (0.241 lb/bale), respectively. The test average PM$_{10}$ and total particulate emission rates for the combined mote cleaner and module feeder dust system were 3.27 kg/h (7.21 lb/h) and 5.45 kg/h (12.02 lb/h), respectively, and the ratio of PM$_{10}$ to total particulate was 65.1%.
ACKNOWLEDGMENTS

The authors appreciate the cooperating gin managers and personnel who generously allowed and endured sampling at their gins. In addition, we thank California Cotton Ginners’ and Growers’ Association, Cotton Incorporated, San Joaquin Valleywide Air Pollution Study Agency, Southeastern Cotton Ginners’ Association, Southern Cotton Ginners’ Association, Texas Cotton Ginners’ Association, Texas State Support Committee, and The Cotton Foundation for funding this project. The authors also thank the Cotton Gin Advisory Group and Air Quality Advisory Group for their involvement and participation in planning, execution, and data analysis for this project that is essential to developing quality data that will be used by industry, regulatory agencies, and the scientific community. The advisory groups included: the funding agencies listed above, California Air Resources Board, Missouri Department of Natural Resources, National Cotton Council, National Cotton Ginners’ Association, North Carolina Department of Environment and Natural Resources, San Joaquin Valley Air Pollution Control District, Texas A&M University, Texas Commission on Environmental Quality, USDA-NRCS National Air Quality and Atmospheric Change, and U.S. Environmental Protection Agency (national, Region 4 and 9).

DISCLAIMER

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the Oklahoma State University or U.S. Department of Agriculture. Oklahoma State University and USDA are equal opportunity providers and employers.

REFERENCES

